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FAULTS, FOLDS, AND LINEAMENTS

Low-angle normal fault—Tics on hanging wall.  Dashed where approximate; dotted where concealed

Normal fault that cuts out or reactivates a thrust fault—Fault places older rocks on younger rocks.
Sawteeth on hanging wall.  Dashed where approximate; dotted where concealed

Moderately or steeply dipping normal fault—Bar and ball on downthrown side; opposed arrows show
oblique-slip movement.  Dashed where approximate; dotted where concealed

Anticline—Arrow indicates plunge direction.  Dashed where approximate; dotted where concealed

Syncline—Arrow indicates plunge direction.  Dashed where approximate; dotted where concealed

Monocline—Arrow on steep limb of the fold

Lineament—Dashed where uncertain

AGES OF NORMAL FAULTS

Fault set Color Magnitude of this Relative and absolute age constraints
extensional event

6 Green Moderate Active or potentially active normal faults in the current tectonic
regime.  The age of initial slip is uncertain.

5 Brown Uncertain Many of the east-west striking normal faults cut the Paleogene
normal faults (blue) and are cut by the active Basin and Range faults
(green).  The east-west normal faults may have formed during more
than one episode of extension.  All east-west normal faults are
brown, regardless of their age.

4 Magenta Minor Late early Miocene normal faults with northeast strikes.  Little  
Eightmile Creek and Little Sheep Creek faults are the main faults of
this age.  Nicholia School fault zone may have formed at this time.

3 Blue Major, the largest normal Paleogene normal faults—most are middle Eocene to Oligocene,
faults in the region     but some may have been active into early or middle Miocene time.  

 formed at this time Cross-cutting relationships show that several systems of normal
faults were active sequentially during this time (VanDenburg and
others, 1998; Blankenau, 1999; Janecke and others, 1999).

2  Purple Minor Coeval with the Challis Volcanic Group, about 49.5 to about 45 Ma

1 Red Major? Older than the Challis Volcanic Group, pre 49.5 Ma

Black Variable Faults of uncertain age
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Figure 1. Map displaying the geographic setting of the study area (magenta out-
line), some of the larger normal faults in the region, and locations of rift ba-
sins.  Basins with predominantly Paleogene basin fill are distinguished from 
basins with mostly Miocene to Quaternary basin fill.  The age of the basin fill 
in the southern Big Hole basin is poorly known.  The Sage Creek basin was 
east of the zone of active rifting during the Paleogene (Janecke, 1994).  Ab-
breviations are: AYF, Agency-Yearian fault; BF, Beaverhead fault; BDF, 
Bloody Dick Creek fault; BTF, Blacktail fault; DF, Deadman fault; LPF, Lemhi 
Pass fault; MF, Monument Hills fault zone; MGF, Muddy-Grasshopper detach-
ment fault; MPF, Maiden Peak fault; RRF, Red Rocks fault; SBF, Salmon ba-
sin detachment fault; and UDMGF, upper detachment fault of the Muddy-
Grasshopper detachment fault system.

OVERVIEW

Compilation of a 1:100,000-scale map of normal faults and 
extensional folds in southwest Montana and adjacent Idaho reveals 
a complex history of normal faulting that spanned at least the last 
50 m.y. and involved six or more generations of normal faults.  
The map is based on both published and unpublished mapping 
and shows normal faults and extensional folds between the valley 
of the Red Rock River of southwest Montana and the Lemhi and 
Birch Creek valleys of eastern Idaho between latitudes 45°05' N. 
and 44°15' N. in the Tendoy and Beaverhead Mountains.  Some 
of the unpublished mapping has been compiled in Lonn and oth-
ers (2000).  Many traces of the normal faults parallel the generally 
northwest to north-northwest structural grain of the preexisting 
Sevier fold and thrust belt and dip west-southwest, but northeast- 
and east-striking normal faults are also prominent.  Northeast-
striking normal faults are subparallel to the traces of southeast-di-
rected thrusts that shortened the foreland during the Laramide or-
ogeny.  It is unlikely that the northeast-striking normal faults reac-
tivated fabrics in the underlying Precambrian basement, as has 
been documented elsewhere in southwestern Montana (Schmidt 
and others, 1984), because exposures of basement rocks in the 
map area exhibit north-northwest- to northwest-striking deforma-
tional fabrics (Lowell, 1965; M’Gonigle, 1993, 1994; M’Gonigle 
and Hait, 1997; M’Gonigle and others, 1991).  The largest nor-
mal faults in the area are southwest-dipping normal faults that lo-
cally reactivate thrust faults (fig. 1).  Normal faulting began before 
middle Eocene Challis volcanism and continues today.  The exten-
sion direction flipped by about 90° four times.

INTRODUCTION

Normal faults in southwest Montana and adjacent Idaho were 
divided into distinct fault sets where cross-cutting relationships with 
datable features indicated the approximate age of slip across them.  
Absolute and relative ages of normal faults are best constrained at 
the sites of detailed studies in the southern Beaverhead Mountains 
(Skipp, 1984, 1985), the Horse Prairie basin (VanDenburg, 1997; 
VanDenburg and others, 1998), the southeast part of the Salmon 
basin (Blankenau, 1999), and the Muddy Creek basin (Janecke 
and others, 1999) (fig. 1).  Faults of uncertain age are shown in 
black on the map.

At least six geometric and temporally distinct sets of normal 
faults are evident in the Tendoy and Beaverhead Mountains.  Each 
set of normal faults, or group of related structures, is described as 
having formed during a distinct phase of extension, or time peri-
od.  Fault sets are described from youngest (set 6) to oldest (set 1).  
VanDenburg and others (1998) described five of these fault sets in 
the Horse Prairie basin area and Blankenau (1999) detailed the 
multiple deformational events associated with the third event in 
the southeast part of the Salmon rift basin.  Sets 1–4 correspond 
to sets 1–4 of VanDenburg and others (1998).  Subsequent map-
ping in the southern Nicholia Creek basin and adjacent areas re-
vealed the presence of an additional set of east-west striking nor-
mal faults (set 5) that formed in latest Miocene to Pleistocene(?) 
time before the currently active system of northwest-striking nor-
mal faults developed along the range fronts (Janecke and others, 
2000a; and unpublished mapping).  The currently active normal 
faults of set 6 correspond to faults formed during VanDenburg and 
others’ (1998) phase 5.

Extensional folds are very common in rift basins of southwest 
Montana and eastern Idaho, and formed in association with the 
many normal faults that have extended the region since at least 
Eocene time (Janecke and others, 1998).  Folds were not separat-
ed into distinct sets based on geometry and age because some 
folds formed over extended periods of time and many have uncer-
tain origins (for example, VanDenburg and others, 1998; Blanke-
nau, 1999; Janecke and others, 1998).  Janecke and others 
(1998) illustrated the widely varying geometries of the extensional 
folds and showed that many folds are oblique to the associated 
normal fault.  Some folds were active during sedimentation in the 
rift basins and influenced the facies patterns in the basins (Janecke 
and others, 1998, 1999; Blankenau, 1999).  Other extension 
folds deform preexisting synrift deposits. 

Rift basins formed during the third and sixth phase of exten-
sion in the Tendoy-Beaverhead region (fig. 1).  Basins that devel-
oped during phase 3 include the Eocene to Oligocene Salmon, 
Horse Prairie, Grasshopper, Montana Medicine Lodge, Muddy 
Creek, and Nicholia Creek rift basins (Fields and others, 1985; Ja-
necke and others, 1998, 1999) (fig. 1).  Deposition in the Horse 
Prairie half graben locally continued into the early Miocene (Fields 
and others, 1985; VanDenburg, 1997; VanDenburg and others, 
1998).  The Red Rock, Birch Creek, upper Lemhi, and Idaho 
Medicine Lodge valleys formed primarily during phase 6 (fig. 1).  
Minor localized sediment related to phase 4 is preserved southwest 
of Lima in the hanging wall of the Little Sheep Creek normal fault 
(Ryder and Scholten, 1973; Betty Skipp, unpublished mapping) 
and in the hanging wall of the Little Eightmile Creek fault (Van-
Denburg, 1997; VanDenburg and others, 1998).  Farther to the 
northeast, however, major half grabens formed during phase 4 
(Fritz and Sears, 1993; Sears and Fritz, 1998).

Fault set 6.  Miocene(?) to Holocene southwest- and 
northeast-dipping normal faults (shown in green on the 

map)

Fault set 6 includes normal faults that are known or suspected 
to be active in the current tectonic regime.  The Tendoy and Bea-
verhead Mountains lie within the Rocky Mountain Basin and 
Range Province and the Intermountain seismic belt, along the 
northern arm of the Yellowstone seismic parabola  (Scott and oth-
ers, 1985; Anders and others, 1989; Smith and Arabasz, 1991; 
Pierce and Morgan, 1992; Wernicke, 1992).  Pardee (1950) and 
Reynolds (1979) first documented some of these active normal 
faults in southwest Montana.  Extension in this area is currently 
being accommodated by range-front faults that strike approximate-
ly N. 35–50° W.  (Crone and Haller, 1991) due to approximately 
N. 45° E. extension (Stickney and Bartholomew, 1987).  Normal 
faults of set 6 in the northern half of the map area have very con-
sistent northwest strikes.  Most of the active range-front faults dip 
to the southwest, but northeast of a synclinal accommodation zone 
near the crest of the Tendoy Mountains most of the active range 
front faults dip to the northeast (Stewart and others, 1998; Stew-
art, 1998; Sears and Fritz, 1998, plate 1).  The southwest-dipping 
Monument Hills normal fault zone, at the northeast edge of the 
map area, is an exception to this rule.  The Monument Hills fault 
zone may be antithetic to the Red Rock fault.

Offset Quaternary deposits along the Red Rock, Monument 
Hills, and Beaverhead normal faults show that these normal faults 
are young and active (Haller, 1988, 1990; Bartholomew, 1989; 
Crone and Haller, 1991).  Some other normal faults lack fault 
scarps, yet they cut all older structures and are parallel to the 
known faults of set 6; these faults—the Kissick, Kate Creek, Rocky 
Canyon, and Bloody Dick Creek faults (Coppinger, 1974; Dubois, 
1982; VanDenburg, 1997; S.U. Janecke, unpublished mapping; 
Lonn and others, 2000)—were also included in this group.

Fault set 5.  Miocene to Pleistocene(?) north- and south-
dipping normal faults (shown in brown on the map)

A newly identified set of consistently east-west-striking normal 
faults displace all but the youngest range-front normal faults.  The 
east-west faults dip both north and south and typically display 
small offsets.  Most of these normal faults have steep to moderate 
dips but some faults are listric in the subsurface and produce roll-
over folds.  The east-west normal faults are most numerous in the 
southern part of the map area, but some occur as far north as the 
Montana Medicine Lodge basin (M’Gonigle and others, 1991; Du-
bois, 1982) and Polaris, Montana (Zimbelman, 1984).  Few east-
west striking normal faults were documented in the study area pri-
or to this study (for example, Skipp and others, 1979), in part be-
cause faults of this orientation are typically small and discontinu-
ous.  The large number of normal faults with this orientation, 
however, shows that they are an important feature of the region.  
There are more south-dipping than north-dipping normal faults, 
but both dip directions are present.

The relative age of the east-west-striking normal faults is in-
completely known and faults of this orientation may have been ac-
tive during more than one deformational event.  The east-west-
striking faults clearly postdate and offset normal faults formed dur-
ing phase 3, and possibly some faults formed during phase 4.  
Faults of set 4 are relatively rare in the Tendoy and Beaverhead 
Mountains, and unequivocal cross-cutting relationships between 
fault sets 5 and 4 have not been observed.  Northwest-striking 
normal faults of set 6 appear to displace some of the east-west-
striking normal faults.  For example, the southwest-dipping 
Crooked Creek normal fault of set 6 displaces the eastern and 
western parts of the south-dipping Grouse Creek normal fault (set 
5) in the southern part of the Beaverhead Mountains (see map; 
Skipp, 1984).  These data suggest that some (or most?) of the 
east-west-striking normal faults are older than the currently active 
northwest-striking range-front normal faults.  Elsewhere, faults of 
set 6 appear to reactivate segments of some east-west-striking 
normal faults.  This could explain the pronounced east-west jog in 
the Beaverhead fault north of Leadore, Idaho, and the presence of 
fault scarps on south-dipping faults in the Williams Creek to Mud 
Creek area in the southwest part of the map (Haller, 1988, 1990; 
Skipp and others, 1988).

Offset latest Cenozoic rocks indicate a young age for the east-
west-striking normal faults.  Near the continental divide around 
Bannack Pass the east-west striking normal faults displace the 

6.62-Ma tuff of Blacktail (age from Morgan and others, 1998) and 
overlying undated gravel deposits (Skipp, 1984; Skipp and others, 
1979).  Skipp (1984) assigned a Pliocene to early Pleistocene(?) 
age to these gravel deposits.  Altogether the data suggest a latest 
Miocene to Pleistocene(?) age for the normal faults of set 5.

The east-west-striking normal faults are parallel to the Centen-
nial normal fault (Witkind, 1975) to the east of the map area and 
probably have a common origin (Janecke and others, 2000a).  
Normal faults with east-west strikes are currently active in a 100- 
to 150-km-wide belt west of the Yellowstone caldera, in a region 
directly east of the map area (Janecke and others, 2000a).  Far-
ther to the west and northwest, east-west-striking normal faults are 
no longer active.  Instead, the active normal faults strike northwest 
(set 6) and appear to record “typical” northeast-southwest Basin 
and Range extension.  The east-west-striking normal faults proba-
bly reflect transient stress reorientation in the vicinity of the Yel-
lowstone hot spot due to subsidence toward the growing eastern 
Snake River Plain.  The inactive east-west-striking normal faults in 
the Tendoy and Beaverhead Mountains may have formed when 
the Yellowstone hot spot was southwest of its current position (Ja-
necke and others, 2000a).

Fault set 4.  Early to middle Miocene northwest-dipping 
normal faults (shown in magenta on the map)

Normal faults of fault set 4 strike northeast, at a high angle to 
the overall northwest structural grain of the fold and thrust belt 
and to most of the normal faults of the region, but parallel to the 
foreland uplifts to the east.  These faults appear as widely spaced 
fault zones.  Faults of set 4 formed in early to middle Miocene 
time (for example, Fritz and Sears, 1993; Sears and Fritz, 1998), 
and are relatively rare in the Tendoy and Beaverhead Mountains.  
Similar normal faults to the northeast bound the southeast margin 
of the Miocene Ruby and Beaverhead half grabens and appear to 
reactivate southeast-vergent basement-cored thrust sheets of the 
foreland (McBride, 1988; Fritz and Sears, 1993; Sears and Fritz, 
1998).  Three northwest-dipping normal faults were included in 
this fault set:  the Little Eightmile Creek fault (VanDenburg and 
others, 1998), and the newly identified Little Sheep Creek and 
Nicholia School fault zones.  Further mapping is needed to con-
firm the Miocene age of the latter two normal faults.  Other north-
east-striking normal fault zones that may have developed at this 
time include swarms of northeast-striking normal faults around El-
lis Peak in the western Tendoy Mountains (the Ellis Peak fault sys-
tem), and spaced normal faults in the Beaverhead Mountains be-
tween Lemhi Pass and Railroad Canyon.

The Little Sheep Creek normal fault southwest of Lima, Mon-
tana, is here interpreted as a southwest continuation of the Sage 
Creek normal fault that is exposed on the northwest flank of the 
Snowcrest Range (for example, McBride, 1988).  Perry and others 
(1988) had earlier interpreted the north-striking “Former Sage 
Creek fault” as the southwest continuation of the Sage Creek fault 
that is in the Snowcrest Range.  The revised interpretation is pre-
ferred because the Little Sheep Creek fault is directly along strike 
and has the identical orientation as the Sage Creek fault to the 
northeast.  The Sage Creek–Little Sheep Creek fault system prob-
ably reactivated northwest-dipping foreland thrusts of the Blacktail-
Snowcrest trend (McBride, 1988; Perry and others, 1988).  The 
origin of the other north-striking normal faults is less certain.  It is 
unlikely that the northeast-striking normal faults reactivated fabrics 
in the underlying Precambrian basement, as has been documented 
elsewhere in southwestern Montana (Schmidt and others, 1984), 
because exposures of basement rocks in the map area exhibit 
north-northwest- to northwest-striking deformational fabrics (Low-
ell, 1965; M’Gonigle 1993, 1994; M’Gonigle and Hait, 1997; 
M’Gonigle and others, 1991).

Fault set 3. Late middle Eocene to early middle Miocene 
west-southwest-dipping listric low-angle normal faults 

(shown in blue on the map)

North-northwest-striking normal faults are among the largest in 
the region and include several major, middle Eocene to Miocene, 
low-angle normal faults of regional extent (detachment faults) (fig. 
1).  From west to east, these are the Salmon basin, Agency-Yeari-
an, Lemhi Pass, Maiden Peak, Deadman, and Muddy-Grasshop-
per low-angle normal faults (M’Gonigle and Dalrymple, 1993, 
1996; VanDenburg and others, 1998; Blankenau, 1999; Janecke 
and others, 1999).  The Divide fault, which may also have formed 
during this phase of extension (Karl Kellogg, written commun., 
2000), is distinctly steeper than these other normal faults (Lucchit-
ta, 1966).  West-southwest-dipping normal faults of set 3 are the 
main basin-forming normal faults in the study area (fig. 1).  The 
Muddy-Grasshopper normal fault is interpreted as the main break-
away fault for Eocene to Oligocene extension within a north-
trending rift zone (Janecke, 1994; Janecke and others, 1999).  
The Armstead normal fault in its footwall (Lowell, 1965; Coryell 
and Spang, 1988) is probably a smaller localized normal fault.  
Cross-cutting relationships with syntectonic basin-fill deposits show 
that several generally west-southwest-dipping low-angle normal 
faults were active sequentially during this major pulse of normal 
faulting (Blankenau, 1999; VanDenburg, 1997; VanDenburg and 
others, 1998).  As much as  2.5 km of syntectonic deposits are 
still preserved in the hanging walls of these normal faults despite 
subsequent uplift and exhumation by tributaries of the Missouri 
and Salmon Rivers systems (Janecke and others, 1999; Blanke-
nau, 1999; VanDenburg and others, 1998).

Faults of sets 3 and 6 might be mistaken for one another be-
cause they have similar orientations.  Most of the older normal 
faults of set 3, however, strike in a more northerly direction, and 
unpublished seismic data show that faults of set 3 are significantly 
shallower than the active normal faults of set 6.  The presence of 
fault scarps, the cross-cutting relationships with other faults of 
known age, the age of the basin-fill deposits in the hanging walls 
of the faults (VanDenburg, 1997; VanDenburg and others, 1998; 
Janecke and others, 1999; Blankenau, 1999), the presence of 
pediments, and the flow directions of modern streams adjacent to 
the normal faults were all considered when the faults were as-
signed to a particular set.  Minor reactivation of parts of some 
faults of set 3 might have occurred during phase 6.

Fault set 2.  Middle Eocene northwest-dipping normal 
faults (shown in purple on the map)

Widely scattered, small northeast-striking normal faults extend-
ed the Beaverhead Mountains during middle Eocene Challis vol-
canism.  Overlap relationships and along-strike changes in the 
Tertiary stratigraphy in the footwall and hanging walls of these 
northeast-striking normal faults show that they were active during 
or slightly after middle Eocene Challis magmatism (M’Gonigle and 
others, 1991; VanDenburg and others, 1998).  Some faults of this 
set may have been reactivated during phase 4.  This tectonic 
event was a relatively minor one in this region, in contrast to re-
gions to the west near the core of the Challis volcanic field (Kiils-
gaard and others, 1986; Janecke, 1992) and northwest in the Bit-
terroot metamorphic core complex (Foster and Fanning, 1997).

Fault set 1.  Pre-middle Eocene low-angle normal faults 
with original southwest dips (shown in red on the map)

Normal faults of set 1 are the oldest normal faults in the Ten-
doy and Beaverhead Mountains and are exposed northeast of Lea-
dore, Idaho, on both sides of the continental divide.  Ruppel 
(1968), Staatz (1973, 1979), and Lucchitta (1966) originally map-
ped these structures as thrust faults and Skipp (1988) noted that 
they were in fact normal faults. Critical, but localized, overlap rela-
tionships show that these low-angle normal faults formed before 
middle Eocene Challis volcanism (VanDenburg and others, 1998).  
These normal faults are potentially the largest faults in the region, 
because they omit a large stratigraphic section in a hanging-wall-
flat geometry, and consistently place upper Paleozoic rocks on 
Middle Proterozoic Belt Supergroup rocks (VanDenburg and oth-
ers, 1998).  The Goat Mountain, Grizzly Hill, Phosphoria Klippe, 
and Wild Cat Creek faults are probably offset segments of a once 
continuous normal fault.  The continuity of the Middle Proterozoic 
footwall and upper Paleozoic hanging wall adjacent to the younger 
Divide normal fault of Lucchitta (1966) suggests that the Divide 
fault probably cuts out the southeast continuation of the Goat 
Mountain–Grizzly Hill–Phosphoria Klippe–Wild Cat Creek fault 
system (Goat-Cat fault system). 

VanDenburg (1997) and VanDenburg and others (1998) incor-
rectly named this Goat-Cat low-angle normal fault system the Di-
vide Creek fault, based on an erroneous correlation with the Di-
vide Creek fault of Skipp (1984, 1985) in the southern Beaver-
head Mountains.  Subsequent mapping (S.U. Janecke, unpublish-
ed) shows that the Divide Creek fault is too young to correlate 
with these pre-middle Eocene normal faults because it cuts the 
middle Eocene Challis Volcanic Group.  The Divide Creek fault 
(sensu strictu) is now included in fault set 5.

Presently, the Goat Mountain, Grizzly Hill, Phosphoria Klippe, 
and Wild Cat Creek normal faults dip gently south or southwest 
(Lucchitta, 1966; VanDenburg 1997).  The Goat Mountain fault 
segment, north of Little Eightmile Creek, restores to a gentle 
southwest dip after the effects of subsequent tilting are removed 
(VanDenburg and others, 1998).  These normal faults thus indi-
cate that northeast-southwest extension had begun in the region 
prior to middle Eocene volcanism (VanDenburg, 1997).  Some of 
the normal slip on the enigmatic south-dipping fault D of 
M’Gonigle (1993, 1994) may also date from this period.  Fault D 
has been interpreted as a depositional contact (Skipp, 1988), as a 
thrust fault (Ruppel, 1978), and as a thrust that was later reactivat-
ed as a normal fault (M’Gonigle, 1993, 1994).

DISCUSSION AND REGIONAL IMPLICATIONS

The history of Tertiary extension in the Tendoy and Beaver-
head Mountains is complex, but detailed mapping and analysis 
show that the seemingly random array of normal faults represents 
a fairly orderly sequence of more than six temporal and geometric 
sets of normal faults (Janecke, 2000).  Within each phase of nor-
mal faulting a consistent extension direction prevails.  Extension 
was northeast-southwest during phases 1, 3, and 6, whereas 
northwest-southeast extension characterized phases 2 and 4.  The 
newly identified fifth phase of extension accommodated north-
south extension during latest Miocene to Pleistocene(?) time.

The largest normal faults to form in the region accommodated 
northeast-southwest extension during phases 1, 3, and 6.  These 
three phases also appear to be the most protracted phases of ex-
tension.  Phase 3, which produced among the largest faults in the 
area, persisted from the waning phases of Challis volcanism (about 
45 Ma) into early Miocene time (about 20 Ma) (VanDenburg and 
others, 1998; Janecke and others, 1999), possibly until about 15 
Ma (S.U. Janecke and M. Perkins, unpublished data). 

The overall parallelism between the largely southwest-dipping 
normal faults of sets 1, 3, and 6 and the preexisting contractional 
structures of the Sevier belt (Janecke and others, 1999) suggests 
that all three sets are due to gravitational collapse of the Sevier 
orogenic belt.  Royse and others (1975) and Constenius (1996) 
documented the strong structural control of thrust belt structures 
on younger normal faults in the Basin and Range province.  Gravi-
tational collapse of the fold and thrust belt cannot explain the 
northeast-southwest extension that is affecting the foreland farther 
to the east, in the Ruby Mountains and adjacent areas.  It is note-
worthy that the same northeast-southwest extension direction per-
sists into the Ruby Range in the foreland east of the Sevier fold 
and thrust belt during the current tectonic regime (set 6) (Stickney 
and Bartholomew, 1987; Fritz and Sears, 1993).

Two sets of normal faults show an especially strong relation-
ship with preexisting contractional structures.  Both the prevolcan-
ic normal faults of set 1 and the basin-forming normal faults of set 
3 are preferentially localized within structural culminations that 
formed during the Late Cretaceous to early Tertiary Sevier oroge-
ny (fig. 2).  Janecke and others (2000c) briefly outlined the evi-
dence for and positions of these structural culminations, and they 
showed that the region between Salmon, Idaho, and the present 
Nicholia Creek basin contained numerous structural highs in Late 
Cretaceous to early Tertiary time.  The prevolcanic normal faults 
of set 1 bound the southwest margin of the combined Island 
Butte–Carmen culminations (fig 2; Janecke and others, 2000c).  
Farther to the west, outside the map area, pre-volcanic normal 
faults in the northern Lemhi Range (Tysdal, 1996a, b; Tysdal and 
Moye, 1996) extend the Hayden Creek culmination in a similar 
manner (fig. 2; Janecke and others, 2000c).  The Hayden Creek 
culmination is the next major culmination southwest of the Car-
men and Island Butte culminations (Janecke and others, 2000c).

The detachment faults of set 3 further collapsed the preexisting 
culminations. The Salmon basin detachment fault collapsed the 
Carmen culmination on the northeast side of the Leesburg syn-
cline (fig. 2).  The Muddy-Grasshopper and Maiden Peak normal 
faults collapsed the Maiden Peak culmination and its poorly char-
acterized continuation in the northern Tendoy Mountains (Hait 
and M’Gonigle, 1988; S.U. Janecke, unpublished mapping; Lonn 
and others, 2000), whereas the Deadman fault reversed the struc-
tural relief produced by the Island Butte culmination (fig. 2).  The 
association between the largest normal faults and the culminations 
suggests that these normal faults were localized within these major 
uplifts in the Cordilleran fold and thrust belt.  Lesser extensional 
strains characterize areas adjacent to the culminations.

Cross faults are those normal faults at a high angle to the over-
all north-northwest structural grain of the major contractional and 
extensional features in the area.  They developed during phases 2, 
4, and 5, in middle Eocene, late early to early middle Miocene, 
and latest Miocene to Pleistocene(?) time.  The cross faults in the 
Tendoy and Beaverhead Mountains are typically small-offset nor-
mal faults when compared with the structures that developed dur-
ing phases 1, 3, and 6.  The cross faults appear to record brief in-
terruptions in a protracted interval of northeast-southwest exten-
sion (VanDenburg and others, 1998).  Phase 2, for example, be-
gan after 49.5 Ma and ended before 45 Ma (Janecke, 1992; Van-
Denburg and others, 1998).  Phase 4 is best dated east of the 
Tendoy Mountains as a late early to early middle Miocene event 
(Sears and others, 1995; Sears and Fritz, 1998).  In the Horse 
Prairie rift basin, VanDenburg and others (1998) showed that the 
northwest-dipping Little Eightmile Creek normal fault was active 
during a short interval around 17 Ma, in late early Miocene time.  
Phase 5 may represent a transient change in the extension direc-
tion as this part of North America migrated past the Yellowstone 
hotspot (Janecke and others, 2000a).

The tectonic significance of these three “cross” phases of ex-
tension is incompletely understood.  Phase 2, during Challis vol-
canism, may be related to arc-parallel extension during northeast-
directed subduction of the Farallon plate beneath North America 
from 50 to 45 Ma (Janecke, 1992).  Phase 4 was a time of gravi-
tational collapse of the northeast-trending basement cored uplifts 
of the southwest Montana foreland province (Sears and others, 
1995).  These uplifts first formed in Cretaceous time and may 
have been active into early Tertiary time (Scholten and others, 
1955; Ryder and Scholten, 1973; Perry and others, 1988; Mc-
Bride, 1988; Janecke and others, 2000b).  It is unclear why the 
subsequent collapse along northwest-dipping normal faults occur-
red more than 30 m.y. after the end of shortening during a rela-
tively short time period.  Sears (1995) proposed that initiation of 
the Yellowstone hot spot about 16.5 Ma may have triggered this 
event.  Phase 5 produced small east-west-striking normal faults 
over a broad geographic region.  Flexure both along and toward 
the northeast-trending axis of the eastern Snake River Plain may 
have produced small bending-related normal faults in the vicinity 
of the Yellowstone hot spot that nucleated the normal faults of set 
5 (Janecke and others, 2000a).  The north-dipping Centennial 
and eastsoutheast-dipping Teton normal faults are examples of 
such faults that are forming around the current position of the hot 
spot (Hamilton, 1960; Hamilton and Myers, 1966).  The older 
east-west-striking normal faults in the Tendoy and Beaverhead 
Mountains may have formed when the hot spot was southwest of 
it current position at the northeast edge of the Heise volcanic field 
(Janecke and others, 2000a).

Although the extension direction changed five times in the 
Tendoy and Beaverhead Mountains during the Cenozoic, the over-
all pattern can be viewed as a more than 50-m.y. history of largely 
northeast-southwest extension, which was punctuated by brief in-
tervals of fairly minor northwest-southeast and north-south exten-
sion.
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