

Methods Of Processing Unit Data Longitudinally On The SIPP

$$
8910 \quad 87
$$

Karen E. Smith
Congressional Budget Office

The analysis of this paper is that of the author and should not be attributed to the Congressional Budget office. The author thanks Jodi Korb for being the sounding board for the ideas presented in this paper, and Steve Long, Roald Euller, Roberton Williams, Ivon Katz, and Ron Moore for reviewing this paper and providing helpful comments.

The view expressed is that of the author and do not necessarily reflect that of the Census Bureau.

table of contents

I. INTRODUCTION 1
II. UNITS ON THE SIPP 2
III.* PERSON-LINKED FILE 4
Person-level Analysis 5
Family-level Analysis 6
IV. PERSON-MONTH FILE 13
Person-level Analysis 14
Family-level Analysis 17
v. DISCUSSION 25
VI. RESOURCE REQUIREMENTS 26
VII. CONCLUSION. 30
VIII. APPENDIX 32
PLI Program Creating a WAVE 1 with the Same Record layout as WAVE 3 33
PLI Program for Step 1 35
PLI Program for Step 2 39
PLI Program for Step 3 43
SAS Program for Step 1 46
SAS Program for Step 2 49
SAS Program for Step 3 52

Analysts who want to examine events that occur over time face the problem of how best to process information from longitudinal data files. The standard approach for processing such data is to create a "person-linked" file, by linking all periods of information for each person onto one record.1/ Person-level longitudinal analysis involves looking at each person-record to see how characteristics or behavior changed over time. While this approach works if only the individual's characteristics are of interest, it is cumbersome if the analyst wants to look at groups of people such as families or households, because such groups may change over time .. people move out of households, people marry into families, people die.

An alternate approach for processing longitudinal data is to create a "person-month" file, by keeping each period of information for each person on its own record. Person-level longitudinal analysis involves looking at multiple records for each person to see how characteristics or behavior changed over time; looking at multiple records across months is equivalent to looking at a single person-linked record in the other approach. This paper will demonstrate that the person-month file is less cumbersome than the

1 The standard method of processing a longitudinal file is described by, for example, Marita Servais, "Creating SIPP Longitudinal Files Using OSIRIS.IV,n U.S. Bureau of the Census, Survey of Income and Program Participation: 1987--Selected Papers Given at the Annual Meeting of the American Statistical Association, San Francisco, California, August 16-20, 1987, pp. 129-134.
person-linked file for analysis of groups of people. This approach also provides substantial resource savings, even if only personlevel analysis is done.

This paper illustrates the use of both person-linked files and person-month files for doing longitudinal analysis with monthly data from the Survey of Income and Program Participation (SIPP). First, some background pertaining to the SIPP and general problems of defining units is provided. The paper then describes and examines each method's ability to do person-level analysis and unit-level analysis. In this instance, all examples of unit-level analysis use the family as the unit, although the results are equally applicable to other types of units. It then compares the two methods of processing and their resource requirements. Finally, it includes an appendix with computer code in both PLI and SAS that implement the person-month method.

UNITS ON THE SIPP

The SIPP collects data for a sample of the population over a thirtysix month period. The survey follows all people contacted for the initial interview over the entire period, and also gathers data for
all people living with those people at each interview.2/ A typical unit at the beginning of the survey may contain a head of household, a spouse, and two children. If one of the children gets married and moves out of the household, the child and the child's spouse are surveyed. If an uncle moves in with the parents, he also is surveyed. But if the uncle moves out at any point, he no longer is surveyed because he was not in the original sample unit. The sample unit, therefore, is not static. It may change size, split apart, or merge back together. The dynamic nature of units forces the analyst to make decisions about the definition of a unit over time.

There are several ways one could define a "family" unit.3/. For example, if a husband and wife get divorced between months one and two, one could consider the divorce the end of one family (the husband and wife in month one) and the start of two families (the husband in month two and the wife in month two), or one could consider the husband as the head of the family regardless of any transitions in the family. In this case, the husband would be in the same family in months one and two, and the wife would be in a

2/ The survey population is divided into four rotations. Rotations one and two have thirty-six months of data. Rotations three and four have thirty-two months of data. The absence of four months of data for two rotations creates no problems for this analysis.

3/ For more discussion of longitudinal units, see D.B. McMillen and R.A. Herriot, toward a LONGITUDINAL DEFINITION OF HOUSEHOLDS, "Survey of Income and Program Participation and Related Longitudinal Surveys: 1984," compiled by Daniel Kasprzyk and Delma Frankel. U.S. Bureau of the Census, Washington, D.C. 1984.
new family in month two. Within these dynamic families, the person is the only unit that remains constant over time. Rather than attempt a longitudinal definition of families, one solution is to ascribe the family-level characteristics to each individual in the family. To continue the example above, family size for the head of household, spouse, and two children is four. Family size of four would then be associated to each person in the family. When the child gets married, a family size of three would be associated to the head of household, spouse, and remaining child. In this form, all unit changes over time are measured at the person level. Looking at the family size information for the head of household over time would reveal a change from a family size of four to a family size of three. When the uncle moved into the family, the head of household's family size would be four. This paper uses this approach.

PERSON-LINKED FILE

The standard method of longitudinally processing the SIPP data links each person's thirty-six months of data onto a single record, creating a person-linked file (see Figure 1). This file can be created by merging the nine waves of data by the person index and
writing out one record per person. 4/ For example, each record contains information for all thirty-six months on that person's income from earnings, child support, alimony, hours worked, etc.

FIGURE 1: PERSON-LINKED FILE

NOTE: XXX symbolizes all data items for person i and month j.

Person-level Analysis

Thirty-six months of information can be observed at the person level by looking across the person-linked file records. A transition is a change in any analysis variable from month n to month $n+1$. In Figure 2, note that Person 1 earned 950 dollars in months one through thirty-six. Person 2 earned 100 dollars in months one

4/ In the SIPP, a person is linked by sample unit identification number (SU-ID), entry household address identification number (PP-ENTRY), person number (PP-PNUM), and montin. Month is a function of the sample unit rotation (SU-ROT), and wave (PP-WAVE).
through four, and 120 dollars in months five through thirty-six. Person N earned 800 dollars in months one through three and 0 dollars in months four through thirty-six. By changing the relevant variable, similar analysis could examine child support, alimony, hours worked, etc.

FIGURE 2: LONGITUDINAL ANALYSIS OF PERSON EARNINGS AND CHILD SUPPORT ON THE PERSON-LINKED FILE

Person		Month								
Number	Variables	1	2	3	4	5	6	7	8	9... 36
1	Earnings Child Support	950	$\begin{array}{r} 950 \\ 0 \end{array}$	$\begin{array}{r} 950 \\ 0 \end{array}$	$\begin{array}{r} 950 \\ 0 \end{array}$	950	950	950	950 0	$\begin{array}{r} 950 \ldots 950 \\ 0 \ldots 0 \end{array}$
2	Earnings Child Support	100	100 90	100	100 90	120 90	120 90	120 90	120 100	$\begin{aligned} & 120 \ldots 120 \\ & 100 \ldots 100 \end{aligned}$
.	.		-	.	-	.			.	
N	Earnings Child Support	$\begin{array}{r} 800 \\ 0 \end{array}$	$\begin{array}{r} 800 \\ 0 \end{array}$	$\begin{array}{r} 800 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0 0	0	0	$\begin{array}{ll} 0 \ldots & 0 \\ 0 \ldots & 0 \end{array}$

Family-level Analysis

Suppose that one wanted to look not at the characteristics of individuals, but at those of families--that is, groups of related people living together. If all people originally in a family are present at the same address at each interview for the entire period, a person-linked file presents no problems.

When the person-linked file is sorted by the family index in month one, the people in each family in month one are contiguous records on the file.5/ Consider a fanily, for example, in which Person 1 is the head of household, Person 2 is the spouse, and Persons 3 and 4 are their children, and they live at the same address for all thirty-six months (see Figure 3). This family has no composition changes throughout the thirty-six months and in that sense is "ideal" for processing. In this case, monthly family-level characteristics can be calculated by looking at the sequential records of all the people in the sample unit for each month. In this example, the family's income from earnings in month one is the sum of individual earnings in month 1 for everyone in the family, or 1050 dollars. Looping through the months for everyone in the sample unit yields a monthly summary of family income from earnings. The family's income from earnings is 1050 dollars in months one through four and 1070 dollars in months five through thirty-six.
4. In the SIPP, families have the sample unit identification number (SU-ID), household address identification number ($H *$-ADDID), and family number ($F *$-NUMBR) in common.

FIGURE 3: LONGITUDINAL ANALYSIS OF FAMILY EARNINGS FOR THE IDEAL FAMILY ON THE PERSON-LINKED FILE

Sample Unit	PersonNumber	Relation	Variables	Month				
				1	2	3	4	5... 36
1	1	Head	Address ID	1	1	1	1	1... 1
			Earnings	950	950	950	950	950...950
1	2	Spouse	Address ID	1	1	1	1	1... 1
			Earnings	100	100	100	100	120... 120
1	3	Child One	Address ID	1	1	1	1	1... 1
			Earnings	0	0	0	0	0... 0
1	4	Child Two	Address ID	1	1	1	1	1... 1
			Earnings	0	0	0	0	0... 0
Family Earnings				1050	1050	1050	1050	1070. 1070

The calculation of monthly family-level characteristics is less straightforward when the people in a family change. For example, assume that a family in month one includes a father, mother, and two children. In month two, the parents divorce and the mother and first child move into a new home. The father and second child remain at the same residence. In month three, the first child moves in with the father and the second child moves in with the mother (see Figure 4).

FIGURE 4: CHANGING FAMILY COMPOSITION ON THE PERSON-LINKED FILE

Relation	Variable	Month		
		1	2	3. . . 36
Father	Address ID	1	1	1. . . 1
Mother	Address ID	1	2	2. . 2
Child One	Address ID	1	2	1. . 1
Child Two	Address ID	1	1	2. . 2

In month one, the father, mother, and two children are one family. In month two, the father and the second child aref family living at the original address, and the mother and the first child are a family at a new address. In month three, the father and the first child are family living at the original address, and the mother and the second child are family at the new address. As the months change, the people in each family no longer are contiguous records. In month two, the father and second child are a family. but are separated by two records. In month three, the father and the first child are separated by the mother's record, and the mother and the second child are separated by the first child's record. There is no way to arrange the records in Figure 4 and have the people in the same families contiguous for all months.

For the ideal family, the algorithm for creating family analysis variables worked by processing related people who are contiguous in the structure. As family composition changes over
time, however, family members will not always be contiguous. Several solutions exist for this problem, none of which is completely satisfactory.

Three possible solutions described here are:

- Move individual person-months;
- Move entire person-linked record; and
- Use record pointers to link family members.

It is possible to move the individual person-months on the person-linked file to get the data for all family members contiguous on the file (see Figure 5). Moving individual months, however, destroys the horizontal representation of time that the personlinked file provides. With this method, before doing longitudinal person-level analysis, the person-months would have to be moved back to their original order.

FIGURE 5. MOVE THE INDIVIDUAL PERSON-MONTHS ON THE PERSON-LINKED FILE

Note: F-Father, M-Mother, Cl-Child One, C2-Child Two

It is posibible to rearrange the person-linked file records to get the data for all family members contiguous on the file for month n (see Figure 6). This solution changes the family order for months not equal to n, and thus requires. sorts for every sample unit and month.
figure 6. REARRANGE THE PERSON-LINKED FILE RECORDS

For Month One Analysis:					
	Relation	Variables	1	2	3. . . 36
*					
	Father	Address ID	1	1	1. . . 1
	Mother	Address ID	1	2	2. . . 2
	Child One	Address ID	1	2	1... 1
	Child Two	Address ID	1	1	2. . 2

For Month Two Analysis:
Relation Variables

Father
Address ID
Address ID
Address ID
Address ID
$\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 2\end{array}$

1. . . 1

Child Two
Mother Child One

12
. 2
2. . . 2

Cld One
\qquad

1. . . 1

For Month Three Analysis:

Relation Variables \quad| Monch |
| :---: |

Father Address ID $1 \quad 1 \quad 1 . .1$
Child One Address ID $1 \quad 2 \quad 1$. . 1
Mother
Child Two
Address ID
122 2. . 2
Address ID 1

Rather than physically moving individual person-months or person-records to make family members contiguous in the file, pointers can be used to keep track of the family groupings across the months. Within each sample unit and month, the pointers link
the people in each household and family (see Figure 7). Although these methods work, they are cumbersome to process as well as conceptualize.
figure 7. pointers to families on the person linked file

NOTE: HH = Household Pointer.
FAM = Family Pointer.

PERSON-MONTH FILE

Longitudinal analysis can be simplified if the data for each person are separated into thirty-six records, one for each month, rather than combined in aingle record. This file can be created by concatenating the nine waves of data and writing out four records per wave per person. For example, each record contains information for one month on that person's income from earnings, child support, alimony, hours worked, etc. These person-month records then can be

```
sorted in order to group together any type of unit, including
people, families, and households.
```


Person-level Analysis

To analyze people, sort the person-month file by the unique person index.6/ Because each person-month is its own record, the personmonth file is a rectangular file and can be sorted using any standard sort program, such as Syncsort. After the sort, the thirty-six months of data for each person are contiguous records on the file (see Figure 8).

6/ The unique person index is the concatenation of sample unit identification number (SU-ID), entry address identification number (PP-ENTRY), person number (PP-PNUM). and month. Month is a function of the sample unit rotation (SU-ROT), and wave (PP-WAVE).

FIGURE B. PERSON-MONTH FILE SORTED BY PERSON INDEX

Note: Dotted lines differentiate people.

Thirty-six months of information can be observed at the person level by looking through the thirty-six sequential person-month file records. A transition is a change in any analysis variable from month n to month $n+1$. In Figure 9, note that Persen 1 earned 950 dollars in months one through thirty-six. Person 2 earned 100 dollars in months one through four, and 120 dollars in months five through thirty-six. Person N earned 800 dollars in months one through three and 0 dollars in months four through thirty-six. By changing the relevant variable, similar analysis could examine child support, alimony, hours worked, etc.

FIGURE 9. LONGITUDINAL ANALYSIS OF PERSON EARNINGS AND CHILD SUPPORT ON THE PERSON-MONTH FILE

	Person	Month	Earnings	Child Support
*	1	1	950	0
	1	2	950	0
	1	3	950	0
	-	-	-	-
	i	36	950	0
-	$\cdots{ }^{-}$	- ${ }^{-}$	$\cdots{ }^{-100}{ }^{-}$	\cdots
	2	2	100	90
	2	3	100	90
	2	4	100	90
	2	5	120	90
	-	-	-	-
	2	36	120	100
	- -	-	\ldots
	-	-	-	-
		\cdots	$\cdots 800 \cdot$	$\cdots{ }_{0}$
	N	2	800	0
	N	3	800	0
	N	4	0	0
	-	-	-	-
	N	36	0	0

Note: Dotted lines differentiate people.

Family-level Analysis

To analyze families, sort the person-month file by the unique family index.7 Again, this sort is done using a standard sort program. After the sort, the person-month records for all people in each family per month are contiguous records on the file (see Figure 10).

Consider the family in Figure 10, for example, in which Person 1 is the head of household, Person 2 is the spouse, and Persons 3 and 4 are their children, and they live at the same address for all thirty-six months. This family has no composition changes throughout the thirty-six months. In this case, monthly family-level characteristics can be calculated by looking at the sequential records of all the people with the same family index. In this example, the family's income from earnings in month one is the sum of individual earnings in month 1 for everyone in the family, or 1050 dollars. 8 Looping through all of the person-month records and grouping families yields family income from earnings for all months. The family's income from earnings is 1050 dollars in months one through four and 1070 dollars in months five through
2) The unique family index is the concatenation of the sample unit identification number (SU-ID), household address identification mumber ($\mathrm{H} *$-ADDID), family identification number ($F *$-NUMBR), and month. Month is a function of the sample unit rotation (SU-ROT) and wave (PP-WAVE).

8/ Family earnings is a variable provided on the file by the Bureau of the Census. It would not be necessary to create it as described in this example. It is, however. illustrative of family-type variables.
thirty-six.

The calculation of monthly family-level characteristics is exactly the same when the people in a family change. For example, assume that a family in month one includes a father, mother, and two children. In month two, the parents divorce and the mother and first child move into a new home. The father and second child remain at the same residence. In month three, the first child moves in with the father and the second child moves in with the mother (see Figure 11).

FIGURE 10: LONGITUDINAL ANALYSIS Of FAMILY EARNINGS FOR THE IDEAL FAMILY ON THE PERSON-MONTH FILE SORTED BY FAMILY INDEX

Family Index				Person Number	Relation	Person Earnings	$\begin{aligned} & \text { Family } \\ & \text { Earnings } \end{aligned}$
Sample Unit Number	Month	Household Address Id	Family Number				
1	1	1	1	1	F	950	1050
1	1	1	1	2	M	100	1050
1	1	1	1	3	Cl	0	1050
1	1	1	1	4	C2	0	1050
1	2	1	1	1	F	950	1050
1	2	1	1	2	M	100	1050
1	2	1	1	3	Cl	0	1050
1	2	1	1	4	C2	0	1050
1	3	1	1	1	F	950	1050
1.	3	1	1	2	M	100	1050
1	3	1	1	3	Cl	0	1050
1	3	1	1	4	C2	0	1050
1	4	1	1	1	F	950	1050
1	4	1	1	2	M	100	1050
1	4	1	1	3	c1	0	1050
1	4	1	1	4	C2	0	1050
1	5	1	1	1	F	950	1070
1	5	1	1	2	M	120	1070
1	5	1	1	3	Cl	0	1070
1	5	1	1	4	C2	0	1070
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
1	36	1	1	1	F	950	1070
1	36	1	1	2	M	120	1070
1	36	1	1	3	Cl	0	1070
1	36	1	1	4	C2	0	1070

Note: Dotted lines differentiate families F-Father, M-Mother, Cl-Child One, C2-Child Two

FIGURE 11: CHANGING FAMILY COMPOSITION OF THE PERSON-MONTH FILE

In month one, the father, mother, and two children are one family. In month two, the father and the second child are a family living at the original address, and the mother and the first child are a family at a new address. In month three, the father and the first child are a family living at the original address, and the mother and the second child are a family at the new address. As the months change, the people in each family are contiguous records. In month two, the father and second child are a family, and are contiguous records. In month three, the father and the first child are a family, and are contiguous records, and the mother and the second child are a family, and are contiguous records. The sort has arranged the records in Figure 11 to have the people in the same family contiguous for all months.

For the ideal family, the algorithm for creating family analysis variables worked by processing related people who are contiguous in the structure. As family composition changes over time, family members will be contiguous.

Calculating any family-level analysis variable involves looping through the sequential person-month records of the people with the same family index and then sumarizing the fanily data. For example, to find family earnings, one would add up the personlevel earnings for all of the people in the family. For example, the first family in Figure 11 (sample unit 1, month 1, household address id 1 , family number 1) received 1050 dollars of earnings,
and the second family (sample unit 1 , month 2 , household address id 1, family number 1) received 950 dollars of earnings.

While family-level analysis is straightforward with this sort order, the family variables are not associated with any longitudinal notion of time. Since the only unit that remains constant over time is the person, if family variables are associated with people, they may then be associated with time. To associate these variables with people, the new family variables should be tacked onto each personmonth record for each person in each family as seen in Figure 11. Associating these variables with time requires a second sort.

The person-month file sorted by the unique person-index has all thirty-six months for each person together on the file. The person-index order associates person data with time. To analyze the new family variables over time, one must sort the family-index sorted file with the newly created family variables attached by the unique person index. After sorting, the new family variables are associated with the ordered person-months and are available for longitudinal analysis (see Figure 12). By looping through the thirty-six sequential person-month records, changes in family characteristics over time can be observed. In Figure 12, note that Person l's family earned 1050 dollars in month one, and earned 950 dollars in months two through thirty-six. Person 2 's family earned 1050 dollars in month one, and earned 100 dollars in months two and three. By month thirty-six, Person 2's family earned 120 dollars.

Person 3's family earned 1050 dollars in month one, 100 dollars in month two, and 950 dollars in months three through thirty-six. Person 4's family earned 1050 dollars in month one, 950 dollars in month two, 100 dollars in month three, and finally 120 dollars in month thirty-six. Transitions in family-level characteristics are analyzed exactly the same way as transitions in person-level characteristics.

FIGURE 12. PERSON-MONTH FILE SORTED BY PERSON INDEX WITH FAMILY ANALYSIS VARIABLES ADDED

Person Index				Household Address Id	Relation	Person Earnings	$\begin{gathered} \text { Family } \\ \text { Earnings } \end{gathered}$
$\begin{aligned} & \text { Sample } \\ & \text { Unit } \\ & \text { Numbè } \end{aligned}$	$\begin{gathered} \text { Entry } \\ \text { Address } \\ \text { Id } \end{gathered}$	Person Number	Month				
1	1	1	1	1	F	950	1050
1	1	1	2	1	F	950	950
1	1	1	3	1	F	950	950
-	-	-	-	-	-	.	.
1	i	i	36	i	\dot{F}	950	950
- .	-	-	- .	. -	-••
1	1	2	1	1	M	100	1050
1	1	2	2	2	M	100	100
1	1	2	3	2	M	100	100
-	-	-	-	-	-	.	.
i	i	2	36	2	\dot{M}	120	120
$\cdots{ }_{1}$	\cdots	3	\cdots	\cdots	- - -	- -	- . - ${ }^{-}$
1	1	3	1	1	C1	0	1050
1	1	3	3	2	C1	0	100
-	-	-	-	-	-	.	
i	i	3	36	1	Cl	0	950
- -	- .	- . -	-.	-...	-...	. . .
1	1	4	1	1	C2	0	1050
1	1	4	2	1	C2	0	950
1	1	4	3	2	C2	0	100
-	-	-	-	-	-	-	-
1	1		36	2.	C2	0	120
. .	1			2.	C2	0	120
2	1	1	1	1	F	0	0
-	-	-	-	-	-	-	-

Note: Dotted lines differentiate people.

DISCUSSION

File creation using the person-linked file requires nine merges by the person index. File creation using the person-month file requires data concatenation and a unit sort.

Person-level analysis on the person-menth file is equivalent to a merged person-linked file. Calculating any person-level analysis variable involves looping through the sequential personmonth records with the same person index and then summarizing the person data. This is exactly the same process as with the personlinked file except that rather than processing across a single record for thirty-six months, processing is done through individual records for thirty-six months.

Family-level analysis with the person-month file is less complicated than family-level analysis with the person-linked file. Using the person-month structure, any change in family composition over time is irrelevant. There is no need to move person-months, move person-records, or use pointers to form contiguous recordstructures of families as with the person-linked file.

The person-month structure is elegant by virtue of its simplicity. Analyzing any unit is a matter of sorting by an index that uniquely defines that unit--to analyze households, sort by household index; to analyze families, sort by family index; to
analyze subfamilies, sort by the subfamily index. No matter how the unit is defined, associating that unit with time is a matter of sorting by the person index and processing a simple structure. While this may seem like a lot of sorting, it is only two. With the person-linked file, each of the nine waves must be sorted before they may be linked. That requires nine sorts. Moving personmonths, moving person-records, or using pointers to form contiguous record-structures of families all require sorts per sample unit, household address id, family number, and month. Two sorts, by contrast, is small.

RESOURCE REQUIREMENTS

The sheer size of the SIPP presents many real resource constraints. Some of the most significant are tape mounts, logical record length, space, cost,. computer time, and programmer time. Although the person-month file structure corrects some of these problems, resources limits will always be factor when processing the SIPP.

Many computer installations have a limited number of tape drives. The rectangular file supplied by the Bureau of the Census is on nine different data files--one for each four month wave. Creating a person-linked file requires mounting all nine data files simultaneously, drawing nine extracts, sorting nine extracts, and finally merging nine extracts. Many computer systems lack
sufficient tape drives to handle nine simultaneous tape mounts. With this constraint, file creation requires several steps.

The person-month file faces no tape mount constraint. Using this file structure, the nine wave data files can be read one file after another, simply by concatenating the tape reels. This requires only one tape drive for the input data and one tape drive for the output data. Once all of the waves are concatenated, the file is ready to be sorted by the unit index for doing analysis.

The person-linked file may be constrained by its record length. Each wave of the SIPP data is 5,352 bytes long. Merging the nine SIPP waves keeping all 5,352 bytes yields a data set with a logical record length of 48,168 . Most computers cannot process such a large record length.

The person-month file structure faces no logical record length constraint. Because each record contains only the data for a single month, the logical record length of a person-month record is essentially one thirty-sixth of the logical record length of the person-linked file record.2/

2/ The logical record length is not exactly one thirty-sixth, because non-monthly variables, such as the sample unit identification number, must be duplicated for each month.

The person-linked file requires a vast amount of wasted space. Throughout the course of the survey, people enter and exit the sample. If a person marries, the new spouse enters the sample at the month of the marriage. There is no data for the new spouse for any month prior to the marriage. Over time, people may drop out of the sample. For these people, there is no data after they leave the sample. With the person-linked file, missing data must be filled in for any month a person is absent from the sample (see Figure 13). This wasted space amounts to the number of absent months times the monthly record length.

FIGURE 13: PERSON-IINKED FILE WITH ABSENT MONTHS

	Month				
	1	2	3	4. . . 35	36
Person 1	1	1	0	0. . 0	0
Person 2	1	1	1	0. . . 0	1
-
Person N	0	0	0	$\dot{0} . .0$	1

NOTE: Os represents months of wasted space.

The person-month file only contains records for the months each person is actually in the sample (see Figure 14). This property of the person-month structure potentially saves space. On the other hand, because the SIPP data has many variables that are
not truly monthly, creating the person-month file requires that the programmer duplicate the non-monthly variables. Depending on the extent of non-monthly variable duplication, the person-month file may or may not save space.

FIGURE 14: PERSON-MONTH FILE WITH ABSENT MONTHS

The person-month file's greatest advantage over the personlinked file is the resource savings in programmer time. There is an extraordinary amount of computer code-that is, of programmer time--required to manipulate units over time using the person-linked file. Each record requires pointers for the household, family, and month. These pointers must be created, a difficult process in itself. Finally, processing these records requires looping through sample units, households, families, and months.

The method for processing units over time using the personmonth file, in comparison, is simple. There are no pointers, and processing requires looping only through the unit index. The code needed to manipulate units consists of a packaged sort routine. For the programmer, sorting is equivalent to a function call. Thus, hundreds of lines of computer code needed for the person-1inked file may be replaced with a single line.

CONCLUSION

The person-linked file is a logical approach for processing chronologically arranged data if only person-level characteristics are of interest. It is the standard method because it is logical, and many analysts have chosen to process longitudinal data in this way. Unfortunately, it is difficult to use for handling unit-level analysis and its real resource constraints force the analyst to find a new approach.

The person-month file presented here offers a new approach. It provides the same logical person structure that gives the personlinked file structure its appeal, but eliminates the unit manipulation constraint, the tape mount constraint, and the logical record length constraint. It reduces the amount of programmer time needed for analysis. Moreover, because of its simplicity, the
chance of error--especially errors that will not be found-is much reduced. In short, the person-month approach saves both money and aggravation.

APPENDIX

The computer code needed to implement the person-month file requires three steps. They are:

1. Concatenate the nine SIPP waves, output a person-month file, and sort the person-month file by the unit index.
2. Process units to create the unit-level analysis variables, and sort by the person index.
3. Process people to do longitudinal analysis.

This appendix includes the computer code for all three steps in both PLI and SAS. It also includes the outline of a program that converts the SIPP wave 1 to look like the SIPP wave 3. This allows the programmer to treat wave 1 just like all of the other waves.

PLl is a powerful and flexible language. It has the ability to do structure assignment by name and retain records in an array. This feature makes processing the person-month file relatively simple. SAS, tivever, is a procedure oriented language with comparatively inflexible data manipulation ability. It also has a great deal of overhead both in CPU time and memory space. If the programmer has a choice in language, a PLl type language will ultimately be easier and cheaper to use.
//KESCBO6 J08 (65040CBO6,BOX-85), WEMANE,CLASS=A
// MOTIFY=KESCBO6,MSGCLASS=5

//* PROJECT: NEW MAVE 1 LAYOUT I*
//* AMALYST: . .
//* PROGRAMMER: KAREN SMITM
//* I DATE: 12/87
1/*
//EI DESCRIPTION: READ IN WAVE 1 aND CUTPUT mavEI HITM A
//* L LAVE 3 RECORD LAYOUT. ALL MAVE 1 ONLY
//* VARIABLES ARE vRITTEN TO A geparate data
1/『
1/E SET.

//SIPP EXEC PLIXCLG,CLASS=1*'.
// REGION.PLI=2000K,
// PARM.PL I = 'NX, NM, NOESD, ATTRIBUTES(SHORT), MSTG, NOF ${ }^{\circ}$.
// PARM.LKEDE'INCLUDE'.
// REGION.GO=2000K
//PLI.SYSLIB DD DSN=KESCBO6. NEMHAVE.CMTL,DISP=SHR
//PLI.SYSINDD *
(SUBSCRIPTRANGE):
NEWWAVE: PROC OPTIONS(MAIN):
DCL SYSPRINT EXTERMAL FILE PRINT;
DCL DDIN FILE RECORD INPUT:
DCL DDOUT 9 FILE;
DCL DOOUT2 FILE;
f

- INPUT RECORD LaYOUT
- the have 1 record layout can be imcluded from the machine *
- readable cooebook.

DCL 1 INPUT.
zinclude waveirec;

- OUTPUT RECORD LaYOUT
- the mave 3 record layout can be imeluded from the machine
- readable cooebook.
- USE the wave 3 record layout because mave 2 mas problems with
- the mousehold weight and afde mount.
- the izoamt for all haves after correctimg tme mave 2 izoamt
- starts at colimn 4054 and is 6 characters long.

dCL 1 alluave vars,
xinclude wavesrec;:

- variables owly on mave 1
- all variables on mave 1 and wot on mave 3 can ee saved.
- this record layout can be gemerated ey merging the have 1 and
- mave 3 variable mames. all mon-matcmed variables cet imcllded *
- mere.

DCL 1 OWLY_MAVE1.
XINCLLDE ONLYU1:;

DCL EDF	BIT IMIT(${ }^{\prime \prime} \mathrm{O}^{\prime}$) :
dCL debug	BIT INIT('O'B):
DCL REC_WRIT	FIXED BIN(31):
DCL REC_READ	FIXED BIN(31):
DCL 1	FIXED BIN;
DCL LONG ZEROS	CMAR(5352) DEFIMED ALLHAVE_VARS:
DCL SHORT_ ZEROS	CMAR(180) DEFIMED OULY MAVE1;

```
    ON ENDFILE(DDIN)
    CEGIN;
        EOF = '1'B;
        EMD;
    ON ERROR BEGIN;
        OW ERROR STSTEM;
            PUT SKIP LIST(REC_READ,ALLHAVE_VARS.SU_ROT);
        END;
    READ FILE(DOIN) INTO (IMPUT);
    DO WHILE ('EOF):
        REC_READ = REC_READ + 1;
        LOWG_ZEROS = (5352)'01;
        SHORT_ZEROS = (180)'O';
        IMPUT.G1_FILLI = '0':
        IMPUT.G1_FILLZ = 00%:
        IMPUT.61_FILL3 = 00;
        IMPUT.G1_FILL4 = '0';
    ALLHAVE_VARS = INPUT, BY MAME;
    OWLY_MAVEI = INPUT, EY MAME;
    WRITE FILE(DDOUTI) FROM (ALLHAVE_VARS);
    WRITE FILE(DDOUTZ) FRON (ONLY_MNVE1);
    RECHRIT = REC_MRIT + 1;
    REND FILE(DOIN) INTO (IMPUT):
    END;
PUT SKIP IIST('RECORDS REND = 'ITREC_READ
        [(' RECORDS URITTEN = 'ITREC_WRIT);
END MEmNAVE;
//GO.DDIN DD DSN=CBO. HRCD.SIPP. YEAR8K. MAVE1.SRTD. MCOOI.DISP=SMR //CO.DOOUTI DD DSN=CEO. HRCD.SIPPR. HAVEI.WEH.MASOI.
// DISP=(NEH,CATLG,DELETE),
I/ WNIT=TAPE,DCB=(RECFM&FB,LRECL=5352,BLKSI2E=32112).
// LABEL=(1,SL,EXPOT=99000)
//CO.DDOUT2 DD DSN=CBO.NRCD.SIPP&%.MAVE1.OMLY.MASO1,
// DISP=(NEW,CATLG,DELETE).
// LNIT=TAPE,DCB=(RECFM=FB,LRECL=180,ULKSIZE=32760).
// LABEL=(1,SL,EXPDT=99000)
//*GO.DDIN SD DSN=CEO.MRCD.SIPP.YEAREK.WAVE1.SRTD.X200,DISPESHR
//"CO.DDOUT1 DO DSN=CRO.MICD.PE7.SIPPEK.CEOREC.MAVE1.X200,
//* DISP=(MEH,CATLG,DELETE).
//* UNIT=DISK,DEE=(RECFMMFR,LRECL=5352,BLKS12E-5352).
/f* SPACE=(TRK,(50,20),RLEE)
//MC0.DOOUT2 DO DEN=&&KESOUT2,
//* DISPaNEW,
```



```
1/* SPACE=(TRK,(50,20),RLEE)
```

```
//KESCBO6 JOB (65040CBO6,BOX-85),ASA1,CLASS=W,
// MOTIFY=KESCBO6, MSGCLASS=5 ,TYPRUN=SCAN
```



```
//STEP1 EXEC PLIXCLG,CLASS='E'.
// PARM.PLI='NX,NK,NOMAP,NOESD,ATTRIEUTES(SHDRT),MSTG,NOF'.
// PARM.LKED='MX,INCLUDE'.
// REGIOW.GO=2000K
//PLI.SYSINDD *
    (SUBSCRIPTRANGE):
INCOME: PROC OPTIONS(MAIN);
    DCL PIR POINTER;
    DCL ADDR EUILTIN;
    DCL SYSPRINT EXTERNAL FILE PRINT;
    DCL DDIN FILE RECORD INPUT;
    DCL DDOUT FILE;
    *)
    * INPUT STRUCTURE
```



```
    DCL 1 INPUT.
```



```
    3 SAMPLE_UNIT.
\begin{tabular}{|c|c|c|}
\hline FILLERI & CMar (5), & pent \\
\hline 4 SUID & CMar (9), & 1* 6 \\
\hline 4 Surot & PIC'91. & 104 15 \\
\hline 4 FILLER2 & CMAR(27). & pen 16 \\
\hline
\end{tabular}
```



```
3 MOUSEHOLD(4),
\begin{tabular}{|c|c|c|}
\hline 4 H_ADDID & CMAR (2), & 1** 43 \\
\hline 4 FILLER3 & CMAR(254). & 1* 45 \\
\hline & & 1** 299 \\
\hline MOUSEHOLD FILLER & CMar(26), & 1* 1067 \\
\hline
\end{tabular}
```



```
3 FAMILY(4).
\begin{tabular}{|c|c|c|}
\hline F_MMBR & CMar (2). & 1** 1091 \\
\hline 4 Fillers & CMar(112). & 101093 \\
\hline & & \%** 1205 \\
\hline
\end{tabular}
```



```
3 SuBFAM(4),
        4 SMMMBR
                    CMAR(2), p*1 1547 */
            4 FILlER1 CMAR(112), %10 1569 %/|
```



```
3 PERSOW.
\begin{tabular}{|c|c|c|c|}
\hline fillers & CMAR (2), & -* & 2003 \\
\hline 4 PP_MAVE & Plici. & P** & 2005 \\
\hline 4 PP_INTV & CMar(1). & F** & 2006 \\
\hline 6 PPMMIS(4) & CMAR(1), & 「** & 2007 \\
\hline 4 PPMMIS5 & CMar (1). & 1************) & 2011 \\
\hline 4 PPEENTRY & CMAR (2). & \%** & 2012 \\
\hline 4 PERNUM & CMAR(3). & 1** & 2014 \\
\hline
\end{tabular}
```

4 PP_MET(4)	Cuar (10),	10. 2097
4 FILLER6	Cmare(23).	10. 2057
$4 \operatorname{RRP}$ (4)	Cmar (1).	10. 2080
4 FILLER7	Cunk (13).	\%e. 2084
4 MS(4)	cmar (1).	101 2097
4 FILLER8	CMar(164),	Jell 2101
4 PP_EARU(4)	CMar (7).	10. 2265
4 FILLER9	Cuar (2068),	10. 2293
4 I28ant (6)	CMar (5).	10.10 561
4 Fillerio	CMAR(972):	10.4381
		10. 5353

- OUTPUT STRUCTURE: ALL VARIABLES REDUIRED IM TNE EXTRACT ARE
- PUT IN THE OUTPUT STRUCTURE. TME ARRAY DIMENSION IS PUT OULY *
- ON TME OUTPUT DECLARATION. AT TME assigmment, all variacles -
- eecone monthly.
- mote: take care mien assicwing variable trpes. jue pic format -
- IS USEFUL FOR CONCATEMATING IN A CMARACTER STRIMG BUT dOES
- not interpret megative signs properly. converting variables
- TO aNY MUMERIC TYPE IS VERY EXPEMSIVE AND IWTRODUCES PADDING* - PROBLEMS.
***! DCL 1 OUTPUT(4),

4 INDEX	PIC'991.	p** CREATED	VARIABLE */
4 SUID	CMar ${ }^{\text {(9) }}$,	106	*
4 H _NDDIO	CMar (2).	10. 43	-
4 F_MUMBR	CMar (2),	10. 1091	*
4 S.MUMBR	CMar (2),	J** 1567	*
4 PP_ENTRY	Cmar (2),	100 2012	-
4 PERNUM	Cmar (3).	10.1 2014	*
4 PP_INTW	CMar(1).	1** 2006	-1
6 PP M/MS	Cuares 1)	10. 2007	\cdots
6 PP MIS5	CMar (1).	10. 2011	\cdots
4 PP_MGT	CMar (10).	1* 2017	*
4 RRP	CMar (1).	10. 2080	-1
4 MS	Cmar (1).	1* 2097	*
4 PP_EARN	cmar (7).	10. 2265	-1
4 128̆MT	cman(5):	1014 4361	*

DCL EOF
DCL REC_HRIT
DCL REC_READ
DCL THROU_OUT $(9,4)$
DCL 1
DCL J
EIT IMIT('O'B):
FIXED EIN(31):
FIXED EIN(31):
FIXED BIN(31) IMIT(36)0):
FIXED EIM;
FIXED BIN:
OM EMDFILE(DDIN)
eEGIN:
EDF $=1918$;
END:
READ FILE(DDIN) INTO (INPUT);
00 wille (${ }^{\text {E E OFP) }}$
REC_READ $=$ REC_READ + 1;
CUTPUT = INPUT.EMMPLE_UNIT, EV MAME:
OUTPUT = IMPUT. WOUSEMOLD, EY MAME;
OUTPUT =IMPUT.FAMILY, BY MANE:
OUTPUT $=$ IMPUT.EMBFAM, EY MAME:
OUTPUT = IMPUT. PERSON, EY MAME;


```
    * recooe varjables.
    * THE MISSING NOTATION IN THE IMCOME FIELDS (-0009) CAUSES
    * PROBLEMS LATER UHEN SUMMING INCOME. RESET TMESE VARIABLES *
    - TO OS.
```



```
    00 1 = 1 T0 4;
        IF OUTPUT.IZ8AMT(I) = '-0009'
        THEN OUTPUT.I2&NM(1) = '00000':
    END:
```



```
    * CALCULATE MONTHLY IMDEX AND LRITE OUT TME PERSON-MONTM FILE *
```



```
    CALL WRITE_FILE;
    READ FILE(DDIN) INTO (INPUT):
    END:
PUT SKIP LIST('RECORDS READ = 'l|REC_READ):
PUT SKIP LIST('RECORDS WRITTEMI|RECNRIT):
PUT SKIP EDIT('RECORDS THRONN OUT')(A):
PUT SKIP EDIT('WAVE', 'ROT 1', 'ROT 2', 'ROT 3', 'ROT 4')
                    (5(A(8),X(2)));
DO 1= 1 10 9;
    PUT EDIT (1, (THRON_OUT(1,d) DO J = 9 TO 4))(SXIP,5(F(8),X(2)));
END:
MPAGE;
```



```
-WRITE_fILE:
    *
- OUTPUT A PERSON-MONTH FILE FROM THE RECTANGULAR mavE FILES.
**********************************************************************/
URITE_FILE:PROC;
    DCL YAVE PIC'9';
```



```
    * LOOP THROUGH MONTHS AND ASSICN IMDEX(I). *
    * FOR REFERENCE MONTHS THE FUNCTION IS:
    * INDEX(I) = (4*(WAVE-1)+i). *
    * FOR calander mONTMS THE fuNCTION IS: *
    * INDEX(1) = (4*(HAVE-9)+1) - (4-INPUT.SUROT). *
    * THIS EXAMPLE CREATES REFERENCE MONTHS. *
```



```
    DO I = 1 T0 4;
```



```
        - ADJUST THE HAVE VALUE FOR MISSED HAVES. *
        * ROTATION 3 IS MISSIMG LAVE 8. *
        * ROTATION 4 IS MISSING MAVE 2.
```



```
        SELECT:
            MHEN (INPUT.SUROTE3 AND INPUT.PP MAVE=9) MAVE= 8;
            MHEN (INPUT.SUROTEG AND IMPUT.PP_MAVE>1) MAVE=INPUT.PP_MAVE-1;
            OTMERHISE MAVE = INPUT.PP_MAVE;
        END:
```



```
        * CREATE A REFERENCE MONTM IMOEX.
        *
```



```
        IMDEX(1) = (4*(WAVE-1)+1);
```



```
            - ONLY OUTPUT MONTHS WITH A WEIGHT CREATER TMAN O.
```



```
            IF OUTPUT.PP_VGT(I) > '00000000000'
```

TMEM DO;
LRITE FILE(DDOUT) FRON (OUTPUT(I)):
REC_WRIT $=$ REC_MRIT $+1_{i}$ END:
ELSE TMROU_OUT (IMPUT.PP_MAVE,IMPUT.EUROT) = THRON_OUT (IMPUT.PP_MAVE, IMPUT.EUROT) + 1;
END; /* 1 LOOP" - /
END LRITE_FILE:
END INCOME;
//**TESTFILE*
//*CO.DDIM DD DSN=CBO.MRCD.SIPPEK. MVE1. WEW.X200,DIEPESHR
//* DD DSNECEO.MRCD.SIPP. TEARE4. WAVE3.X200,DIEP=SHR
//* DO DSN=CEO. MRCD.SIPP. YEAREK. MVEG.X200,DI SPESMR
//*GO.DOOUT DD DSN=E\&KESCBO6,DISP=(WEW,PASS),
1/* LWIT=DISK, DCB=(RECFM=FB,LRECL=69,BLKSIZE=6223),
//* SPACE=(TRK, (20,20),RLSE)
//*SORT EXEC DISCSORT,RCN=800X,COND=(9,LT)
//*SORT.SYSOUT DD SYSOUT=*
//*SORT.SORTIM DD DSN=LEKESCBO6,DISP=(OLD,PASS)
//"SORT.SORTOUT DD DSN=CEO. HRCD.PES.SIPPASA.MAVE1-9.FWX200, //** DISP=(WEW,CATLG,DELETE),
//* LUITIODISK,DCB=(RECFMEFE,LRECL=49,BLKSI2E=6223),
//* SPACE=(TRK, (20,20),RLSE)
//**ENDTEST**
//**BIGFILE**
//CO.DDIN DD DSN=CBO.MRCD.SIPPEL.HAVE1.MEW.MASO1.DISP=SNR
// DD DSN=CBO.HRCD.SIPPEK. HAVE2. WEH.MASO1,DISPESHR.
// UWITEAFF=DDIN
// DD DSN=CBO.MRCD.SIPP.TEARRK.MAVE3.MASO1,OISP=SKR, // . UNIT=AFF=DDIN
// DD DSN=CBO.MRCD.SIPP. YEAREL. MAVEL.MASO1,DISP=SHR. // UNIT=AFF=DDIM
$1 /$ DD DSH=CBO. MRCD.SIPP. YEAREK. MAVES.MASO1,DISPESMR. /I UNITEAFF=DDIM
// DD DSN=CBO.MRCD.SIPP. TEAREL. HAVEG.MASO1,DISP=SMR. $1 /$ UnITEAFF=DOIM
$1 /$ DO DSN=CEO.KRCD.SIPP. YEAREL. MAVE7.MUSO1,DISP=SMR. $1 / \quad$ UNITEAFF=DDIN
// DD DSN=CBO.MRCD.SIPP. YEAREK. MavEE.MUSO1,DISP=SMR, $1 /$ UNITEAFF=DDIM
// DD DSN =CBO.MRCD.SIPP. YEARRL. HAVEQ.MASOI,DISPESHR. $1 /$ UNITEAFF=DDIN
//GO.DDOUT DD DSN=2\&KESCEO6,DISP=(WEU,PASS),
I/ UWITETAPE, DCE=(RECFW=FE, LRECI: =49, BLKSIZE=32732),
// LABEL=(1,SL,EXPDT=99000)
//SORT EXEC DISCSORT.RGW=BOOK,COMD=(9,LT)
//SORT.SYSOUT DD SYSOUT $=*$
//SORT. SORTLKXO1 DO SPACE=(CYL, (20,20)), UnITESYSDA
//SORT. SORTUKO2 DO SPACE=(CYL, (20,20)), UNITESYSDA
//SORT. SORTUXO3 DD SPACE=(CYL, $(20,20)$), UWITESYSDA
//SORT. SORTUKO4 DD SPACE=(CYL, (20, 20)), UNIT
//SORT.SORTIM DD DSWalsKESCBO6,DIEP=(OLD, PASS)
//SORT.SORTOUT DD DSW=CBO. WRCD.PEB.SIPPASA. WVEI-9.FWO1.
// DISP=(WEW,CATLG,DELETE),
$1 / \quad$ LWITETAPE, DCE $=($ RECFMEFE, LRECL 249 , OLKSIZE=32732),
11 LaBEL=(1,SL,EXPOT=99000)

SORT FIELDS=(3,9,CM, $, 1,2, C N, A, 12,6, C M, A), S 12 E=168: 328$
//KESCBO6 JOB (65040CBO6, $20 X-85$),ASA2,CLASS=A,
// MOTIFY=KESCBO6,MSGCLASS=5 ,TYPRUW=SCAM

//SIPP EXEC PLIXCLG,CLASSE'E1, COMD=(5,LE).
// PARM.PLI = 'MX, MM, MOMAP, MOESD, ATTRIEUTES(SMORT),MSTE, MOF'.
// PARM.LKED='NX'.
// REGION.GO=2000K
//PLI.SYSIN DD*
(SUBSCRIPTRANGE):
EXTRACT: PROC OPTIONS(MAIN):
DCL 1 FAM_ARRAY(30),
2 PERSON_MONTH,

4 IMDEX	PIC'991.	prem	created	VARIABLE */
4 SUID	CMAR(9).	Prem	6	*
4 M_ADDID	CMAR (2).	ptay	43	*
4 F_MUMBR	CHAR (2).		1091	*
4 E_MUMBR	CMAR(2).	frim	1547	*
6 PP_ENTRY	CMAR(2).	pry	2012	-1
4 PERNUM	CMAR(3).	f*	2014	\bullet
4 PP_INTV	CMAR (1).	Prem	2006	*
4 PP_MIS	CMAR (1).	\%	2007	*
4 PP_MIS5	$\operatorname{CMAR}(1)$.	\%**	2011	*
4 PP-NT	CMAR(10).	j10	2017	\bullet
4 RRP	CMAR(1).	$1{ }^{10}$	2080	\pm
6 MS	CMAR(1).	ptict	2097	-1
4 PP_EARN	PIC'(7)91.	1**	2265	*
4 I28AMT	PIC'(5)91.	1**	4361	\bullet

2 MEU VARS
3 FAM_CHILD_SURPORT PIC'(7)9'.
3 FAMEEARNING PIC'(7)91:
XPAGE;
DCL DDIN FILE RECORD IMPUT:
DCL DDOUT FILE RECORD OUTPUT:
DCL EOF DCL FAM_CONT FIXED BIN IMIT(0):
DCL FAMILY_ID
DCL FAMILY_MMBER
DCL MBOUND cmar(15): FIXED BIN(31) IMIT(0):
EUILIN:
OCL 1 FIXED BIN:
DCL K FIXED EIN:
DCL K FIXED EIN:
DCL LAST_FANILY CMAR(15):
DCL REC_READ FIXED EIW(31) IWIT(0):
DCL REC_WRIT FIXED EIM(31) IMIT(0):
DCL STSPRIMT EXTERMAL FILE PRIMT:
ON ERROR BEGIN:
OU ERROR SYSTEM:
PUT EKIP DATA(REC_READ. FAN_COMT, 1, d, K);
END:

ON ENDFILE(DDIN)

```
BEGIN;
    EOF = '1'8;
    REC_READ = REC_READ - 1;
END:
```

```
CALL READER;
FAM_COUNT = 0; PE DON'T MOVE FIRST RECORD */
CALI RESET_FAN_ARRAY:
DO WHILE (~EOF):
```



```
    * IF TME CURRENT PERSON IS IM A WEL FAMILY TWEM PROCESS
    - THE FAMILY IN THE RECORD EUFFER.
    ************)
    *)
    IF (LAST_FAMILY A= FAMILY_ID OR FAM_COUNT=30)
        TMEN DÖ;
            CALL PROCESS_FAMILY:
            CALL RESET_FAM_ARRAY;
        END:
```



```
    - READ MEXT PERSON INTO TME IMPUT OUFFER.-
```



```
    CALL READER;
END;
\rhoM...--MMILE AEOF-...**/
```



```
* at end OF file. process tme last family.
*
```



```
CALL PROCESS_FAMILY:
```



```
* PRINT OUT RUN SUMMARY *
```



```
PUT SKIP LIST('RECORDS READ: '||REC READ);
PUT SKIP LIST('RECORDS WRITTEN: 'IfREC_VIIT);
PUT SKIP LIST('MMAER OF FANILIES: '|{FANILY_MMMER);
```

EPAGE;

* READER: READ IN A MEN PEREON AND ASSIEM TMEIR ID.
- EACH PERSON IM TME FAMILY IS PUT IMTO A FAMILY ARRAY.
- TO PUT SUBFAMILIES IMTO EEPARATE UNITS, ADO 8_MMBR THE FAMILY ID.

READER: PROC;
FAM_COUNT = FAN_COUNT • 1:
READ FILE(DOIN) IMTO(PERSON_ NONTM (FAM_COUT)):
FAMILY_ID = EUID(FAM_COUNT)
\{IMDEX(FAM_COMT)
M_ADOID(FAM_EONT)
if_mynar(FAN_count):
REC_READ = REC_READ * 1;
END READER:


```
* RESET_FAM_ARRAY: EACM PERSON IS READ INTO THE FAMILY ARRAY *
* INCREMENTALLY. THE FIRST PERSON IN EACH MEW
FAMILY IS THE LAST PERSON INPUT INTO THE ARRAY.
    THAT PERSON MEEDS TO PE MOVED TO THE FIRST ARRAY -
* LOCATION AT TME BEGINNING OF EACN FAMILY SETUP:,
```



```
RESET_FAM_ARRAY: PROCEDURE;
    FAM_ARRAY(1) = FAM_ARRAY(FAM_COUNT+1);
    FAM_COUNT = 1;
    LAST_FAMILY = FAMILY.ID;
END RESET_FAM_ARRAY;
```



```
- PROCESS FAMILY:
*
- PROCESS EACH RECORD IN TME EUFFER TO AGERERATE FANILY IMCOME
- EY INCOME sOURCE.
* LRITE OUT EACN PERSON HITH THE NEW PAMILY vARIABLES ATTACNED. *
```



```
PROCESS_FAMILY: PROCEDURE;
    FAM_COUNT = FAM_COUNT - i;
    FAMILY_MUMBER = FAMILY_MUMRER + 1;
```



```
    - INITIALIZE FAMILY VARIABLES TO O.
        *
    * lOOP ThROUGh all pEOple In the family to calculate tme family *
    - VARIABLES.
        *
```



```
    MEW_VARS = 0;
    DO I = 1 TO FAM_COUNT:
        FAM_CHILD_SUPPORT(1) = FAM_CHILD_SUPPORT(1) + I2&NNT(1);
        FAM_EARNING(1) = FAM_EARNING(1) & PP_EARN(1);
    END; /* ! LOOP */
```



```
    * COPY UNIT INFORMATION FROM THE FIRST PERSON IN THE UNIT TO *
    - EVERYONE ELSE IN THE UNIT. -
```



```
    DO 1 = 2 TO FAM_COUNT;
    NEW_VARS(1) = NEW_VARS(1);
    END:
    /*****************************************************************************)
    * vRITE OUT EACH PERSON WITH THE MEW FAMILY VARIABLES ATTACMED. *
```



```
    DOI = 1 TO FAM_COUNT;
    URITE FILE(DDOUT) FROM(FAM_ARRAY(I));
        REC_NRIT = REC_WRIT + 1;
    END;
END PPSYEESS_FAMILY:
ENO EXTRACT:
/f*TESTFILE**
/1*CO.DDIN DD DSN=CBO.NRCD.PE8.SIPPASA.MAVE1-9. FMX200,DISP=SNR
//*CO.DDOUT DD DSN&&&FANVARS.
/F* DISP=(NEW,PASS).
//* UNIT=0ISK,DCE=(RECFM=FB,LRECL=63,BLKSI2E=6174).
//* SPACE=(TRK, (50,20),RLSE)
//*SORT EXEC DISCSORT,REN=8OOK,COMD=(9,LT)
//"SORT.SYSOUT DO SYSOUT=*
//*SORT.SORTIN DD DSN=&&FAMVARS,DISP=(OLD,PASS)
//*SORT.SORTOUT DD DSN=CBO.HRCD.P88.SIPPASA.MAVE1-9.PMX200,
//* DISP=(NEM,CATLG,DELETE),
//* UNIT=DISK,DCB=(RECFM=FB,LRECL=63,BLKSI2E=6174),
//* SPACE=(TRK,(20,20),RLSE)
//**EMDTEST**
```


//CO.DDIM DD DSN=CEO. MRCD. PEB.SIPPASA.MVET-9.FWO1.DISP=SMR //CO.DDOUT DD DSMaERFANVARS.
11 DISP=(WEU,PASS).
11 UnITETAPE,DCE=(RECFM=F3, LRECL 63, BLXSI2E-32760). 11 LABEL=(1,SL,EXPOT=99000)
//SORT EXEC DISCSORT,REM=AOOK,COMD=(9,LT)
//SEORT.SYSOUT DO SYSOUTs*
//SORT.SORTLKO1 DO EPACE $=(C Y L,(50,50))$, UMITESYEDA
//SORT. SORTIKO2 DO EPACE=(CYL, $(50,50)$), (WITESYEDA
//SORT. SORTUKOS DO EPACEE(CYL, $(50,50)$), UNITESYEOA
//SORT. SORTUKOK DO EPACE =(CYL, $(50,50)$), UWITESYEDA
/1SORT. SORTLKOS DD SPACEE(CTL, $(50,50)$), (WITESYEDA
//SORt. SORTLKO6 DO SPACEz(CTL, (50,50)), UWITESYEDA
//SORT. SORTUKO7 DO SPACE=(CYL, (SO,50)), (WITESYEDA
//EONT. SORTLKO8 DO EPACE=(CYL, (50,50)), UNITESYEDA
//S0RT. SORTHKO9 DO EPACE=(CYL, $(50,50)$), UNITESYSDA
//SORT. SORTUK10 DD SPACE=(CYL, $(50,50))$, UNIT 5 SYSDA
//SORT. SORTIN DD DSNaLEFANNARS,DISP=(OLD,PASS)
//SORT.SORTOUT DD DSWaCEO. MRCD.PES.SIPPASA. HAVE1-9.PMO1.
$1 /$ DISP =(NEH,CATLG,DELETE),
11 UWITETAPE,DCE=(RECFM=FE,LRECL $=63$, BLKSI2E=32760).
$1 /$ LABEL=(1,SL,EXPDTa99000)
1/**ENDE1G**

/1*** SORT EY SUID,PP_EMTRY, PERMMA, IMDEX ETE:
/f*ete CUTPUT IS A PERSON MONTM FILE
/ / "
//SORT.SYSIM 00 *
SORT FIELDS: $(3,9, C H, A, 18,5, C H, A, 1,2, C H, A), S 12 E=168328$

```
//KESCBO6 JOB (6554OCBO6,EOX-85),ASAS,CLASS=B,
```



```
// PARM.PLI I INX,MM,NOHAP, NOESD,ATTRIIUUTESESMORT),NSTG,NOF '.
// PARN.LKED='NX,INCLUDE'.
// REGION.GO=2000K
//PLI.SYSIN DD *
    (SUBSCRIPTRANGE):
EXTRACT: PROC CPTIOMS(MAIN);
DCL }1\mathrm{ PERSON_ARRAY(37),
    2 PERSON_MONTH.
        & INDEX PICI99'. PN CREATED VARIABLE */
        4 SUID CMAR(9). follol
        4_ADDID CMAR(2). P* 43 % |
        4F_MUMBR CMAR(2). /T: 1091 %
        G S_NLMBR CMAR(2). Fe% 1547 % |
        4 PP ENTRY CMAR(2). F
        4 PERNUM CMAR(3). F* 2014 |
        4 PP_INTVW CMAR(1). /
        4PP_MIS CMAR(1). F
        4 PPM1S5 CMAR(1). /mak 2011 /
        4PP_WGT CMAR(10). /** 2017 *
        4RRP}\operatorname{CMAR(1). /f 2080 /f
        4 MS CMAR(1), PICI(7)01 PEN 2097 &
        4 PP_EARN PIC'(7)91, %
    MEY VARS PIC'(5)9'. P** 4361 *
    2 MEW_VARS,
    3 FAMM_CHILD_SUPPORT PIC'(7)91
    3FAM_EARNING PIC'(7)9':
\begin{tabular}{|c|c|}
\hline OCL DDIN & FILE RECORD INPUT: \\
\hline DCL DOOUT & FILE RECORD OUTPUT: \\
\hline DCL EOF & EIT IWIT('O'B): \\
\hline DCL PER_COUNT & FIXED BIN INIT(0): \\
\hline DCL PERSON_10 & CMar(14): \\
\hline DCL PERSON_MNBER & FIXED EIN(31) IMIT(0): \\
\hline DCL MEOUND & CUITIM: \\
\hline DCL I & FIXED BIN: \\
\hline DCL J & FIXED BIN; \\
\hline DCL K & FIXED BIN: \\
\hline DCL. LAST_PERSOW & Cuar (14): \\
\hline DCL REC_READ & FIXED BIM(31) IWIT(0): \\
\hline DCL SYSPRINT & EXTERMAL FILE PRIMT: \\
\hline
\end{tabular}
ON ERROR EEGIM:
    OM ERROR SYSTEM;
        PUT SKIP DATA(REC_READ, PER_COUNT, I, d, K):
END:
ON ENDFILE(DOIN)
    EEGIN;
    EOF = '1'8;
```

```
    REC_READ = REC_READ - 1;
END;
CALL READER;
PER_COUNT = 0; P" DON'T MOVE FIRST RECORD */
CALI RESET_PERSON_ARRAY;
dO luile (aEOF):
    f********************************************************************)
    - if tME Currewt persow is im a mew person tuEN mrocess
    - TME PERSON IN TME RECORD EUFFER.
```



```
    IF (LAST_PERSON ^= PERSON_ID OR PER_COUNTES7)
        THEN DOD;
            CALL PROCESS_PERSON;
            CALL RESET_PERSON_ARRAY:
        END;
```



```
    - READ MEXT PERSON INTO TME IMPUT EUFFER.
    *****************************************************************/
    CALL RENDER;
END; /*...-WHILE `EOF....*//
jP
* at end of file, process the last person.
*******************************************************************/
CALL PROCESS_PERSON;
```



```
- PRINT OUT A RUN sUMMARY.-
* PRINT OUT A RUN SUMMRY. 
PUT SKIP LIST('RECORDS READ: '||REC READ);
PUT SKIP LIST('MMNBER OF PEOPLE: 'ITPERSON_MMMER):
EPAGE;
```



```
* READER: READ IN A MEW PERSON aND ASSICN TMEIR ID. . *
- EACH PERSON IS PUT INTO A PERSON ARRAY.
```



```
READER: PROC;
    PER_COUNT = PER_COUNT + 1;
    READ FILE(DDIN) IMTO(PERSON_ARRAY(PER_COUNT));
    PERSON_ID = SUID(PER_COUNT)
                                    |{PP_ENTRY(PER_CONNT)
                                    |PERMMM(PER_COUNT);
    REC_READ = REC_REND + 1:
END READER:
```



```
- RESET_PERSON_aRRAY: EACH PERSON IS READ IMTO TME PERSOW aRRAY *
- INCREMEMTALLY. TME FIRST PERSON RECODD FON EACM MEM -
* FERSON IS THE LAST PERSON IWMUT IMTO TME ARAaY. *
* TMAT PERSON mEEDS TO EE mOVED TO TME FIRST mmar
- LOcation at TME EEGImNImG OF EACN FEREOM gETLP.
```



```
RESET_PERSON_ARRAY: PROCEDURE;
    PERSON_ARRAY(1) : FERSOM_ARRAY(PER_COUNT+1);
    PER COUNT = 1:
    LAST__PERSON = PERSCN_ID;
END RESET_PERSON_MRRAY:
```- PROCESS_PERSOW-
- PROCES̄S EACH RECORD IN TME EUFFER. -
THIS MCOULE IS UHERE YOU WOULD DO THE AMALYSIS. -
PROCESS_PERSON: PROCEDURE;
 PER_COUNT = PER_COUNT - 1;
 PERSON_MUBER \(=\) PERSON_MMBER +1 i
 END:
END PROCESS_PERSON:
END EXTRACT:
//**TESTFILE**

//**ENDTEST***
//**EIGFILE**
//EO.DDIN DD DSN=CBO.MRCD.PE8.SIPPASA.WAVE1-9.PMO1,DISP=SMR
//**ENDBIG**
```

//KESCBOS JOB (65040CBO6,00x-85),ASASAS1,CLASSEA,
// MOTIFY=KESCBO6,MSGCLASS=5 ,TYPRMM=SCAM

```

```

//SASCBK EXEC SAS,CLASS='E',REGION=5000K,COND=(5,LE)
/MNORK DO UWITESYSDA,SPACE=(CYL,(100,100))
//**TESTFILE**
//*DDIN DD DSN=CEO.MRCD.SIPPE4.WAVEI.WEW.X200,DISP=SHR
//* DD DSN=CBO.MRCD.SIPP.YEAR\&K.WAVE3.X200,DISP=SNR
//* DD DSN=CEO.MRCD.SIPP.YEARRK.WAVE4.X200,DI SPESMR
//\#DDOUTG DO DSW=1RKESCB06.
//* DIEP=(WEW,PASS).
/1* WWIT=DISR,SPACE=(TRK,(20,20),RLSE)
//*DDOUT2 DD DSN=CEO.HRCD.PE\&.51PPASA.WAVE1-9.8ASFMX,
//* . DISP=(NEU,CATLG,DELETE).
//* UNIT=DISK,SPACE=(TRK,(20,20),RLSE)
//**ENDTEST**
//**EIGFILE**
//DDIM DD DSN=CEO.MRCD.SIPP\&\&.MAVEY.WEW.MASO1,DISP=SMR
|D DO DSNECBO.MRCD.SIPPEK.HAVER.MEM.MASO1,DISP=SHR,
// UWITEAFF=DDIN
/1 DO DSN=CEO.NRCD.SIPP.YEAREK.MAVE3.MASO1.DISP=SHR,
/1 UNITEAFFEDDIM
// DO DSN=CEO.NRCD.SIPP.YEAREH.HAVE4.WASO1.DIEP=SNR,
// UnITzAFFapDIN
// DO DSN=CRO.MRCD.SIPP. FEAREK.HAVE5.MMSOT.DISP=SMR,
// UNITEAFFEDOIN
|/ DO DSN=CEO.MRCD.SIPP.TEAREK.HAVE6.MASO1.DISP=SHR,
// UNITEAFFEDDIM
|D DO DSNECBO.MRCD.SIPP.TEARQK.MAVE7.mASOI,DISPESMR,
// UNITEAFF=DDIN
|/ DO DSW=CBO.MECD.SIPP.TENMRK.MMVE8.MASO1.DISPESMR,
// UNIT=AFFEDDIN
// DO DEM=CRO.NRCD.SIPP.YEAREK.MNEO.MASOR.DISP=SMR.
// UNITEAFFEDOIN
/10DOUTI DD DSWA\&RKESCROG,DISP=(MEW,DASS).
// UNIT=TAPE,LABEL =(1,SL,EXPOT=99000)
1/SORTHKO1 DO EPACE=(CYL, (20,20)),UNIT=SYSDA
/1SORTLK02 DO EPACE=(CFL,(20,20)),NWITESYEDA
//SORTMKOS DO EPACE=(EVL,(20,20)),CMITESYEDA
//SORTLKOK DO SPACE=(CYL, (20,20)), (WITESTEDA
/100OUT2 DO DSN=CRO.MRCD.PES.SIPPASA.MMVE1-9.EASFMOY,
|/ DISP=(NEW,CATLE,DELETE).
|/ LNITETAPE,LAMEL=(1,5L,EXPOT=F9000)
1/**ENNDBIG**
//SYSIN DD*
OPTIONS MPRIMT SMMOLEEN MOCIC MACROCEW MOCEMTER;

```

```

* RECODE MISSING NOTATION (-0009) FRON INCOME FIELDS-

```

```

\#MACRO RECODE;
20O I = 1 XTO 4;
IF I2EAMTEI = --0009'
TMEN 128AMTEI = '00000':
YEND:
ZIEND:

```

```

- MRITIER:
*
- OuTPUT a person mowth file fron tME lave filE. *
* LOOP TMROUCH MONTHS AND ASSIEN IMDEX(I)
- FOR REFERENCE MONTUS THE FUNCTION IS:
IMDEX(1) = (4*(MAVE-1)+1)
FOR CALANDER MONTHS THE FUNCTION IS:
INDEX(1) = (4*(HAVE-1)+1) - (4-SUROT)
* THIS EXAMPLE CREATES REFERENCE MONTMS
* 

```

```

gMACRO WRITER;
200 1 = 1 8TO 4;

```

```

        * ADJUST THE MAVE VALUE FOR MISSED MAVES. -
    * KOTATION 3 IS MISSIMG MAVE 8 *
    * ROTATION 4 IS MISSING WAVE 2 *
    ```

```

    SELECT;
            UHEN (SUROT=3 AND PP_MAVE=9) MAVE= 8;
            WMEN (SUROT=G AND PP-MAVE>1) MAVE=PP MAVE-1:
            OTHERUISE UAVE = PP_WAVE;
        END:
    ```

```

    - CREATE REFERENCE MONTM IMDEX *
    ```

```

        INDEX = (4*(WAVE-1)+21);
    ```

```

    - ONLY CUTPUT mONTMS HITM A POSITIVE vEIGHT
        -
    ```

```

    IF NGTEI > '0000000000'
        TMEM DO;
            MADDID = MADDIDE1;
            FMMHER = FMMMBREI;
            EMMMBR = SMUMEREI;
            MIS E MISEI;
            WCT E MOTEI:
            RRP = RRPL1;
            MS = MERI;
            EARN = EARMB1:
            128AMT = 128aMTEI;
            OUTPUT:
        END; /* WEIGHT CNECX */
    MEND:
    MMEND WRITER;

```

```

//KESCBO6 JOB (65040CBO6,BOX-85),ASASAS2,CLASSEE,
// MOTIFY=KESCBO6,MSCCLASS=5 ,TYPRLM=SCAN

```

```

//*!
//*I PROJECT: 1989 ASA UINTER CONFERENCE EXANPLE I
1/*[ ANALYST: ENITH T
/1* PROCRANMER: SNITH It
//*! DATE: 19/88 [/*
//*! !*
H*! DESCRIPTION: IMPUT IS FROM ASASASI. I*
//*I CALCULATE FAMILY VARIABLES AND OUTPUT PERSON I*
//*! RECORDS UITH TME MEH FAMILY VARIABLES ATTACMED.I
I/EI SORT BY PERSON IMDEX TO CREATE A PERSON NOWTA I*
//=\ SORTED FILE.

```

```

//SASCBK EXEC SAS,CLASS='*',REGION=5000R,COND=(5,LE)
//MORK DD UNIT=SYSDA,SPACE=(CYL,(100,100))
//DDIN DD DSN=CBO.HRCD.PR8.SIPPASA.MAVE1-9.EASFIXX,0ISP=SWR
//DDOUT1 DD DSN=\&\&KESCBO6,
// UWIT=DISK,SPACE=(TRK,(20,20),RLSE).
// DISP=(MEW,PASS)
//DDOUT2 DD DSN=CBO.NRCD.P88.SIPPASA.WAVE1-9.sASPNX,
// DISP=(NEW,CATLG,DELETE).
// UNIT=DISK,SPACE=(TRK, (20,20),RLSE)
//SYSIN DD *
OPTIONS MPRINT SYMBOLGEN MLOGIC MACROCEN;
OPTIONS NOCENTER;

```

```

* READER: INCREMENT THE FAMILY COUNTER AND ASSIEN EACN vARIABLE
*     - TO THE APPROPRIATE arrar imDEX.
* THE FAMILY ID IS EUIDIIINDEXITMADDIDITFMMMBER.
* UITH THIS ID, RELATED EUBFAMILIES ARE INCLUDED UITM TME
* PRIMARY FANILY.

```

```

mMACRO READER;

```
FAMCOUNT \(=\) FAMCOUNT +1 :
RECREAD \(=\) RECREAD +1 ;
AINDEX(FAMCOUNT) = IMDEX:
ASUID (FAMCOUNT) = SUID:
AHADDID (FAMCOUNT) = MADDID:
AFNUMBR (FAMCOUNT) = FMUNBR;
ASNUABR (FAMCOUNT) = SMUMBR:
AINTVI(FAMCOUNT) = IMTVA;
AMIS(FAMCOUNT) = MIS:
MISI(FAMCOUNT) MISI:
AENTRY(FAMCOUNT) = ENTRY:
APERMUN(FAMCOUNT) E PERMUM;
AMET(FAMCOUNT) = WGT:
ARRP (FAMCOUNT) = RRP:
AMS(FAMCOUNT) =MS:
AEARN (FAMCOUNT) E EARN:
AI2AMMT (FAMCOUNT) \(=128\) MT:
CIMDEX = AIMDEX(FAMCOUNT):
FAMID=ASUID(FAMCOMT)II
 CIMDEXIt
 AHADDID (FAMCOUNT)I!
 AFMURBR (FAMCOUNT):

```

* PROCESS: lo0p tMROUGN ALL PEOPLE IN TME FANILY AND ADD lP
* EARNINGS AMD CWILD SIPPORT.
* LIITE OUT EACN PERSON recomd vitM tME mEu faMILY
- varIABLES ATTACMED.

```

```

\#UCRO PROCESS;
FAMCOUNT = FAMCONT-1;
DOI = I TO FNMCOUNT;
F_EARM = F_EARN + AEARN(1);
F_I284 = F_I28A + Al22MNT(1):
EmD;
DOI = 1 TO FAMCOUNT;
IMDEX = AIMDEX(I) :
suID = ASUID(1) :
MNDDID = AMNDDID(1):
FMMMER= AFMMMBR(1):
SMMmbR= ASMUNBR(I);
INTVN = AINTWN(1):
MIS = MMIS(1);
MISI = MHISI(I):
ENTRY = AENTRY(1):
PERNUM= APERNUM(1);
NGT = ANGT(I)
RRP = MRRP(1):
MS = MMS(1)
EARM = AEARN(1) :
128aMT= Al28ANT(1):
OUTPUT:
RECWRIT = RECURIT * 1;
EMD;
MMEND PROCESS;

```

```

* RESET: TME LAST PERSON READ IM IS TME FIRST PERSON IN TME MEXT-
- FAMILY. MONE TNE LAST PERSON'S IMFOMATICN TO TME FIRST *
* array imdex. assicm tMe last family imoex to twe mew
* fanily. reset tMe fanjly counter to I amd family
- variables to 0
**********ables 000. (1)
MMACRO RESET;
I = FNMCOWNT + 1;
AINDEX(1) = AINDEX(1) :
ASUID(1) = AsuID(1):
AMADDID(1) = AMADDID(1) ;
AFMMNBR(1) = AFMMMER(1):
Asmungr(1) = Asmumen(1) :
AIMTVM(1) = AIWTW(1) :
MMIS(1) = MOIS(1)
anisi(1) = anisi(1) :
AEMTAY(1) - aEMTRY(1) :
apErmum(1) = arermme(1):
ANGT(1) = MNGT(1) :
\operatorname{argp}(1) = MRRP(1):
Mus(1) = Mus(1) :
AEARM(1) = AEARN(1):
A12\&AMT(1) = AlZ\&aMT(1) :
F_EARN = 0;
F_I28A = 0;
LASTFNM = FANID;
fancouvT = 1;
qNEMO RESET:

```
```

DATA DDOUTI.PEOPLEE
KEEP= INDEX SUID
SMUMBR INTVN
ENTRY PERMM
F_I28A EARN:
arrar almDEX (22) INDEX1 -ImDEX22;
arRar ASUID (22) \& }9\mathrm{ EUIDI -ENID22;
ARRAY AMADOID(22) \& }2\mathrm{ MADDIDI-MADOID22;
ARRAY AFMMMBR(22) \& 2 FMMMBR1-FMMMBR22;
ARRAY ASMMMRR(22) \& 2 SMMBRI-SIMMBR22;
ARRAY AIWTWN (22) \& I IMTWI -IMTURZ;
array aNIS (22) s% MIS1 -WIS22;
arRar aNISI (22) ह% }1\mathrm{ MISI1 -NISI22;
arRAY AEMTRY (22) \& 2 EWTRYY -EMTRY22;
arRAY APERMUM(22) \& }3\mathrm{ PERMUM1-PERMUNZ2;
arRaY AMGT (22) s10 MGT1 - wot22;
aRRAY ARRP (22) \& }1\mathrm{ RRP1 -RRP22;
arRar aMS (22) si MS1 -MS22;
ARRAY AEARN (22) EARN1 -EARNZ2;
ARRAY AI28AMT(22) I28AMT-128MMT22;
LENGTH CImDEX s2.;
LENGTH FAMID \$15.;
LEMGTH LASTFAM \$15.;
RECREAD = 0;
RECWRIT = 0;
FAMCOUNT = O;
SET DDIN.PEOPLE EMDIEOF;
GREADER;

| MADDID | FMMMBR |
| :--- | :--- |
| MIS | MISI |
| MGT | RRP |
| I2ANTT | F_EARM |

        EARN1 -EARN22;
        FmMmbR
        MISI
        F_EARM
    ```

```

    F_EARN = O;
    F_128A = 0;
    LASTFAMZFAMID;
    DO MHILE(`EOF);
    |**********E*************************************************
    - If the Current person is in a meu family tmen process
    - tME fanill in the arrays.
        *
        *
        *F
        IF LASTFAM ^= FAMID OR FAMCOUNT = 22
            THEN DO;
                2PROCESS;
                YRESET;
            END:
    ```

```

    - READ NEXT PERSON INTO ARRAYS
    ************************************************************/
    SET DOIN.PEOPLE (FIRSTOBS=2) EMD=EOF;
    MREADER;
    END:
FAMCOUNT = FAMCOUNT + 1;
XPROCESS;
PUT RECREAD= RECINITs:
STOP;
PROC SORT DATA=DDOUT1.PEOPLE OUT=DDOUT2.PEOPLE;
BY SUID EMTRY PERMMM IMDEX;
PROC PRINT DATA=DDOUT2.PEOPLE (085=100);

```
```

//KESCBO6 JOS (65040CE06,00X-85),ASASAS3,CLASS=E.
// WOTIFY=KESCR06,MSECLASS=5 .TYPRUN=SCAM

```

```

/f* PROJECT: 1909 ASA MIMTER CONFEREMCE EXAMPLE I*
/f*! amALYST: EMITM . F
//*! PMOCRAMNER: ENITM I*
1/*
DATE: 11/88
//*I DESCRIPTIOM: IMPUT IS FROM ASASASZ.
/f*I PRINT OUT A 36 MONTM LIST OF PERSOM EARWINGS
//E! AND FAMILY EARMINGS.

```

```

//SASCBK EXEC EAS,CLASS='*',REGION=5000K,COMD=(5,LE)
//NORK DO UWITESYSDA,SPACE=(CYL, (100,100))
/IDDIN DO DSN=CEO.MRCD.PES.SIPPASA.MAVE1-9.SASPHX,DISP-SHR
//SYSIM DD *
OPTIONS MPRINT ETMBOLEEN MLOCIC MACROREN MOCEMTER;

```

```

* READER: INCREMENT TME PERSON COUNTER ANO ASSIEM EACN vARIABLE -
- TO TME appROPRIATE aRRAY ImDEX.
TME PERSON ID IS EUIDITEMTRYIIPERMMM.

```

```

mMACRO READER:
PERCOUNT = PERCOUNT + 1:
RECREAD = RECREAD + 1;
AIMDEX(PERCOUNT) = IMDEX;
ASUID(PERCOUNT) = EUID;
AMADDID(PERCOUNT) = MADDID;
AFMUMBR(PERCOUNT) = FMUMBR;
ASMUMBR (PERCOUNT) = SMMMER;
AIMTWU(PERCOUNT) = IMTVW;
AMIS(PERCOUNT) = MIS;
AMISI(PERCOUNT) E MISI;
AENTRY(PERCOUNT) = ENTRY;
APERMUM(PERCOUNT) = PERNUM;
AMET(PERCOUNT) = WET:
ARRP(PERCOUNT) = RRP;
MMS(PERCOUNT) E MS;
AEARN(PERCOUNT) = EARN;
A12\&AMT (PERCOUNT) = 128AMT:
AF_EARN(PERCOUNT) = F_EARN;
AF_128A(PERCOUNT) = F_12\&A;
PERID=ASUID(PERCOMNT)TI
AENTRY(PERCOUNT)II
APERMM(PERCOUNT):
gMEWD READER;

```

```

* PROCESS: loop TMROUCN EACN PERSON IM TME ARRAYS AMD EMMMARIZE
- TME DATA.

```

```

MMERO PROCESS;
PERCOUNT = PERCOUNT-1:
PERINDX = PERINOX * 1:
DO I = 1 TO RERCOUNT:
IMDEX = AIMDEX(I):
EID = ANJID(1) :
MADDID= AMADOID(1):
FMMABR= AFMMMR(I):

```
```

    SMMMBR= ASMLMBR(1);
    INTWM = AINTWM(1) :
    MIS = AMIS(I)
    MISI = MMISI(I) :
    EMTRY = AEMTRY(I):
    PERMUM= APERMUM(1):
    WGT = ANGT(I) :
    RRP = ARRP(I) :
    MS = AMS(1) :
    EARN = MEARN(1):
    I28AMTE AI2&AMT(I):
    F_EARN= AF_EARN(1):
    F_128A= AF_128A(1):
    OITPUT:
    RECURIT = RECURIT + 1;
    EMD;
    MREND PROCESS;
/*E*************************************************************

* RESET: THE LAST PERSON READ IN IS A MEU PERSON. MOVE TME LAST
* PERSOW'S INFORMATION TO THE FIRST ARRAY IMDEX. ASSIGN *
* tME LAST PERSON IMDEX TO TME WEU PERSON. RESET TME *
- PERSON COUNTER TO 1.

```

```

mUCRO RESET:
I = PERCOUNT + 1;
AINDEX(1) = AImDEX(1) :
ASUID(1) = ASUID(I) :
AMADDID(1) = AMADDID(1);
AFMMMBR(1) = AFMUMBR(1):
ASNUMBR(1) = ASMMMBR(1):
AINTM(1) = AlNTW(1) :
AMIS(1) = MMIS(1)
NMSI(1) = MMISI(1) :
AEMTRY(1) = AEMTRY(1) :
APERMM(1) = APERMHM(1) :
AMGT(1) = AMGT(1):
ARRP(1) = ARRP(1) :
MMS(1) = aMS(1) ;
AEARN(1) = AEARN(1) :
Al28AMT(1) = Al284MT(1) :
AF_EARN(1) = AF_EARN(1) :
AF_128A(1) = AF_128A(1):
LASTPER = PERID;
PERCOUNT = 1;
mNEND RESET;
data people(
KEEP= IMDEX
suld
EIMmBR IITW
EMTRY PERMM
MS_Izen EARN FERIMDX):
arrar almdex (32) ImDEXI -ImDEX32;
arRaY ASUID (32) \& }9\mathrm{ sulD1 -sulD32;
arRar amadDID(32) \& }2\mathrm{ MADOID1-MMDDID32;
ARRAY AFMMMRR(32) \& 2 FMMMRRI-FMMMER32;
arkar ASMMBR(32) \& 2 smmesi-smmmer32;
ARRAY AINTVN (32) \& I IWTWHI-INTWB2;

```
```

    arRar auis (32) &1 misi -NIs32;
    aRRAY MMISI (32) S }1\mathrm{ MISII -MISI32;
    aRRAY AEMTRY (32) & 2 ENTRY1 -EMTRY32;
    aRRAY APERMM(32) & 3 PERMMM1-PERMNK32;
    amRaY aNGT (32) $10 WETI -MET32;
    arRar aRRP (32) 8 }1\mathrm{ Rapi -RRP32;
    arRar WNS (32) S I mS1 -MS32;
    aRRAY AEARN (32) EARN1 -EARU32;
    ARRAY AI2EAMT(32) I28NMT1-122NMT32;
    ARQA:% AF EARN(32) FEARM1-FEEARN32;
    arRaY AF_I28A(32) F_I28A1-F_I22N32;
    LEMGTK PERID 815.:
    LEMGTM LASTPER 815.:
    FERINDX = 0;
    RECREAD = 0;
    RECURIT = O;
    PERCOUNT = O;
    SET DDIN.PEOPLE END=EOF;
    EREADER;
    LASTPER=PERID;
    DO WHILE("EOF):

```

```

    - If TME CURRENT PERSON IS IN A MEN FAMILY TMEN PROCESS
    - TME FAMILY IN TME ARRAYS.
    ```

```

    IF LASTPER * = PERID ON PERCOUNT = 32
        TMEN DO;
            EPROCESS;
            URESET:
        ENO:
    ```

```

    - READ NEXT PERSON INTO ARRAYS
    ******************************************************************)
    SET DOIN.PEOPLE (FIRSTONS=2) EMD=EOF;
    EREADER;
    END:
PERCOUNT = PERCOUNT + 1;
EPROCESS;
PUT RECREAD= RECNRITE:
STOP:
PROC PRINT DATA=PEOPLE (CSS=100);
BY PERIMDX:

```
```

