


GEOLOGIC MAP OF THE HEBGEN LAKE QUADRANGLE, BEAVERHEAD, MADISON, AND GALLATIN COUNTIES, MONTANA,

J. Michael O'Neill and Robert L. Christiansen

conformably underlying Lava Creek Tuff; varies in appearance but contains conspicuous phenocrysts of sanidine, quartz, and plagioclase that make up 30-50 percent of volume of rock. Maximum thickness east of map area 450 m Huckleberry Ridge Tuff, undivided (Pliocene)

mountain fronts. Locally includes thin colluvial deposits. Generally less than 5 m thick Colluvium (Holocene)—Unconsolidated deposits of silt, sand, and angular pebbles and cobbles formed by mass movement downslope. Thickness generally less than 2 m Alluvial and colluvial deposits, undivided (Holocene) cone-shaped deposit on Lion Mountain **Alluvial fan deposits, undivided (Holocene)**—Poorly sorted silty sand and gravel deposited in small alluvial fans along valley margins and around hills and mountains. Maximum thickness

Young alluvial fan deposits (Holocene)—Active, small to large alluvial fans along valley Old alluvial fan deposits (Holocene)—Inactive, generally large alluvial fans, most of which were deposited along east side of Madison Valley; fans are weakly dissected and locally cut by Eolian deposits (Holocene)—Translucent tan to brown, well-sorted, moderately frosted quartz sand grains; forms sand dune field in northern Centennial Valley. Maximum thickness (dune

Talus deposits (Holocene)—Unsorted, unstratified angular clasts and slabs as much as 2 m across that accumulate at base of cliffs and very steep slopes Rock glaciers (Holocene)—Unconsolidated lobate to elongate deposits of coarse gravel and boulders in glacial cirques or at base of cliffs above timberline. Older deposits locally covered by thin soil and vegetation. Thickness generally less than 20 m Boulder field (Holocene)—Unsorted accumulation of angular boulders on steep slopes

SURFICIAL DEPOSITS

and in confined ephemeral stream channels. Maximum thickness unknown

Flood plain deposits (Holocene)—Sand, silt, and clay deposited in broad, open stream valleys

Alluvial and fluvial channel deposits (Holocene)—Sand, silt, clay, and pebble to cobble gravel

deposited in narrow stream channels and on broad alluvial slopes at base of low hills and

Alluvium of alluvial terrace deposit, undivided (Holocene)—Pebble- to boulder-size gravel and sand on low terraces adjacent to major streams. Maximum exposed thickness about 5 m Alluvium of younger alluvial terrace deposit (Holocene)—Unconsolidated gravels deposited on lowest terraces of modern streams Alluvium of older alluvial terrace deposit (Holocene)—Unconsolidated gravels deposited on terraces above lowest terraces in modern stream valleys Earth flow and landslide deposits (Holocene and Pleistocene)—Coarse, unconsolidated deposits of locally derived, angular pebbles, cobbles, and boulders associated with fine-grained matrix of silt and sand. On south and east sides of Gravelly Range, huge landslides where

length and width are measured in kilometers include large toreva blocks of Huckleberry Ridge

(Tsc); on west side of Gravelly Range, landslides of similar size reflect massive dip-slip slope

failure of clay-rich, tuffaceous, weakly indurated Cretaceous formations. Maximum thickness

Tuff (Thr) deposited on unconsolidated sand and silt of the Miocene Sixmile Creek Formation

probably near 60 m Lacustrine deposits (Holocene and Pleistocene)—Light-brown to brown, well-sorted, unconsolidated sand, silt, and clay veneer on undissected surfaces underlain mainly by basinfill deposits. Marked, in part, by multiple strand lines that outline limit of dwindling glacial lake. Thickness unknown; probably less than 2 m Glacial outwash deposits (Pleistocene)—Generally poorly sorted, bouldery, layered sand and gravel deposited by glacial meltwater Glacial till and related deposits (Pleistocene)—Poorly sorted, unconsolidated deposits of silt,

sand, gravel, and boulders in, commonly adjacent to, and locally at mouths of major alpine

valleys. Deposits are both Pinedale and Bull Lake in age; cirque moraines and pretalus

ramparts are Holocene in age. Maximum thickness unknown Pediment deposits (Pleistocene)—Weakly dissected deposits of pebbles and cobbles of generally angular to subrounded, unsorted and unconsolidated sedimentary and crystalline rocks in a fine-grained, pale-yellowish-brown matrix. Deposited on gently dipping surfaces related to development of Madison Valley. Maximum thickness about 5 m Alluvium of high alluvial terraces (Pleistocene)—Sand and pebble- to boulder-size gravel deposits on terraces along Ruby River that are about 60-100 m above adjacent stream level Alluvium, undivided (Pleistocene to Miocene)—Isolated sand and pebble- to boulder-size gravel deposits at high elevations in Gravelly and Centennial Ranges Sand and gravel (Pliocene and Miocene)—Thin alluvial and fluvial sand and pebble-size gravel leposits restricted to abandoned stream valleys in Gravelly Range

IGNEOUS ROCKS Central Plateau Member of Plateau Rhyolite (Pleistocene)

Upper part—Rhyolitic flows erupted from vents in Yellowstone caldera; flows contain abundant phenocrysts of mainly quartz and sanidine; plagioclase phenocrysts are conspicuous in their absence. Maximum thickness about 300 m Lower Buffalo Lake flow (informal)—Light-gray, dense, fine-grained to aphanitic rhyolitic ashflow tuff; angular to rounded phenocrysts of quartz, sanidine, pyroxene, and olivine make up as much as 25 percent of volume of rock Madison River Basalt (Pleistocene)—Medium- to light-gray, dense basalt; moderately abundant plagioclase phenocrysts and rare olivine phenocrysts; occurs as scattered, thin flows near

Lava Creek Tuff (Pleistocene) Upper member—Light-gray, locally pale red, fine-grained to aphanitic, densely welded ash-flow tuff; phenocrysts compose as much as 20 percent of rock. Thickness east of map area ranges from 180 to 300 m Lower member—Ash-flow tuff lithologically similar to overlying upper member; members are separated by a partially welded tuff locally associated with a sorted and bedded crystal ash

Upper member—Pinkish-gray, gray, to brown welded tuff containing abundant phenocrysts of sanidine and quartz (25 and 10 percent, respectively); uppermost part is locally nonwelded and light pink on weathered surfaces, and contains noncompacted pumice fragments Lower member—Medium- to dark-gray welded tuff containing sparse (less than 5 percent) phenocrysts; base of unit is a vitrophyre overlain by densely welded tuff that becomes only

Volcanic vent (Miocene and Oligocene)—Basaltic scoria, flows, and volcanic ejectamenta in Mafic volcanic rocks (Miocene and Oligocene)—Dark-gray to black, dense, fine-grained flow rock; commonly vesicular or columnar jointed; sparse olivine phenocrysts. Maximum thickness in southern Gravelly Range along West Fork of Madison River is near 120 m. In Eastern Centennial Mountains, divided into two similar mafic flow sequences separated by rhyolitic flows (Tfv). Upper sequence is sparsely porphyritic basalt to basaltic andesite flows interlayered with thin, discontinuous beds of mudflow breccia. Lower sequence consists of lava flows and flow breccias of dark-gray to brownish-black basalt, basaltic andesite, and gray, brown, and yellowish-brown andesite; mafic flows diminish lowermost in sequence. All rocks are porphyritic; basaltic rocks contain plagioclase and olivine phenocrysts whereas andesite contains sparse to abundant phenocrysts of plagioclase and at least one mafic mineral in a

glassy to aphanitic groundmass. Total thickness about 870 m Felsic volcanic rocks (Miocene and Oligocene)—In Eastern Centennial Mountains, consists of two units. Upper sequence is light-gray, yellowish-gray, and brown porphyritic dacite and rhyodacite flows and flow breccias interlayered with thin, discontinuous beds of mudflow breccia; maximum thickness about 350 m. Lower sequence is light- to brownish-gray mudflow breccia and mudstone containing poorly sorted volcanic rock fragments in an ashrich matrix; thickness 0–60 m

Mafic intrusive rocks (Miocene and Oligocene)—Large to small plugs and sills of basalt and basaltic andesite in western part of map area; largest plug is Black Butte in Gravelly Range. In eastern part of map area includes sills of dacite porphyry and minor shoshonite Absaroka Volcanic Supergroup, undivided (Eocene)—In Eastern Centennial Mountains consists of dark-gray to black, fine-grained to aphanitic pyroxene trachyte porphyry; augite, olivine, and andesine phenocrysts common. Correlative volcanic rocks present in Henry Mountains. Thickness unknown

SEDIMENTARY ROCKS

Sixmile Creek Formation (Miocene)—Weakly consolidated, tan to light-orange-brown,

laminated, tuffaceous mudstone, siltstone, sandstone, and lithic pebble conglomerate. Renova Formation (Oligocene and Eocene)—Weakly consolidated, cream-colored, tuffaceous mudstone; common calcareous concretions; interlayered with lesser amounts of sandy siltstone and granule-pebble conglomerate. Maximum exposed thickness at Lion Mountain

boulders of subrounded metamorphic rock in scattered exposures along crest of Gravelly Range. Maximum preserved thickness about 10 m Beaverhead Group (Upper Cretaceous) **Limestone and conglomerate**—Limestone and limestone conglomerate interbedded with

Boulder conglomerate (Paleocene and Upper Cretaceous)—Unconsolidated cobbles and

varying amounts of siltstone and sandstone. Best exposures are at Red Hill in Gravelly Range where basal siltstone and limestone conglomerate are interlayered with lenses of well-rounded quartzite gravel in an angular quartz sand matrix; gravel is similar to that of underlying stream gravel deposits (Kbeg) and may have been derived, in part, from these fluvial deposits. Lacustrine limestone is medium to coarse crystalline and light gray, and locally contains abundant snails, stromatolites, and oncolites; also commonly interlayered with coarse-grained sandstone, siltstone, and intraformational limestone rip-up conglomerate. Many of the conglomerate lenses consist of clasts of locally derived Paleozoic rocks upon which these rocks rest; they are confined to paleovalleys that, in Gravelly Range, drained from west to east. Maximum thickness about 20 m Gravel and sand—Unconsolidated, well-rounded, pebble- to cobble-size stream deposits

composed chiefly of quartzite derived from Mesoproterozoic Lemhi Group and Belt Supergroup exposed to the northwest and west of Gravelly Range, beyond borders of Hebgen Lake quadrangle. Thickness about 10 m or less Sandstone—Poorly exposed, buff to brown silty sandstone interlayered with lenses of wellrounded to subrounded cobbles and boulders of metamorphic rock; present in northern

Centennial Valley and southernmost Gravelly Range. Thickness may be as much as 725 m Everts(?) Formation and Virgelle Sandstone, undivided (Upper Cretaceous) Everts(?) Formation—Light- to dark-gray, thin- to thick-bedded, fine- to medium-grained, quartz-rich sandstone and interbedded siltstone; includes sparse mudstone, porcellanite, and dark-gray limestone. Lower 60–90 m are thinly interbedded mudstone, siltstone, shale, coal, and minor crossbedded sandstone. About 425 m thick Virgelle Sandstone—Thin- to thick-bedded, medium- to coarse-grained, crossbedded sandstone

forming prominent white-weathering ledges. Thickness ranges from 23 to 50 m Telegraph Creek Formation (Upper Cretaceous)—Upper half consists of light-brownweathering mudstone and siltstone; thin interbeds of light-gray sandstone locally contain chertpebble lags and glauconite. Middle 20 m consists of conspicuous white-weathering, finely laminated tuffaceous siltstone. Lower 75 m consists of slope-forming siltstone and mudstone in upper part that overlies lowermost "salt and pepper," ripple-marked sandstone. Total thickness about 206 m Cody Shale (Upper Cretaceous)—Dark-gray, thin-bedded, locally micaceous and silty mudstone;

thin interbeds of gray-green siltstone and fine-grained sandstone. About 300 m thick

Kf Frontier Formation (Upper Cretaceous)—Interbedded sandstone, siltstone, mudstone, carbonaceous shale and coal seams, and minor limestone. Sandstone is predominantly medium light gray to yellowish or greenish gray, very fine to medium grained, and commonly calcareous. Coarse-grained varieties include subangular lithic sand grains of chert, feldspar, and biotite; locally conglomeratic, containing well-rounded pebbles of quartzite and chert. Sandstone beds generally less than 1 m, but occur in layered units as much as 7 m thick. Siltstone and mudstone are olive gray and medium to dark gray, bentonitic, and porcellanitic. Limestone is thin bedded to nodular, light to medium gray, and micritic. Thickness ranges from about 870 m directly north of

Gravelly Range to 2,100 m near southern part of Gravelly Range, and thins to 120 m in Madison Range **Mowry Shale (Upper Cretaceous)**—Upper part is slope-forming, dark-gray mudstone and silty mudstone interbedded with minor siltstone, sandstone, and bentonite with organic-rich shale. Lower part is light-colored pink, gray-green, green, and orange-cream mudstone, bentonitic mudstone, and porcellanite interlayered with welded tuff, mudstone, siltstone, and minor quartz sandstone. Generally poorly exposed because of slumping; in Gravelly Range the Mowry is the site of pronounced landsliding. About 150–180

Kmd Muddy Sandstone (Lower Cretaceous)—Upper part consists of lightgray, thin- to medium-bedded, fine- to coarse-grained quartz sandstone, feldspathic sandstone, and arkose. Middle part is darkgray, thin-bedded siltstone, sandstone, and shale. Lower part is greenish-gray to tan, fine- to medium-grained sandstone. Middle part thins to the west and is absent in Gravelly Range. Thickness ranges from 0 to about 110 m Thermopolis Shale (Lower Cretaceous)—Dark-gray to black, fissile, organic-rich shale overlying light- to dark-brown-weathering, thin-

to medium-bedded, fine- to medium-grained sandstone. Thickness ranges from about 50 to 75 m Kk Kootenai Formation (Lower Cretaceous)—Upper 15 m consists of conspicuous, ledge-forming, medium- to thick-bedded, light-gray fresh-water limestone that contains abundant gastropods. Middle part is a slope-forming gray, maroon, yellow, red, and purple mudstone with siltstone, sandstone, and, in its lower part, minor limestone. Lower part is thick-bedded, cherty, crossbedded,

quartz-rich sandstone and minor, well-rounded chert-pebble conglomerate. Thickness about 125 m Morrison Formation (Upper Jurassic) and Ellis Group (Upper and Middle Jurassic), undivided Morrison Formation (Upper Jurassic)—Interbedded red, green, gray, and yellowish-gray siltstone, mudstone, and shale locally interlayered with thin beds of dense, fine-grained limestone. In Madison Range upper part includes yellowish-tan, medium-bedded sandstone lenses as much as 20 m thick. Generally poorly exposed and forms reddish-colored slopes. Maximum thickness

Ellis Group (Upper and Middle Jurassic) **Swift Formation (Upper Jurassic)**—Thin- to medium-bedded, medium- to coarse-grained, calcareous, locally chert bearing quartz sandstone; contains abundant ooids and shell fragments. Lowermost part is olive-green shale and claystone. The Swift is the only formation of the Ellis Group exposed in western part of map area. Thickness ranges from about 1 to 30 m **Rierdon Limestone (Middle Jurassic)**—Light-gray to pale-brown, thin- to thick-bedded, dense, oolitic limestone; locally contains

Maximum thickness about 30 m Sawtooth Formation (Middle Jurassic)—Thin-bedded, light- to dark-gray limestone; local shaly to silty limestone interbeds; locally fossiliferous and oolitic. Absent in western part of map area. Maximum thickness about 55 m Woodside and Dinwoody Formations, undivided (Lower Triassic) Woodside Formation (Lower Triassic)—Brick-red to orange-red,

sparse chert pebbles. Absent in western part of map area.

thin, discontinuous limestone beds; uppermost strata are silty and locally crossbedded. Thickness ranges from 0 to about 220 m **Dinwoody Formation (Lower Triassic)**—Tan- to pale-brownweathering, finely laminated, calcareous siltstone in upper part; grades downward into chocolate-brown-weathering gray to tan limestone, silty limestone, and siltstone. Thickness variable, ranging from about 20 to 80 m **Shedhorn Sandstone (Lower Permian)**—Uppermost part is medium-

bedded, fine- to coarse-grained sandstone; minor chert lenses grade downward into yellowish- to dark-brown, thin-bedded chert with silty, locally phosphatic partings. Lower part is brown to gray, thin- to medium-bedded sandstone that grades downward into yellowish-gray, medium-bedded dolomite and sandy dolomite locally containing abundant chert fragments. Equivalent in part to the Phosphoria Formation. Thickness variable, ranging from about 35 to 70 m

weathering solution breccia

Devonian)—Consists of three members, from top to bottom:

gray vuggy limestone and dolomite underlain by olive-green

Jefferson Dolomite (Upper Devonian)—Light-gray, tan, yellowish-

Bighorn(?) Dolomite (Upper Ordovician) and Snowy Range

Bighorn(?) Dolomite—Light-gray, thin-bedded, dense

cryptocrystalline dolomite. About 11 m thick

approximately 60 m

Formation and Pilgrim Limestone (Upper Cambrian),

Snowy Range Formation—Tan, thin-bedded limestone with

siltstone and green sandy shale. About 300 m thick

Pilgrim Limestone (Upper Cambrian) and Park Shale and

Meagher Limestone (Middle Cambrian), undivided

fissile, locally waxy looking shale interbedded with minor

Poorly exposed everywhere and perhaps locally missing in

Meagher Limestone (Middle Cambrian)—Light-gray to brownish-

partings of calcareous shale in upper and lower parts;

overlies Paleoproterozoic metasedimentary rocks, are

Wolsey Shale and Flathead Sandstone, undivided (Middle

Centennial Ranges. Thickness 0–60 m

Thickness 0–30 m

rocks to the east in Madison Range]

Granite

Xq4 Quartzite member 4

gray, thin- to medium-bedded, finely crystalline limestone; thin

characteristically contains irregular orange-yellow silty mottles;

few meters of formation in Gravelly Range, where it directly

characterized by calcareous-cemented lag gravel deposits. In

micaceous shale interbedded with minor, thin limestone beds

as well as thin, glauconitic, guartzose sandstone similar to the

Flathead Sandstone (Middle Cambrian)—White, tan, to reddish-

brown, hematitic, thin- to medium-bedded, fine- to medium-

thin that it is included in the overlying Meagher Limestone.

LATE PALEOPROTEROZOIC ROCKS

rocks. Relative ages as listed, youngest to oldest. All except mylonite (Xmy)

Paleoproterozoic clastic foreland basin deposits (O'Neill, 1999) consisting mainly of

sandstone and shale; sedimentary iron-formation occurs in middle of sequence and

is a marker horizon throughout Gravelly Range. Gabbroic intrusive rocks are

weakly tectonized and are associated with contact metamorphic aureoles marked

by porphyroblasts of andalusite or staurolite, or both, in pelitic rocks around their

perimeters. Mylonitization of rocks occurred about 1.8 Ga, coeval with mylonitic

exposed only in Gravelly Range. Rocks have been divided into 12

sills and small plugs and, in the north, a granitic stock. The weakly

metamorphosed rocks are interpreted to represent a sequence of late

similar to mottled limestone of the overlying Meagher Limestone

underlying Flathead Sandstone. Locally missing in Gravelly and

grained quartz to feldspathic sandstone; interlayered with greenish

Centennial and Gravelly Ranges, formation may be missing or so

shale in upper part; glauconitic locally. Where unmapped in

Gravelly Range, locally includes thin, unmapped deposits of the

locally interbedded with centimeter-thick oolitic limestone. Basal

Gravelly Range. Locally included with the underlying Meagher

Limestone where too thin to show on map. Thickness 0–30 m

Park Shale (Middle Cambrian)—Greenish-gray to reddish-gray,

yellowish-tan calcareous siltstone and silty limestone (Sappington

shale (Trident Member, maximum thickness 6 m); and yellowish-

micaceous shale (Logan Gulch Member, maximum thickness 12

brown, and dark-gray, finely crystalline to sucrosic dolomite locally

interbedded with 1-m-thick silty, shaly, laminated dolomite. In

Madison Range, includes uppermost, massive, ledge-forming

dolomite breccia (Birdbear Member). Maximum thickness about

reddish mottles underlain by greenish, thin-bedded dolomite and

dolomitic mudstone that grades downward into red calcareous

Pilgrim Limestone—Light-gray and yellowish-brown to gray-brown,

thin- to medium-bedded, glauconitic dolomitic limestone; mud-

chip conglomerate and oolitic beds locally common. Thickness

limestone, limestone-pebble conglomerate, and oolitic limestone.

Member, maximum thickness 25 m); gray-green, fissile, micaceous

weakly to strongly discordant contacts with adjacent rocks. Rock composition and texture variable, ranging from medium grained and equigranular with faint layering defined by aligned biotite, to Pq Quadrant Sandstone (Pennsylvanian)—White to tan, medium-to highly folded and contorted leucogranite enclosing granodioritic thick-bedded, clean, well-sorted quartz sandstone. Lower part xenoliths, to mafic folded granite and granite gneiss. contains thin interbeds of pale-brown dolomite and gray Northernmost exposures of granitic gneiss in Madison Range limestone. Thickness 60–100 m contain conspicuous elongate feldspar augen Amsden Formation (Middle Pennsylvanian to Upper Quartz-feldspar-biotite gneiss and migmatite—Weakly foliated Mississippian)—Dark-red, gray-red, and pinkish-red, thin-bedded,

granitic gneiss; locally strongly deformed. Commonly cut by veins calcareous siltstone, silty shale, and shale. Upper part contains of equigranular granite and pegmatite. Similar in texture to interbeds of medium- to coarse-grained calcareous sandstone granitic gneiss (Vg) but less mafic and generally concordant whereas lower part is interbedded with thin-bedded limestone, Quartz-feldspar-biotite gneiss and pegmatite—Well-foliated, fine- to limestone-pebble conglomerate, and dolomite. Thickness ranges medium-grained granitic gneiss cut by abundant, coarse-grained from about 10 to 50 m Mm Madison Group, undivided (Upper and Lower Mississippian)— Thickness ranges from about 400 to 700 m

quartz-feldspar pegmatite. Intruded by adjacent granite (Xgr) **Dioritic gneiss**—White- and green-spotted, well-foliated plagioclase nornblende-quartz rock as thin sills and small stocks. Sills typically Mission Canyon Limestone (Upper and Lower Mississipian) consist of 60-80 percent plagioclase and hornblende, and minor Commonly cliff forming, thick-bedded, light-gray-weathering, quartz; stocks are more felsic and include biotite and as much as cherty, fine-grained limestone and minor dolomite. Uppermost few meters of formation contain prominent orangish-gray-**Tonalitic gneiss**—Tonalitic migmatite gneiss and tonalitic biotite gneiss; highly variable both texturally and compositionally; gneiss Lodgepole Limestone (Lower Mississippian)—Slope- to ledgeincludes amphibolitic migmatite breccia, leucotonalite gneiss, and forming, thin- to medium-bedded, light-gray, finely crystalline, dark-gray tonalitic biotite gneiss with moderate migmatite fossiliferous limestone; brownish-gray silty limestone partings

Phyllite member 2

Quartzite member 3

Iron-formation

Phyllite member 1

Quartzite member 2

Quartz-mica schist

Quartzite member 1

age for these metasedimentary rocks]

Quartz-feldspar-biotite gneiss

Pegmatite and metasedimentary rocks, undivided

[Amphibolite-grade metasedimentary rocks are strongly deformed and show abundant evidence of internal thickening and thinning; original thickness of

metamorphic units is not known. These supracrustal rocks, called the Cherry

Creek Metamorphic Suite for exposures in Gravelly Range along Cherry Creek

directly north of map area (Heinrich, 1960), have traditionally been accepted as

Ga) cooling ages from gneissic rocks interlayered with metasedimentary rocks

directly west of Henrys Lake; however, it is not clear how the gneissic rocks are

related to the enclosing metasedimentary rocks. Given the strongly folded and

thrust-faulted nature of these rocks, the likely imbricate stacking of Archean crustal

fact that supracrustal rocks are virtually unknown from Archean basement rocks of

locally show crosscutting relationships and chilled margins. Rock

is equigranular and composed of plagioclase, quartz, microcline,

from infolded, disjointed units to tabular sheets with sharp, planar

contacts; mapped units were probably originally gabbroic intrusive

Amphibolite—In Madison Range, amphibolite dikes and sills range

rock. In eastern Centennial Range and Horn Mountains,

Marble—Massive, light-gray to cream-colored dolomitic marble

amphibolite is green to greenish brown, schistose to massive

generally fine grained, and locally porphyroblastic; actinolite

interlayered with thin quartzite bands; schistosity defined by

Quartzite—Light-green, poorly banded quartzite; interfingers with

and does not show clastic textures or graded bedding

magnetite, chlorite, biotite, and poikiloblastic garnet

Biotite schist and gneiss—Compositional layering of biotite-rich

Mica schist—Interlayered rusty-yellow-weathering, quartz-rich

aligned chlorite and phlogopite, and flattened dolomite grains. In thin section, dolomite dominates the marble; calcite is associated

with quartzite layers only; quartz is present generally as granular

adjacent rock units; quartzite has been completely recrystallized

muscovite schist and thin quartzite; locally contains abundant

Chlorite-biotite schist—Well-banded chlorite-biotite schist and gneiss

containing variable amounts of quartz and epidote; interlayered

metamorphic rocks is defined by relative proportions of quartz

biotite, garnet, and muscovite. Beds, 1–3 m thick, of biotite-rich

metasandstone with well-preserved clastic textures separated by thinner beds of metapelite are common. Biotite schist also

interlayered with marble (XWm) and associated with chlorite biotite schist (XWcs) and well-banded quartzite similar to banded

cherts associated with minor, unmapped iron-formation

MIDDLE ARCHEAN ROCKS

associated igneous rocks; relative ages uncertain. Middle Archean (>3.1 Ga) age

Vum Ultramafic rock—Pods and lenses of hornblende-rich rock consisting

Granite and granitic gneiss—Pink, foliated granitic rocks having

mainly of, from rim to core, hornblende and biotite, actinolite and

biotite, chlorite, talc and carbonate, anthophyllite, and serpentine

[Middle Archean amphibolite- to granulite-grade metamorphic tectonites and

has been confirmed by U-Pb zircon ages from crystalline rocks collected from

with green phyllonite, chloritic schist with quartz augen, and

North America, we tentatively suggest the possibility of an early Paleoproterozoic

XWgd Granodioritic gneiss—Foliated granodiorite as intrusive sills that

makes up as much as 50–90 percent of rock

hornblende, and biotite

bands within marble

granulated amphibolite

southern Madison Range (Shuster and others, 1987)]

rocks with overlying, younger supracrustal rocks in a fold-and-thrust belt, and the

peing Late Archean in age. Erslev and Sutter (1990) obtained latest Archean (2.53

EARLY PALEOPROTEROZOIC(?) AND LATE ARCHEAN SUPRACRUSTAL

METASEDIMENTARY AND META-IGNEOUS ROCKS

Knotted mica schist

banding. Locally, tonalite gneiss is interlayered with a mixed gneiss composed of green quartzite, biotite-garnet gneiss, amphibolite and garnet amphibolite, and gedrite-cordierite-bearing gneiss. All tonalitic rocks consist of essential plagioclase, quartz, nornblende, and biotite with a granoblastic texture. Also included with these rocks is migmatitic granite gneiss characterized by granite leucosomes containing abundant microcline between thin ayers enriched in plagioclase, biotite, and, locally, hornblende

Contact—Dashed where approximately located; dotted where **Normal fault**—Dashed where approximately located; dotted where Thrust fault—Dashed where approximately located; dotted where

 Anticline—Dotted where concealed Syncline—Dotted where concealed

— **t** Overturned syncline

REFERENCES CITED Erslev, E.A., 1983, Pre-Beltian geology of the southern Madison Range, southwestern Montana: Montana Bureau of Mines and Geology Memoir 55,

Erslev, E.A., and Sutter, J., 1990, Evidence for Proterozoic mylonitization in the northwestern Wyoming Province: Geological Society of America Bulletin, v. Heinrich, E.W., 1960, Geology of the Ruby Mountains and nearby areas in southwestern Montana, in Pre-Beltian geology of the Cherry Creek and Ruby Mountains areas, southwestern Montana: Montana Bureau of Mines and

Geology Memoir 38, p. 15–40. Luikart, E.J., 1997, Syn- and post-Laramide geology of the south-central Gravelly Range, southwestern Montana: Bozeman, Mont., Montana State University M.S. thesis, 96 p. Lundstrom, S.C., 1986, Soil stratigraphy and scarp morphology studies applied to

the Quaternary geology of the southern Madison Valley, Montana: Arcata, Calif., Humboldt State University M.S. thesis, 53 p. Myers, W.B., and Hamilton, Warren, 1964, Deformation accompanying the Hebgen Lake earthquake of August 17, 1959: U.S. Geological Survey Professional Paper 435–I, p. 55–98.

Wolsey Shale and Flathead Sandstone. Maximum thickness about O'Neill, J.M., 1999, The Great Falls tectonic zone, Montana-Idaho—An Early Proterozoic collision orogen beneath and south of the Belt basin, in Berg, R.B., ed., Proceedings of Belt Symposium III: Montana Bureau of Mines and Geology Special Publication 111, p. 227–234. Wolsey Shale (Middle Cambrian)—Gray-green to dark-gray, fissile,

O'Neill, J.M., and Christiansen, R.L., 2002, Geologic map of the Hebgen Lake 30' x 60' quadrangle, Montana, Wyoming, and Idaho: Montana Bureau of Mines and Geology Open-File Report 464, scale 1:100,000. Shuster, R.D., Mueller, P.A., Erslev, E.A., and Bowes, D.R., 1987, Age and composition of the pre-Cherry Creek metamorphic complex, southern

Madison Range, southwestern Montana: Geological Society of America Abstracts with Programs, v. 19, p. 843. Sonderegger, J.L., Schofield, J.D., Berg, R.B., and Mannick, M.L., 1982, The upper Centennial Valley, Beaverhead and Madison Counties, Montana—An investigation of the resources utilizing geological, geophysical, hydrochemical and geothermal methods: Montana Bureau of Mines and Geology Memoir

Tysdal, R.G., 1990, Geologic map of the Sphinx Mountain quadrangle and adjacent parts of the Cameron, Cliff Lake, and Hebgen Dam quadrangles, Montana: U.S. Geological Survey Miscellaneous Geologic Investigations Map

I–1815, scale 1:62,500. [Late Paleoproterozoic tectonites, metasedimentary rocks, and associated igneous Witkind, I.J., 1969, Geology of the Tepee Creek quadrangle, Montana-Wyoming. U.S. Geological Survey Professional Paper 609, 101 p. ----1972, Geologic map of the Henrys Lake quadrangle, Idaho and Montana metasedimentary members (Xpm through Xq4) that have been intruded by gabbro U.S. Geological Survey Miscellaneous Geologic Investigations Map I-781-A, scale 1:62,500. ———1976, Geologic map of the southern part of the Upper Red Rock Lake

> quadrangle, southwestern Montana and adjacent Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-943, scale 1:62,500. Witkind, I.J., and Prostka, H.J., 1980, Geologic map of the southern part of the Lower Red Rock Lake quadrangle, Beaverhead and Madison Counties, Montana, and Clark County, Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I–1216, scale 1:62,500.

Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government For sale by U.S. Geological Survey Information Services Box 25286, Federal Center, Denver, CO 80225 1-888-ASK-USGS ArcInfo coverages and a PDF for this map are available at

PARK AND TETON COUNTIES, WYOMING, AND CLARK AND FREMONT COUNTIES, IDAHO