

Simulating Radionuclide Fate and Transport in the Unsaturated Zone: Evaluation and Sensitivity Analyses of Select Computer Models

Simulating Radionuclide Fate and Transport in the Unsaturated Zone: Evaluation and Sensitivity Analyses of Select Computer Models

by

Jin-Song Chen, Ronald L. Drake and Zhixun Lin Dynamac Corporation 3601 Oakridge Boulevard Ada, OK 74820

David G. Jewett Subsurface Protection and Remediation Division National Risk Management Research Laboratory Ada, OK 74820

> Contract Number 68-C-99-256

Project Officer

David S. Burden Subsurface Protection and Remediation Division National Risk Management Research Laboratory Ada, OK 74820

National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268

NOTICE

The U.S. Environmental Protection Agency, through its Office of Research and Development, partially funded and collaborated in the research described here under Contract Number 68-C-99-256 to Dynamac Corporation. It has been subjected to the Agency's peer and administrative review and has been approved for publication as an EPA document. Mention of modeling codes does not constitute endorsement or recommendation for use.

FOREWORD

The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet these mandates, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.

The National Risk Management Research Laboratory is the Agency's center for investigation of technological and management approaches for reducing risks from threats to human health and the environment. The focus of the Laboratory's research program is on methods for the prevention and control of pollution to air, land, water, and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites and ground water; and prevention and control of indoor air pollution. The goal of this research effort is to catalyze development and implementation of innovative, cost-effective environmental technologies; develop scientific and engineering information needed by EPA to support regulatory and policy decisions; and provide technical support and information transfer to ensure effective implementation of environmental regulations and strategies.

Mathematical models are useful tools for determining soil screening levels of radionuclides in the unsaturated zone. However, models require users to specify various parameters characteristic of the site and chemical of interest. These parameters are not known without error. Many parameters vary over time and space in manners which are unknown. This is especially true when models are used to predict future events. This uncertainty in input parameters is associated with an uncertainty in model output which should be recognized by the model user. This report analyzes several transport models for unsaturated soils and quantifies the sensitivity of model outputs to changes in input parameters. This information will help users understand the importance of different parameters, identify parameters which must be determined at the site, interpret model results and apply their findings to specific problems.

Stephen G. Schmelling, Acting Director Subsurface Protection and Remediation Division National Risk Management Research Laboratory

ABSTRACT

Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Numerous transport and fate modeling codes exist for predicting movement and degradation of these hazardous chemicals through soils. Many of these codes require extensive input parameters which include uncertainty due to soil variability and unknown future meteorological conditions. The impacts of uncertain model parameters upon pertinent model outputs are required for sound modeling applications. Model users need an understanding of these impacts so they can collect the appropriate parameters for a given site and incorporate the uncertainties in the model predictions into the decision making process. This report primarily summarizes the findings which address the uncertainties and sensitivities of model outputs due to uncertain input parameters. However, the report also addresses the sensitivity of simulated results to conceptual model selection, and the comparison of sensitivity results between models, illuminating numerical differences and errors.

The objective of the parameter sensitivity studies was to determine the sensitivities and uncertainties of peak contaminant concentrations and time to peak concentrations at the water table, as well as those for the time to exceed the contaminant's MCL at a representative receptor well. The five models selected for these analyses were CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, and HYDRUS. All of these are designed to estimate movement and fate of radionuclides through unsaturated soils. The models span a range in detail and intended use. This report presents information on the sensitivity of these codes to model conceptualization of radionuclide transport in the vadose zone, to numerical differences and errors, and to changes and uncertainties in input parameters, as well as presenting information concerning the analysis and interpretation of certain modeling components. The report does not intend to assess the appropriateness of any model for a particular use nor the uncertainty due to the model chosen, but it does indicate the problems and limits of using certain modeling components for certain physical applications.

Model parameters investigated include soil properties such as soil structure and texture, bulk density, water content, and hydraulic conductivity. Chemical properties examined include distribution coefficient, degradation half-life, dispersion coefficient, and molecular diffusion. Other site and soil characteristics such as equilibrium/nonequilibrium sorption sites, rooting depth, recharge rate, hysteretic effects, and precipitation/evapotranspiration were examined. Model parameter sensitivity was quantified in the form of sensitivity and relative sensitivity coefficients. The sensitivity coefficient is useful when calculating the absolute change in an output due to a known change in a single parameter. Relative sensitivity is useful in determining the relative change in an output corresponding to a specific relative change in one input parameter. Relative sensitivities are also used to compare the sensitivities of different parameters. These results are presented in graphical and tabular forms.

This study identified the limitations and advantages of using the selected codes for assessing the transport and fate of radionuclides in the unsaturated zone. This study also found the degree of uncertainty that exists in various model output parameters due to the combination of sensitivities of input parameters, high parameter variabilities, model type with its particular set of components, and the specific properties of the radionuclides. In addition, the study found that predicted movement of radionuclides was greater when the natural variability of daily rainfall was incorporated into the model than when only an annual flux was used. This is because major precipitation events (their daily averages in this case) result in larger fluxes of water and higher leaching rates that are essentially smoothed over when annual averaged fluxes are used. The study reaffirms that uncertainty is pervasive in natural systems and that results of modeling efforts presented in a deterministic fashion may be misleading, unless the results of modeling studies are presented in terms of probabilities of various outcomes. Further, this report evaluates model parameter sensitivity for a specific scenario, that is, radionuclide transport and fate through a 6 m homogeneous soil column at the Las Cruses Trench Site in New Mexico. For other scenarios, the general model user should take great care in the use of the results of the current study. Other sensitivity and uncertainty estimates may be required for the specific conditions and parameters of interest.

Contents

Notice ii Foreword iii Abstract iv List of Figures vii List of Tables x Section 1 Introduction 1 1.1 The Radionuclide SSL Effort 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4 Report Organization 5 Scction 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solut transport Equation 16 2.2.3 Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 3.5 Scale Depend	<u>Number</u>		Page Page
Foreword iii Abstract iv List of Figures vii List of Tables x Section 1 Introduction 1 1.1 The Radionuclide SSL Effort 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4 Report Organization 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2 Solut Transport Systems 14 2.2.3 Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemic	Notice		ii
Abstract iv List of Figures vii List of Tables x Section 1 Introduction 1 1.1 The Radionuclide SSL Effort 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Description of the Radionuclide SSL Effort 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Systems 14 2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selectoin, Boundary and Initial Conditions 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption,	Foreword		iii
List of Figures vii List of Tables x Section 1 Introduction 1 1.1 The Radionuclide SSL Effort 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4 Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2 Solute Transport Systems 14 2.2.3 Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25	Abstract		iv
List of Tables x Section 1 Introduction 1 1.1 The Radionuclide SSL Effort 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.1 Model Selection for the Selected Codes 7 2.1.1 The Variably Saturated Water Flow 8 2.2.2 Solute Transport Systems 14 2.2.3. Heat Transport Systems 14 2.2.3. Heat Transport and Preferential Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 29 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Proc	List of Figures		vii
Section 1 Introduction 1 1.1 The Radionuclide SSL Effort 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4 Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Systems 14 2.2.3 Ideat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 <td>List of Tables .</td> <td></td> <td>X</td>	List of Tables .		X
Section 1 Introduction 1 1.1. The Available Modeling Techniques for the Unsaturated Zone 1 1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2.3 Solute Transport Systems 14 2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4<			
1.1. The Radionuclide SSL Effort. 1 1.2. The Available Modeling Techniques for the Unsaturated Zone 2 1.3. Computer Model Uncertainty and Sensitivity 3 1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1. Model Selection for the Radionuclide SSL Effort 6 2.1. Model Description of the Selected Codes 7 2.2.1. The Variably Saturated Water Flow 8 2.2.2. Solute Transport Systems 14 2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1. Time and Space Scales 19 3.3. Density and Thermal Gradients 22 3.4. Facilitated Transport and Preferential Pathways 23 3.5. Scale Dependency in Heterogeneous Media 24 3.6. Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7. Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 <t< td=""><td>Section 1</td><td>Introduction</td><td></td></t<>	Section 1	Introduction	
1.2 The Available Modeling Techniques for the Unsaturated Zone 2 1.3 Computer Model Uncertainty and Sensitivity 3 1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.1 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Systems 14 2.2.3. Heat Transport Systems 14 2.2.3. Heat Transport Systems 14 2.2.3. Heat Transport Systems 18 3.1 Time and Space Scales 18 3.1 Time and Space Scales 18 3.2 Domain Selection. Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 23 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28<	1.1.	The Radionuclide SSL Effort	
1.3 Computer Model Uncertainty and Sensitivity 3 1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.2 Model Description of the Selected Codes 7 2.1 The Variably Saturated Water Flow 8 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 4 4.1. Computing Sensitivity Coefficients 30 4.2.	1.2	The Available Modeling Techniques for the Unsaturated Zone	
1.4. Report Organization 5 Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Selection for the Radionuclide SSL Effort 6 2.2 Model Description of the Selected Codes 7 2.1 The Variably Saturated Water Flow 8 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31	1.3	Computer Model Uncertainty and Sensitivity	
Section 2 Overview of Numerical Models for Simulating Radionuclide Transport 6 2.1 Model Description of the Radionuclide SSL Effort 6 2.2 Model Description of the Selected Codes 7 2.1.1 The Variably Saturated Water Flow 8 2.2.2 Solute Transport Systems 14 2.2.3 Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 23 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1 Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Sce	1.4.	Report Organization	
2.1 Model Selection for the Radionuclide SSL Effort 6 2.2 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Systems 14 2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 31 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 37	Section 2	Overview of Numerical Models for Simulating Radionuclide Transport	6
2.2 Model Description of the Selected Codes 7 2.2.1 The Variably Saturated Water Flow 8 2.2.2 Solute Transport Systems 14 2.2.3 Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1 Computing Sensitivity Coefficients 30 4.2 An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40	2.1	Model Selection for the Radionuclide SSL Effort	6
2.2.1 The Variably Saturated Water Flow 8 2.2.2. Solute Transport Systems 14 2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40	2.2	Model Description of the Selected Codes	
2.2.2. Solute Transport Systems 14 2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41		2.2.1 The Variably Saturated Water Flow	
2.2.3. Heat Transport Equation 16 Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 18 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 48 <t< td=""><td></td><td>2.2.2. Solute Transport Systems</td><td></td></t<>		2.2.2. Solute Transport Systems	
Section 3 Sensitivity of Simulated Results to Conceptual Model Selection 18 3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 48 6.1 General Procedures for Parameter Sensitivity Analysis: Implementat		2.2.3. Heat Transport Equation	
3.1 Time and Space Scales 18 3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1 Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate	Section 3	Sensitivity of Simulated Results to Conceptual Model Selection	
3.2 Domain Selection, Boundary and Initial Conditions 19 3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Constant Recharge Rate and Constant Water Content 48 6.2 Input Parameters fo	3.1	Time and Space Scales	
3.3 Density and Thermal Gradients 22 3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1 Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Constant Recharge Rate and Constant Water Content 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 <td< td=""><td>3.2</td><td>Domain Selection, Boundary and Initial Conditions</td><td>19</td></td<>	3.2	Domain Selection, Boundary and Initial Conditions	19
3.4 Facilitated Transport and Preferential Pathways 23 3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Constant Recharge Rate and Constant Water Content 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 49	3.3	Density and Thermal Gradients	22
3.5 Scale Dependency in Heterogeneous Media 24 3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1 Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate and Constant Water Content 49	3.4	Facilitated Transport and Preferential Pathways	23
3.6 Chemical Adsorption, Chemical Reactions, and Decay Processes 25 3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1 Computing Sensitivity Coefficients 30 4.2 An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 49	3.5	Scale Dependency in Heterogeneous Media	23
3.7 Summary 28 Section 4 Parameter Sensitivity Analysis: Basic Elements 30 4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate and Constant Water Content 49	3.6	Chemical Adsorption Chemical Reactions and Decay Processes	25
Section 4Parameter Sensitivity Analysis: Basic Elements4.1.Computing Sensitivity Coefficients304.2.An Application of Equations (4-1) and (4-2) to a Simple Model31Section 5Parameter Sensitivity Analysis: Hypothetical Modeling Scenario375.1Site Selection Process375.2Selection of the Candidate Site385.3Characteristics of the Las Cruces Trench Site in New Mexico405.4Development of a Conceptual Model415.5Base Parameter Selection44Section 6Parameter Sensitivity Analysis: Implementation and Results486.1General Procedures for Parameter Sensitivity Analysis486.2Input Parameters for Constant Recharge Rate and Constant Water Content486.3Input Parameters for Constant Recharge Rate but Variable Water Content49	3.7	Summary	
4.1. Computing Sensitivity Coefficients 30 4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4. Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	Section 4	Parameter Sensitivity Analysis: Basic Elements	
4.2. An Application of Equations (4-1) and (4-2) to a Simple Model 31 Section 5 Parameter Sensitivity Analysis: Hypothetical Modeling Scenario 37 5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	4 1	Computing Sensitivity Coefficients	30
Section 5Parameter Sensitivity Analysis: Hypothetical Modeling Scenario375.1Site Selection Process375.2Selection of the Candidate Site385.3Characteristics of the Las Cruces Trench Site in New Mexico405.4Development of a Conceptual Model415.5Base Parameter Selection44Section 6Parameter Sensitivity Analysis: Implementation and Results486.1General Procedures for Parameter Sensitivity Analysis486.2Input Parameters for Constant Recharge Rate and Constant Water Content486.3Input Parameters for Constant Recharge Rate but Variable Water Content49	4.2.	An Application of Equations (4-1) and (4-2) to a Simple Model	
5.1 Site Selection Process 37 5.2 Selection of the Candidate Site 38 5.3 Characteristics of the Las Cruces Trench Site in New Mexico 40 5.4 Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	Section 5	Parameter Sensitivity Analysis: Hypothetical Modeling Scenario	37
5.2Selection of the Candidate Site385.3Characteristics of the Las Cruces Trench Site in New Mexico405.4Development of a Conceptual Model415.5Base Parameter Selection44Section 6Parameter Sensitivity Analysis: Implementation and Results486.1General Procedures for Parameter Sensitivity Analysis486.2Input Parameters for Constant Recharge Rate and Constant Water Content486.3Input Parameters for Constant Recharge Rate but Variable Water Content49	5.1	Site Selection Process	
5.3Characteristics of the Las Cruces Trench Site in New Mexico405.4Development of a Conceptual Model415.5Base Parameter Selection44Section 6Parameter Sensitivity Analysis: Implementation and Results486.1General Procedures for Parameter Sensitivity Analysis486.2Input Parameters for Constant Recharge Rate and Constant Water Content486.3Input Parameters for Constant Recharge Rate but Variable Water Content49	5.2	Selection of the Candidate Site	
5.4. Development of a Conceptual Model 41 5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	5.3	Characteristics of the Las Cruces Trench Site in New Mexico	40
5.5 Base Parameter Selection 44 Section 6 Parameter Sensitivity Analysis: Implementation and Results 48 6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	5.4	Development of a Conceptual Model	41
Section 6Parameter Sensitivity Analysis: Implementation and Results486.1General Procedures for Parameter Sensitivity Analysis486.2Input Parameters for Constant Recharge Rate and Constant Water Content486.3Input Parameters for Constant Recharge Rate but Variable Water Content49	5.5	Base Parameter Selection	
6.1 General Procedures for Parameter Sensitivity Analysis 48 6.2 Input Parameters for Constant Recharge Rate and Constant Water Content 48 6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	Section 6	Parameter Sensitivity Analysis: Implementation and Results	
6.2 Input Parameters for Constant Recharge Rate and Constant Water Content	6.1	General Procedures for Parameter Sensitivity Analysis	
6.3 Input Parameters for Constant Recharge Rate but Variable Water Content 49	6.2	Input Parameters for Constant Recharge Rate and Constant Water Content	48
± 1	6.3	Input Parameters for Constant Recharge Rate, but Variable Water Content	49

Page

6.4	Output Parameters Evaluated	51
6.5	Sensitivity Results for the HYDRUS Model	53
Section 7	Comparison of Sensitivity Results Between Models: Illuminating Numerical Differences	64
7.1	The Modeling Codes and Their Differences	64
7.2	The Parameter Sensitivity Results	66
7.3	Other Results Illuminating Numerical Differences/Errors Between the Models	93
	7.3.1 Correction of the MULTIMED-DP 1.0 Code	93
	7.3.2 Comparison of the Stehfest and DeHoog Inversion Algorithms	94
	7.3.3. Increasing the Base Value of Dispersivity in the FECTUZ Code	94
Section 8	Summary and Conclusions	97
Section 9	References	102

APPENDICES

Appendix A	Empirical Models of the Unsaturated Soil Hydraulic Properties Which Are Used	
	in the Various Models	A-1
	References	A-5
Appendix B	A Discussion on the Scaling of Field Soil-Water Behavior	B-1
	B.1 Symmetry in Nature	B-1
	B.2 Similitude, Transformation Groups, Inspectional Analysis, Self-Similarity	B-2
	B.3 Scale Dependence and Scale Invariance in Hydrology	B-4
	References	B-10
Appendix C	An Explanation of the Hysteretic Characteristics of Soil-Water Properties	C-1
	C.1 The Origins and Applications of Hysteretic Phenomena	C-2
	C.2 Hysteresis Loops, Operators and Models	C-2
	C.3 Hysteresis in Soil-Moisture Parameters	C-6
	References	C-11
Appendix D	The First-Order Decay Chains Used in the Various Models	D-1
	References	D-4
Appendix E	The Impact of Using a Nonuniform Moisture Distribution versus a	
	Uniform Distribution	E-1
Appendix F	The Impacts of Using Daily Precipitation Rates and Daily Evapotranspiration Rates	3
	versus an Annual Average Recharge Rate	F-1
	References	F-7
Appendix G	The Impact of Considering a Layered Soil Column versus a Homogeneous	
	Soil Column	G-1
	References	G-2
Appendix H	A Detailed Analysis of Nonequilibrium Sorption of Pollutants, Mainly for the	
	Radionuclide ⁹⁰ Sr	H-1
	H.1 A Simplified Version of the Transport Equations	H-1
	H.2 The Transport of ⁹⁹ Tc with a $K_d = 0.007 \text{ ml/g}$	H-2
	H.3 The Transport of ⁹⁹ Tc with a $K_d = 1.0 \text{ ml/g}$	H-3
	H.4 The Transport of ⁹⁰ Sr with a $K_d = 1.0 \text{ ml/g}$	H-4
	H.5 The Transport of ⁹⁰ Sr with a $K_d = 1.0$ ml/g, f = 0, and Varying	
	Sorption Rates	H-5
	References	H-8
Appendix I	Results from the Transport and Fate of Other Radionuclides Not Considered in	
	the Main Text	I-1
	I.1 The CHAIN Governing Equations	I-2
	I.2 Breakthrough Curves for ⁹⁹ Tc and It's Daughter, ⁹⁹ Ru	I-3
	I.3. The Sensitivity of the Five Parent Radionuclides to Recharge Rate	I-5
	References	I-8

Figures

Page

<u>Number</u>

D' 11		
Figure 1-1.	Conceptual risk management spectrum for contaminated soil, where SSL is the soil screening	
	(from U.S. EPA 2000a)	1
Figure 2.1	(IIOIII U.S. EFA, 2000a)	1
Figure 2-1.	conductivity function where subscript "s" indicates saturated conditions	11
Figure 2-2.	An example of soil structure scaling for scale factors ($\alpha_1, \alpha_2, \alpha_3$) = (3/2, 2, 7/4). The ratios	
inguite = =:	$h_{\rm L}/h_{\rm c}^* = h_{\rm L}/h_{\rm L}^* = 3/2, (\theta_{\rm c} - \theta_{\rm r}) \div (\theta_{\rm c}^* - \theta_{\rm r}^*) = (\theta_{\rm L} - \theta_{\rm r}) \div (\theta_{\rm L}^* - \theta_{\rm r}^*) = 2, \text{ and } K_{\rm c}/K_{\rm c}^* = K/K_{\rm c}^* = 7/4$. 13
Figure 3-1.	Schematic of modeling applications for simulating three-dimensional field mapping units	
8	using one-dimensional codes (a), and two-dimensional codes (b)	. 21
Figure 4-1.	The graph of the relative sensitivity F_m in terms of the parameter p for a model defined by	
-	y = F(p)	. 30
Figure 4-2.	Sensitivities and relative sensitivities of F with respect to a and b, with reference to the base	
	case in Equation (4-10)	. 34
Figure 4-3.	Sensitivities and relative sensitivities of F with respect to c and d, with reference to the base	
	case in Equation (4-10)	. 35
Figure 4-4.	Sensitivities and relative sensitivities of F with respect to e and f, with reference to the base	20
Element 5 1	case in Equation (4-10)	. 36
Figure 5-1.	ne major segments of the decay chains for the five elements/isotopes considered to be	20
Figure 5-2	Daily precipitation and potential evanotranspiration (PET) at Las Cruces Site NM PET is	. 30
Figure 3-2.	calculated from daily climate data using Penman's equation (Jensen et al. 1990)	43
Figure 6.1	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the system parameters using	5
rigure 0-1.	the HYDRUS Model: (a) distribution coefficient (b) recharge rate (c) water content	
	(d) hulk density (e) dispersivity (f) diffusion coefficient in water (g) saturated conductivity	
	(b) saturated water content. (i) residual water content. (i) van Genuchten retention parameter α	
	(h) saturated water content, (i) residual water content, (j) van Genuchten retention parameter α ,	54
Figure 6.2	Sensitivity and relative sensitivity of peak concentrations at the denth of 6m to the system	. 54
rigure 0-2.	parameters using the HYDRUS Model: (a) distribution coefficient (b) recharge rate (c) water	
	content. (d) bulk density	55
(Cont.)	Sensitivity and relative sensitivity of peak concentrations at the depth of 6m to the system	
× /	parameters using the HYDRUS Model: (e) dispersivity, (f) diffusion coefficient in	
	water, (g) saturated conductivity, (h) saturated water content	. 56
(Cont.)	Sensitivity and relative sensitivity of peak concentrations at the depth of 6m to the system	
	parameters using the HYDRUS Model: (i) residual water content, (j) van Genuchten	
	retention parameter α , (k) van Genuchten retention parameter β	. 57
Figure 6-3.	Sensitivity and relative sensitivity of time to reach peak concentrations at the depth of 6m to the	
	system parameters using the HYDRUS Model: (a) distribution coefficient, (b) recharge rate, (c)	5 0
$(\mathbf{C}, \mathbf{u}, \mathbf{t})$	water content, (d) bulk density	. 58
(Cont.)	Sensitivity and relative sensitivity of time to reach peak concentrations at the depth of	
	on to the system parameters using the π i DKOS Wodel. (c) dispersivity, (1) diffusion coefficient in water (a) saturated conductivity (b) saturated water content	50
(Cont.)	Sensitivity and relative sensitivity of time to reach neak concentrations at the denth	. 59
(cont.)	of 6m to the system parameters using the HYDRUS Model: (i) residual water content. (i) van	
	Genuchten retention parameter α . (k) van Genuchten retention parameter β	. 60
	\mathbf{r}	

Figure 6-4.	Sensitivity and relative sensitivity of time to exceed MCL to the system parameters using the HYDRUS Model: (a) distribution coefficient, (b) recharge rate, (c) water content, (d) bulk density	61
(Cont.)	Sensitivity and relative sensitivity of time to exceed MCL to the system parameters using the HYDRUS Model: (e) dispersivity, (f) diffusion coefficient in water, (g) saturated conductivity. (b) saturated water content	62
(Cont.)	Sensitivity and relative sensitivity of time to exceed MCL to the system parameters using the HYDRUS Model: (i) residual water content, (j) van Genuchten retention parameter $\alpha_{\rm c}$ (k) van Genuchten retention parameter $\beta_{\rm c}$	63
Figure 7-1.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the distribution coefficient using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, HYDRUS Models, where $K_d = 0.019 \text{ ml/g}$, 0.007 ml/g, and 0.001 ml/g	67
Figure 7-2.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the recharge rate using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, and HYDRUS Models, where $q = 0.030$ cm/d, 0.024 cm/d, and 0.016 cm/d	68
Figure 7-3.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the water content using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, and HYDRUS Models, where $\theta = 0.22 \text{ cm}^3/\text{cm}^3$, 0.16 cm ³ /cm ³ , and 0.10 cm ³ /cm	. 69
Figure 7-4.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the bulk density using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, and HYDRUS Models, where $\rho = 1.78$ g/cm ³ , 1.70 g/cm ³ , and 1.62 g/cm ³	
Figure 7-5.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the dispersion coefficient using the CHAIN Model, where $D = 2.20 \text{ cm}^2/d$, 1.00 cm ² /d, and 0.40 cm ² /d	71
Figure 7-6.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the dispersivity using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, and HYDRUS Models, where $D_L = 5.33$ cm, 4.53 cm, and 3.73 cm	72
Figure 7-7.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the diffusion coefficient in water using the CHAIN 2D and HYDRUS Models, where $D_w = 2.53 \text{ cm}^2/\text{d}$, 1.73 cm ² /d, and 0.93 cm ² /d	73
Figure 7-8.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the saturated conductivity using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models, where $K_s = 365$ cm/d, 270 cm/d and 175 cm/d	73 74
Figure 7-9.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the saturated water content using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models, where $\theta_s = 0.35 \text{ cm}^3/\text{cm}^3$, 0.32 cm ³ /cm ³ and 0.29 cm ³ /cm ³	/ 4
Figure 7-10.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the residual water content using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models, where $\theta_r = 0.103 \text{ cm}^3/\text{cm}^3$, 0.083 cm ³ /cm ³ , and 0.063 cm ³ /cm ³	
Figure 7-11.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the van Genuchten retention parameter α using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models, where $\alpha = 0.059$ cm ⁻¹ , 0.055 cm ⁻¹ , and 0.051 cm ⁻¹	77
Figure 7-12.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6m layer) to the van Genuchten retention parameter β using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models, where $\beta = 1.59$, 1.51, and 1.43	. 78
Figure 7-13.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well to the distribution coefficient using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models	80
Figure 7-14.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well to the recharge rate using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models	Q 1
Figure 7-15.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well to the water content using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and HYDRUS Models	82

Figure 7-16.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well to the bulk density using the CHAIN, MULTIMED-DP 1.0, FECTUZ, CHAIN 2D and	
	HYDRUS Models	83
Figure 7-17.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor	
	well to the dispersion coefficient using the CHAIN Model	84
Figure 7-18.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to	
	reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well to the dispersivity using the MULTIMED DP 1.0 EECTUZ CHAIN 2D and	
	HYDRUS Models	85
Figure 7-19.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to	
	reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well	
F: 7.00	to the diffusion coefficient in water using the CHAIN 2D and HYDRUS Models	86
Figure 7-20.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to reach peak concentration at the depth of 6m, and (c) time to avceed MCL at the recenter well	
	to the saturated conductivity using the MULTIMED-DP 1.0 FECTUZ CHAIN 2D and	
	HYDRUS Models	87
Figure 7-21.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to	
	reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well	
	to the saturated water content using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D, and	00
Figure 7-22	HYDRUS Models.	88
Figure 7-22.	reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor	
	well to the residual water content using the MULTIMED-DP 1.0, FECTUZ, CHAIN 2D,	
	and HYDRUS Models	89
Figure 7-23.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to	
	reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor well to the year Convention retention personator of using the MULTIMED DB 1.0. EECTUZ	
	CHAIN 2D and HYDRUS Models	90
Figure 7-24.	Sensitivity and relative sensitivity of (a) peak concentration at the depth of 6m, (b) time to	70
0	reach peak concentration at the depth of 6m, and (c) time to exceed MCL at the receptor	
	well to the van Genuchten retention parameter β using the MULTIMED-DP 1.0,	
Figure 7.25	FECTUZ, CHAIN 2D, and HYDRUS Models.	91
Figure 7-25.	MULTIMED DP 1.0 models. Note that the water contents (=) obtained from the originally	
	distributed MULTIMED-DP 1.0 code are in error. The corrected code gives a consistent water	
	content distribution (\blacktriangle) with the other three models	93
Figure 7-26.	Sensitivity of ⁹⁹ Tc BTCs at 6m depth to water content, where (a) uses Stehfest Algorithm of	
	MULTIMED-DP 1.0, (b) uses DeHoog Algorithm of MULTIMED-DP 1.0, and (c) uses	0.5
Figuro 7 27	Comparison of the 99Te BTCs for the HVDPUS CHAIN 2D and CHAIN Models for the	95
Figure 7-27.	base values of the input parameters with the BTC for the FECTUZ Model with the base	
	value of $D_{\rm I} = 4.53$ cm replaced by the value $D_{\rm I} = 6.53$ cm	96
	APPENDICES	
Figure A-1.	Schematics of the soil-water retention curve (a) and the hydraulic conductivity function	
8	(b) for the VC-Model (from Šimunek et al., 1998)	A-3
Figure B-1.	Geometrically similar figures, where (a) is the reference figure with characteristic length L*,	
	(b) is a similar figure with characteristic length L_1 , $L^* = \alpha_1 L_1$, with scale factor $\alpha_1 = 2$, and	D 0
Figure P 2	(c) is a similar figure with $\alpha_2 L_2 = L^*$, $\alpha_2 = \frac{1}{2}$ (from Guymon, 1994)	в-3
Figure D-2.	where z represents the local variable within a soil profile and R ($i = 1.2$) represent the	
	horizontal vectors in the xy-plane giving the global positioning of the vertical profiles.	
	p ₁ ,p ₂ ,	B-5

Figure B-3.	(a) Unscaled observations of $S_{eo}(h)$, (b) Scaled observations of $S_{eo}(h^*)$, showing the reference relationship as a solid curve, (c) unscaled observations of $K(S_{eo})$, and (d) scaled observations of $K(S_{eo})$, and (d) scaled observations of $K(S_{eo})$.	DC
Figure B-4.	The application of linear scaling to a set of soil-moisture observations, resulting in a set of S_{eo}	В-0
	m similar soil classes. The m th class of similar soils accounts for the soil structures	
	$s_{m1}, s_{m2},, s_{mq}$ within the soil textural class m. The number of similar soil classes	סת
Figure C-1	A continuous hysteresis loop for a system whose state is given by the couple (i) y) where i	D-0
Figure C-1.	is the input and v is the output (after Visintin, 1994)	C-2
Figure C-2.	A defining sketch of Madelung's Rules for the memory attributes of ferromagnetic	-
8	hysteresis (after Brokate and Sprekels, 1996).	C-3
Figure C-3a.	A relay with hysteresis, or a delayed relay, defined by the parameters (a, b, u_c , v_c)	
	with repect to the system defined by states (u,v), after Visintin (1994)	C-5
Figure C-3b.	An approximation to a continuous hysteresis loop by a linear combination of a finite family of	
	delayed relays. The quantity R_f is the region inside the discontinuous loop formed by the finite	a .
F' C 4	family of relays, after Visintin (1994)	C-5
Figure C-4.	A cross section of a soil pore and the solid soil particles that make up its walls, showing areas	
	water is hold by surface forces (a.g., yen der Weals forces) after Miller and Donabus (1995)	C 8
Figure C-5	The "ink hottle" effect demonstrating that draining/drying soils under the influence of	C-0
i iguite e e.	capillary forces retain more water at a given soil-water pressure than a wetting soil at the	
	same water pressure, after Guymon (1994)	C-9
Figure C-6.	A hypothetical soil-moisture hysteresis loop which is discontinuous for pressure heads near	
-	zero, showing the main drying and main wetting curves, and example primary and secondary	
	scanning curves, after Knox et al. (1993)	C-10
Figure E-1.	Water content distributions predicted by the HYDRUS, CHAIN 2D, FECTUZ, and	
	MULTIMED-DP 1.0 Models. Note that the water contents (■) obtained from the originally	
	distributed MULTIMED-DP 1.0 Code are in error. The corrected code gives a consistent	БЭ
Figure F_2	Comparison of the breakthrough curves predicted by the CHAIN HVDRUS CHAIN 2D	.E-2
Figure E-2.	EECTUZ and MULTIMED DP 1.0 Models for the base case given in Section 6. The top	
	curves are for a nonuniform water content and the bottom curves are for $\theta = 0.16$	
	throughout the soil column. There are no CHAIN results in the top graph because θ can	
	only be constant in this model	.E-3
Figure E-3.	Sensitivity of ⁹⁹ Tc breakthrough (through the 6 m layer) to the distribution coefficient using	
	the CHAIN 2D Model, for a nonuniform water content (top) and for a uniform water content	
	(bottom).	.E-4
Figure E-4.	Sensitivity of ⁹⁹ Ic breakthrough (through the 6 m layer) to the dispersivity using the CHAIN	Г 4
Figure F 1	2D Model, for a nonuniform water content (top) and for a uniform water content (bottom)	.E-4
rigure r-1.	Les Cruses NM Site corresponding to the doille record in Figure 5.2	Б 2
Figure F 2	Las Cruces, NM Site, corresponding to the daily record in Figure 5.2	. г-з
rigure r-2.	The water stress response function for the Feddes Module of the HTDRUS Code	F 4
F' F 3	(Simunek, et al., 1998)	. F-4
Figure F-3.	Cumulative amounts in centimeters of precipitation, actual evapotranspiration (E1), and net	
	variable precipitation and potential ET rates at the surface. Cumulative net recharge and	
	ET vary between the two figures because of differences in the root water uptake scenarios	
	(h_1, h_2, h_3) . The precipitation/PET segment from "a to b" is repeated from "b to c."	. F-4
Figure F-4.	Comparison of predicted ⁹⁹ Tc breakthrough curves (through the 6 m layer) using the variable	
0	precipitation/actual ET versus uniform recharge rate in the HYDRUS Model. Average recharge	
	rate is calculated as the mean net amount of precipitation and actual ET from 0 to 12,000 days.	
	The net recharge varies between the two sets of curves due to the root-uptake scenario,	_
F ' C 1	(h_1, h_2, h_3)	. F-6
Figure G-I.	Sensitivity of \sim 1c breakthrough (through the unsaturated zone with a water table at a depth of 6 m) to the distribution coefficients in a lower depth of 6 m) to the	
	HYDRUS Model	G_2
Figure H-1.	The c- and s distribution of Equations (H-1) and (H-2) for 90 Sr for (ω f) = (0.1)	0-2

	$(0.032 d^{-1}, 0.47), (0.032 d^{-1}, 0)$. Distributions were derived by the HYDRUS Code,	
	(a) gives the concentration in solution and (b) gives the concentration on the soil matrix	H-4
Figure H-2.	(a) Breakthrough curves for the liquid phase concentration at the 6 m level. (b)	
	Concentration curves for the nonequilibrium solid phase at the 6 m depth. Curves for $\omega =$	
	$6.5 \times 10^{-2} d^{-1}$ and $6.5 \times 10^{-1} d^{-1}$ are basically the same for both (a) and (b).	H-7
Figure H-3.	Liquid phase concentration curves (a) and solid phase concentration curves (b) for ⁹⁰ Sr,	
	for various times and for $\omega = 6.5 \text{ x } 10^{-5} \text{d}^{-1}$, where zero depth is the surface and -600 cm	
	is the hypothetical water table	H-8
Figure H-4.	Liquid phase concentration curves (a) and solid phase concentration curves (b) for ⁹⁰ Sr,	
	for various times and for $\omega = 6.5 \text{ x } 10^{-4} \text{d}^{-1}$, where zero depth is the surface and -600 cm	
	is the hypothetical water table.	H-8
Figure H-5.	Liquid phase concentration curves (a) and solid phase concentration curves (b) for ⁹⁰ Sr,	
	for various times and for $\omega = 6.5 \text{ x } 10^{-3} \text{d}^{-1}$, where zero depth is the surface and -600 cm	
	is the hypothetical water table.	H-9
Figure H-6.	Liquid phase concentration curves (a) and solid phase concentration curves (b) for ⁹⁰ Sr, for	
	various times and for $\omega = 6.5 \times 10^{-2} d^{-1}$, where zero depth is the surface and -600 cm is the	
	hypothetical water table.	H-9
Figure I-1.	The normalized concentration of a radionuclide at the bottom of a soil column (the source	
	being at the top of the column) versus a hypothetical decay-mobility scale (DMS), where	
	I represents highly mobile, long-lived species, III represents highly immobile, short-lived	T 1
F ! I A	species, and II represents species with intermediate mobilities and half-lives.	I-1
Figure 1-2.	(a) Breakthrough curves of the daughter product, "Ru, from the "Tc decay using the	
	CHAIN and FECTUZ Models for base case simulation, and (b) the breakthrough curve	ти
Г	for γ Ic. The text will explain a, b, c, d, e and f.	1-4
Figure 1-3.	Sensitivity of radionuclide transport through the unsaturated zone to recharge rate (q)	
	(d) Strontium 90Sm and (a) Distantium 238Du	τ5
Fierra I 4	(d) Strontum ~Sr; and (e) Plutonium ²⁵⁰ Pu.	1-5
rigure 1-4.	$C_{\text{peak}} - C_0$ versus Γ_{peak} in days for five radionuclides, showing the effects of various K_d	u tha
	values and values decay fales, where the time intervals of the curve segments are determined b	y uie
	Tange of discharge rates for the o in son column.	1-/

Tables

<u>Number</u>

Table 2-1.	Comparison of the Model Components in Each of the Five Codes Being	0 10
Tabla 4-1	Analyzed in this Report	9 - 10
Table 4-1.	Parameters for Arbitrary Values of the Inputs	32
Table 4-2.	Sensitivity and Relative Sensitivity of Output F to Individual Input Parameters with	
14510 1 20	Reference to the Base Case Given in Equation (4-10)	33
Table 5-1.	Partial List of Radionuclide Contaminated and Disposal Sites in the U.S.	
	(U.S. EPA's VISITT Database)	39
Table 5-2.	Soil Hydraulic Properties at the Las Cruces Trench Site for SSG Model	
	Evaluation Study (from Wierenga, et al., 1991)	42
Table 5-3.	Characteristics of the Las Cruces Trench Site for SSG Model Evaluation Study (from	
	Gee, et al., 1994)	42
Table 5-4.	Base Values of Input Parameters for Unsaturated Zone Radionuclide Models	
	(from Wierenga, et al., 1991; Gee, et al., 1994; U.S. EPA, 2000ab; and U.S. EPA	
	VISITT Database)	45
Table 6-1.	The Sensitivity Analysis Performed (\bullet) for the Five Models Under the Assumption of	
	Constant Recharge Rate and Constant Water Content	50
Table 6-2.	The Sensitivity Analysis Performed (\bullet) for Four of the Five Models Under the	
	Assumption of Constant Recharge Rate and Variable Water Content, where "Base"	
	Represents the Base Parameter Values Given in Table 5-4, and the Water Content	
	Profile, $\theta(z)$, Varies with the Changing van Genuchten Parameters ($K_s, \theta_s, \theta_r, \alpha, \beta$)	52
Table 6-3.	Input Parameters for Each Model and the Range of Each Variable Parameter, Along	
	with the Base Value of the Parameter	
Table 6-4.	Relative Sensitivities for C_{peak} , T_{peak} and T_{MCL} with Respect to the Input Parameters	
T 11 F 1	for HYDRUS, Measured at the Base Values of the Input Parameters.	53
Table 7-1.	The Sensitivity Analyses Performed (\bullet) for the Five Models Under the Assumption	
	of Constant Recharge Rate and Constant Water Content, and the Sensitivity Analyses	
	Performed (O) for Four of the Five Models Under the Assumption of Constant	65
Table 7.2	The Values of the Dispersion Easter AD, as Derived from Equation (6.4) and the	03
Table /-2.	Rese Values of D D D A and a and the Panges of D D and D as given in Table 6.3	66
Table 7-3	Base values of D, D_L , D_W , 0 and q and me Kanges of D, D_L and D_W as given in Table 0-5 Summary of Palative Sensitivities for the Outputs Obtained from the 99Tc Breakthrough	00
Table 7-5.	Curves with Respect to All the Pertinent Input Parameters for All Models. Referenced	
	to the Base Values of the Input Parameters	92
Table 8-1	The Possible Numerical Differences and Errors (•) Separating the Five Models Tested	
	for Water Flow and Radionuclide Transport through the 6m Vertical Homogeneous	
	Soil Column	100
Table 8-2.	The Figures in Section 7 Comparing ⁹⁹ Tc BTCs and Output Sensitivities with Respect	
	to Model Input Parameters and Modeling Codes	101
	1 <i>O</i>	

APPENDICES

Table E-1	Comparison of Results Derived from Figures E-3 and E-4 for the Distribution Coefficient	
	K_d and the Dispersivity D_I , respectively. The Values of C_{peak} , T_{peak} and T_{MCI} are	
	Given for the Base Values of K_d and D_L , and the Relative Sensitivities of These Output	
	Quantities to K_d and D_L are Given, These Values Also Being Taken at the Base Values	
	of K _d and D ₁ .	E-3
Table H-1.	Comparison of Nonequilibrium and Equilibrium Results for ⁹⁹ Tc BTCs for K _d Values of	
	0.007 and 1.0 ml/g.	H-3
Table H-2.	Liquid Phase and Solid Phase Peak Concentrations at the Hypothetical Water Table	
	for a Sequence of Sorption Rates, along with the Corresponding Times to Arrive	
	at Those Peaks.	H-7
Table I-1.	Coefficients of the Advection, Diffusion, and Sink Terms in Equation (I-1).	I-3
Table I-2.	C_{peak} Normalized by Source Concentration C_0 and T_{peak} for Each Radionuclide and for	
	Three Recharge Rates.	I-6
Table I-3.	The Relative Diffusion Factors and the Relative Decay Factors for the Five	
	Parent Radionuclides.	