UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

SEDIMENT LOADS IN CANALS 18, 23, AND 24 IN SOUTHEASTERN FLORIDA

By

William A. J. Pitt, Jr.

ا برقمینی مرکزی استاریک OPEN FILE

72013

Prepared by the U. S. GEOLOGICAL SURVEY in cooperation with CENTRAL AND SOUTHERN FLORIDA FLOOD CONTROL DISTRICT

Tallahassee, Florida

551.4909 3932

CONTENTS

ABSTRACT	6
INTRODUCTION	7
PURPOSE AND SCOPE	8
AREA OF INVESTIGATION	9
SAMPLING SITES AND PROCEDURES	1,6
RESULTS OF INVESTIGATION	18
CONCLUSIONS	44
GLOSSARY	46
REFERENCES	48

Ŷ

ILLUSTRATIONS

Sport

ŝ

1.042		Page
Figure	lMap of southeastern Florida, showing the area	
	of investigation	10
	2Map of the drainage basin of Canal 18, showing	
	the land use	11
	3Map of the drainage basin of Canal 23, showing	
	the land use	12
	4Map of the drainage basin of Canal 24, showing	
	the land use	13
	5Graphs of weekly discharge, gage height, and	
	sediment concentration for Canal 18 near	
	Structure 46	19
	6Graphs of weekly discharge, gage height, and	
	sediment concentration for Canal 23 near	
	Structure 48	20
	7Graphs of weekly discharge, gage height, and	
	sediment concentration for Canal 24 near	
	Structure 49	22
	8Suspended sediment transport curve for	
	Canal 18 near Structure 46	23
	9Suspended sediment transport curve for Canal 23	-
	near Structure 48	24

ILLUSTRATIONS (Cont'd)

F

1

ż

Page

		,
igure	10Suspended sediment transport curve for	
	Canal 24 near Structure 49	25
	llParticle-size distribution for a sediment	
	sample from Canal 18 near Structure 46 during	
	a low flow period	26
	12Particle-size distribution for a sediment	
	sample from Canal 18 near Structure 46 during	
	a high flow period	27
	13Particle-size distribution for a sediment	
	sample from Canal 23 near Structure 48 during	
	a low flow period	28
	14Particle-size distribution for a sediment	
	sample from Canal 23 near Structure 48 during	
	a high flow period	29
	15Particle-size distribution for a sediment	
	sample from Canal 24 near Structure 49 during	
	a low flow period	30
	16Particle-size distribution for a sediment	
	sample from Canal 24 near Structure 49 during	
	a high flow period	31

TABLES

Page

Table	1Chemical analyses of water from Canals 18, 23,	
	and 24	36
	2Daily mean discharge, sediment concentration,	
	and tons per day of sediment for Canal 18	37
	3Daily mean discharge, sediment concentration,	
	and tons per day of sediment for Canal 23	38
	4Daily mean discharge, sediment concentration,	
	and tons per day of sediment for Canal 24	39
	5Monthly and annual discharge, in acre-feet, for	
	Canal 18 at Structure 46, Canal 23 at	
	Structure 48, and Canal 24 at Structure 49	40
	6Relationships of sediment yield with drainage	
	area, annual discharge, and length of canal for	
	Canals 18, 23, and 24	43

ź

SEDIMENT LOADS IN CANALS 18, 23, AND 24

IN SOUTHEASTERN FLORIDA

By

William A. J. Pitt, Jr.

ABSTRACT

Suspended-sediment concentrations and suspended-sediment discharges were determined in selected canals in St. Lucie, Martin, and Palm Beach Counties, in southeastern Florida. Sediment rating curves were developed to relate water discharge to sediment concentration at the three sites sampled. An evaluation of the concentration and sediment loads shows that larger amounts of suspended sediment were being carried into the St. Lucie River estuary than were being carried into the Loxahatchee River estuary.

Peat and muck soils in areas drained for agricultural planting and citrus cultivation are readily carried by runoff waters into the major canals that traverse the region.

INTRODUCTION

The amounts of sediment discharged into tidal estuaries have been the subject of increasing concern to those interested in the changes in the economic, natural, and esthetic conditions of estuarine environments. Although relatively detailed studies have been made in other coastal areas, little or no information has been obtained in south Florida.

The purpose of this report is to present the results of an investigation on suspended sediment loads carried by three canals in southeastern Florida. Sediment, discharge, and stage data were collected during a normally high discharge period, July to November, 1969, from Canals 23 and 24, which discharge into the St. Lucie River estuary, and from Canal 18, which discharges into the Loxahatchee River estuary.

The investigation was made by the U.S. Geological Survey in cooperation with the Central and Southern Florida Flood Control District. The daily discharges for the three canals during the investigation, as well as the instantaneous discharges at the time the sediment samples were collected, were furnished by the Flood Control District.

PURPOSE AND SCOPE

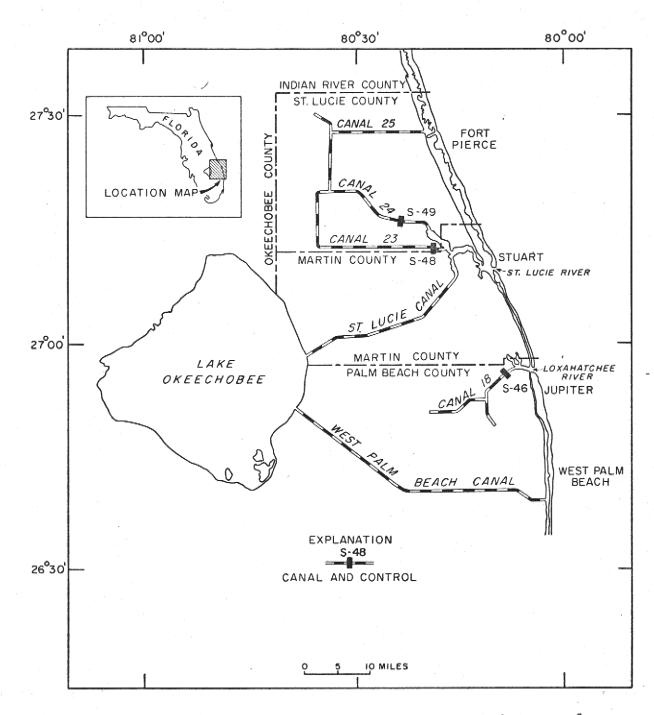
The primary objective of the investigation was to provide data on the particle size and volume of the suspended sediment transported by three major canals that discharge into the estuarine environments of the St. Lucie River and the Loxahatchee River.

A secondary objective was to determine what percentage of the total yearly suspended sediment load could be expected to have been discharged during the period studied. The 20 weeks of the investigation represent 38 percent of the year, during which time more than 60 percent of the total yearly discharge of water was recorded.

The project also provided the opportunity to relate sediment tonnage discharged to unit area drained and to volume of water discharged from that area.

AREA OF INVESTIGATION

Control and Sarthern Maulda


The area investigated includes parts of St. Lucie, Martin and Palm Beach Counties along the southeast coast of Florida, as shown in figure 1.

The area is drained by four major canals that discharge into the St. Lucie River and the Loxahatchee River, which enter tidal estuaries near Stuart and Jupiter, respectively. Canal 18 drains the south part of the area, and Canals 23 and 24 drain the north part. Figures 2, 3, and 4 show the boundaries of the basins drained by the three canals and the land use in the basins. The investigation did not include St. Lucie Canal, which carries drainage from its basin and inflow from Lake Okeechobee.

The average annual rainfall ranges from 65 inches in the south part of the area to about 53 inches in the north part. Rainfall usually occurs in short intense afternoon showers during the summer and as a slow drizzle of longer duration during the rest of the year.

Rainfall records for Stuart show that the average monthly rainfall from December through June is 3.8 inches and from July through November, 6.2 inches. Fig. 1 near here

Figs. 2 3, & 4 near her

6.18

Figure 1.--Map of southeastern Florida showing the area of investigation.

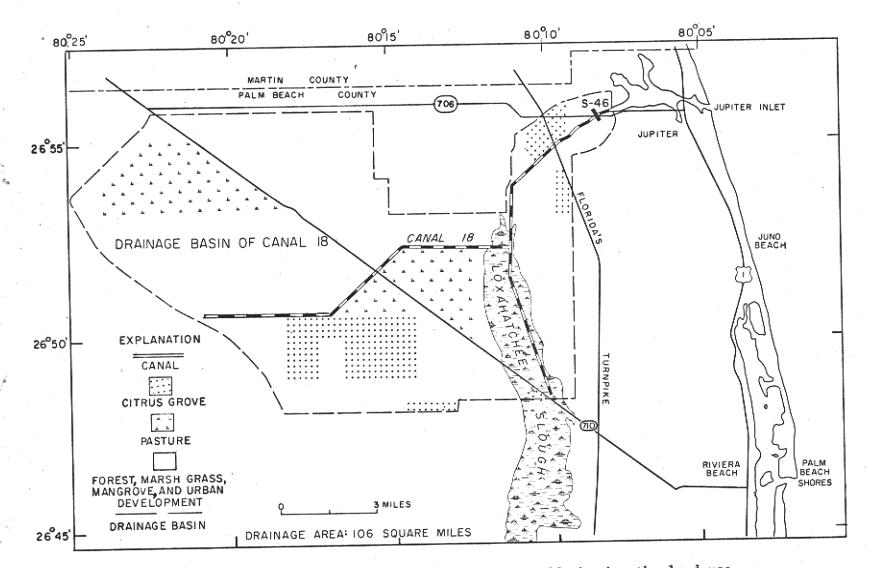


Figure 2.--Map of the drainage basin of Canal 18 showing the land use

. . .

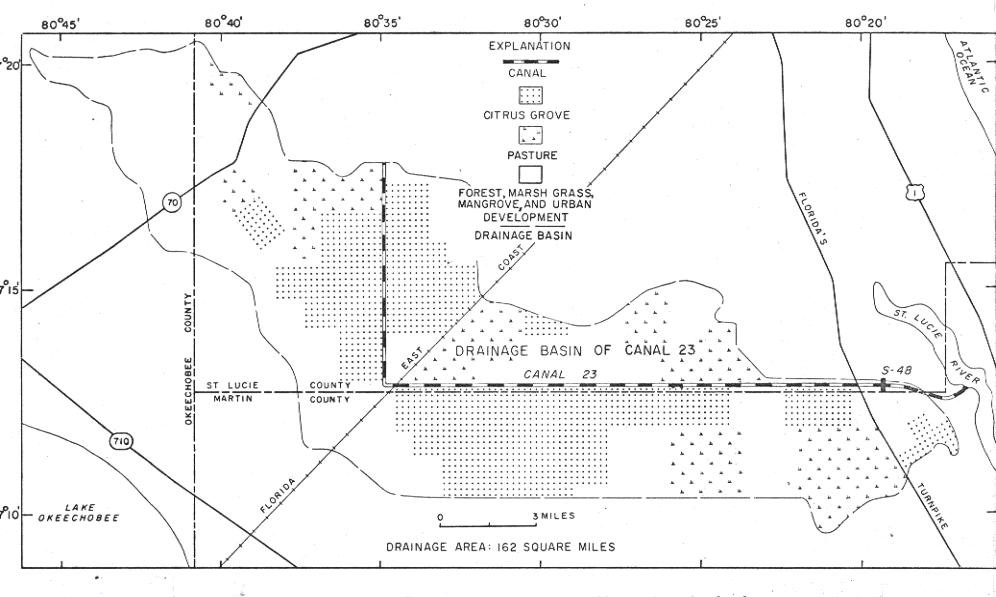


Figure 3.--Map of the drainage basin of Canal 23 showing the land use

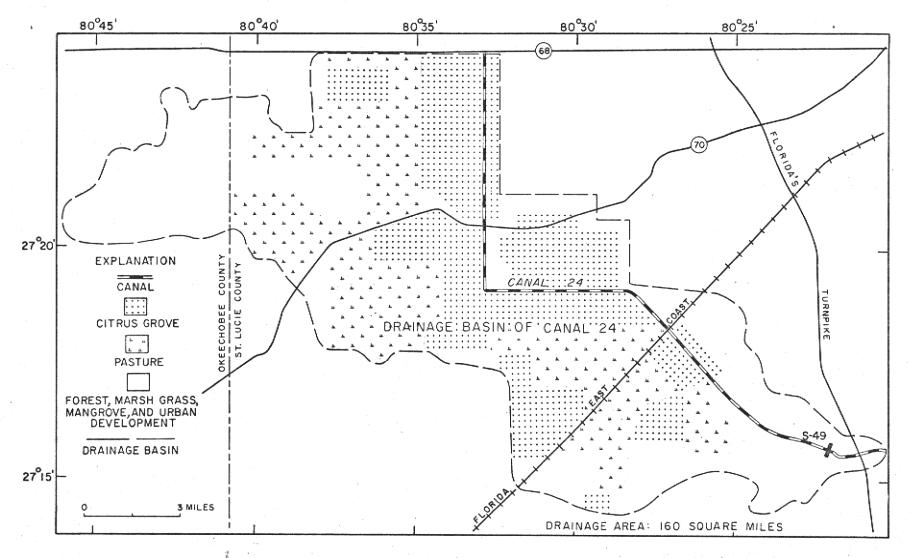


Figure 4.--Map of the drainage basin of Canal 24 showing the land use

The elevation of the land surface ranges from a few feet above mean sea level along the coast to 57 feet at the southwest corner of St. Lucie County. The entire area is of low relief, with the exception of an area of rolling terrain north of Jupiter.

Thirty to 35 percent of the land is presently (1970) used for pasture and 20 to 25 percent for citrus groves and truck farming. About 30 percent of the total area is forest and marsh grass, and the remainder is occupied by urban development and coastal mangroves. (See figs. 2-4).

Natural vegetation consists of cypress trees, pond grass, and sawgrass in the flatwoods and grass in the area of higher elevation. The soils are poorly drained sands or loamy sands that overlie limestone; the soils are covered with the characteristic peat and muck present throughout much of the area. This organic deposit is thickest in the north reaches of the area investigated and near Lake Okeechobee. The natural drainage pattern has been changed considerably by the construction of hundreds of small flood control and drainage canals. These canals crisscross the area and finally empty into the major drainage canals shown in figure 1. The canals cut into the upper layers of a shallow water-table aquifer consisting mostly of sand and shell beds of the Pamlico Sand that overlie layers of sandy limestone of the Anastasia Formation. These upper layers are of low permeability, when considered as a wateryielding zone, but they are permeable enough to absorb most of the rainfall, thus reducing surface runoff. The canals are generally fed by ground water discharged directly into them and by whatever surface runoff reaches them.

Operation of the canal system is solely for the purpose of flood control and drainage during the wet season and for water management during the dry season. The canal system has made possible the development of extensive agricultural areas.

Increasing water requirements have brought about a plan to backpump water from the canals into Lake Okeechobee during high water levels for later release to agricultural lands during dry periods.

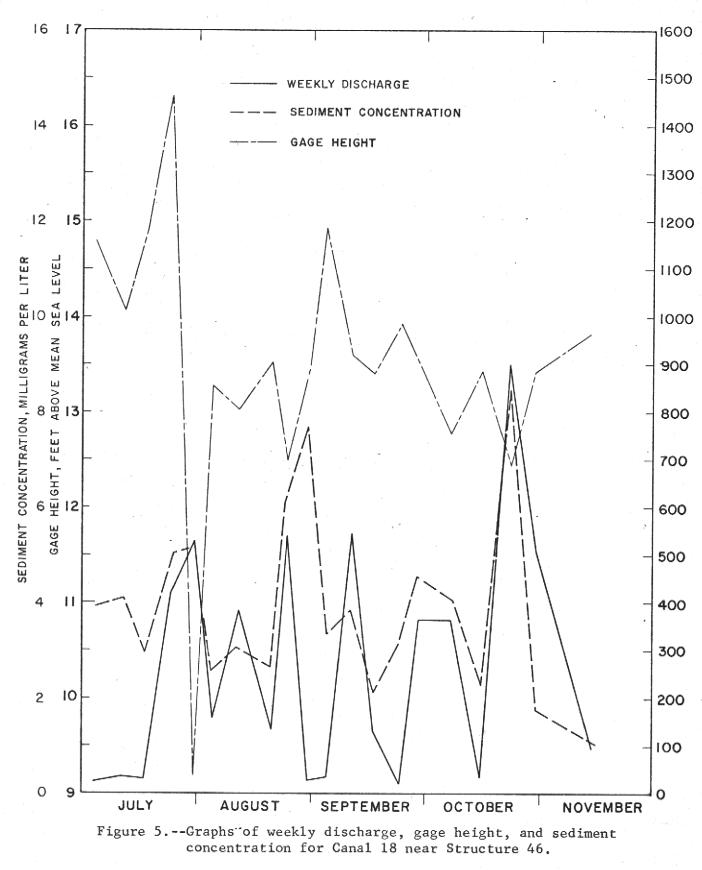
SAMPLING SITES AND PROCEDURES

Depth-integrated samples of canal water were obtained weekly at each of three stations on random days from the first week in July 1969 to the second week in November 1969. Canal 18 was sampled at the center and the downstream side of the bridge on State Road 706 approximately 300 feet upstream from Control Structure 46. (see fig. 2.) The sampler was lowered and raised at a constant rate with a crane-mounted sounding reel. Canal 23 was sampled near the middle of the canal at the protective cable about 500 feet upstream from Control Structure 48 (see fig. 3). The sampler was lowered and raised from a boat using a sounding reel. Canal 24 also was sampled from a boat at the protective cable approximately 600 feet upstream from Control Structure 49 (see fig. 4). Samples were collected with a depth-integrating U.S.D.H. 59 suspended sediment sampler with a quarter-inch diameter nozzle. This nozzle allowed an intake velocity to the sampler that was approximately equal to the velocity in the canal, and, as a pint bottle was used, the horizontal length of sample filament was almost 50 feet.

Early in the investigation, samples were collected at one-third, one-half, and two-thirds of the width of each canal, but the analyses of these samples showed that the sediment concentration was the same for each sampled point of the cross section at all three sites. Therefore, for the remainder of the investigation, samples were collected at the center of the canals only.

Samples were analyzed by the U.S. Geological Survey haboratory in Ocala, Florida. The gravimetric method was used for the determination of sediment concentration, and the bottom withdrawal tube method together with sieve analyses were used for the particle-size determinations. Detailed explanations of the laboratory techniques used in water quality, sediment concentration, and particle-size determinations may be found in the references listed at the end of this report.

RESULTS OF INVESTIGATION


Graphs of weekly measurements of gage height, discharge, and sediment concentration for Canal 18 are shown in figure 5. Except from August 24 to September 4 and September 17 to 24, there is a direct relationship between discharge and sediment concentration for Canal 18. This relationship, however, is variable, as indicated by different sediment concentrations for the same discharge at different times. No relationship between gage height and sediment concentration is apparent from figure 5, probably because gate operations at Structure 46 prevented any direct relationship between gage height and discharge.

Structure 48 on Canal 23 is a fixed crest dam with no gates. Water levels were above the crest of Structure 48 during July 1 to November 15, 1969.

The graphs for Canal 23 (fig. 6) show in general a direct relationship between sediment concentration, gage height, and discharge. The sediment concentration deviates slightly from the general relationship during July 29 to August 4, August 30 to September 4, and September 29 to October 7. Fig. 6 near here

Fig. 5 near

here

and the second second

🛓 in the second s

The graphs for Canal 24 are shown in figure 7. At Canal 24 Fig. 7 a direct relationship exists between discharge and sediment here concentration, except for July 3-11 and July 17-24. The operations of the gate at Structure 49 also prevent a direct relationship between gage height and discharge.

Curves of sediment concentration versus discharge were developed for all three canals. (See figs. 8-10.) These curves show the maximum, minimum, and median sediment concentration that may be expected for a given discharge. Particle-size analyses were run on two samples collected at each site. One sample was collected during low flow and the other during high flow.

The results of the particle-size analysis for a sample from Canal 18 are shown in figures 11 and 12, from Canal 23 in figures 13 Figs. 11 & 12 and 14, and from Canal 24 in figures 15 and 16.

Figs. 13 & 14 near her

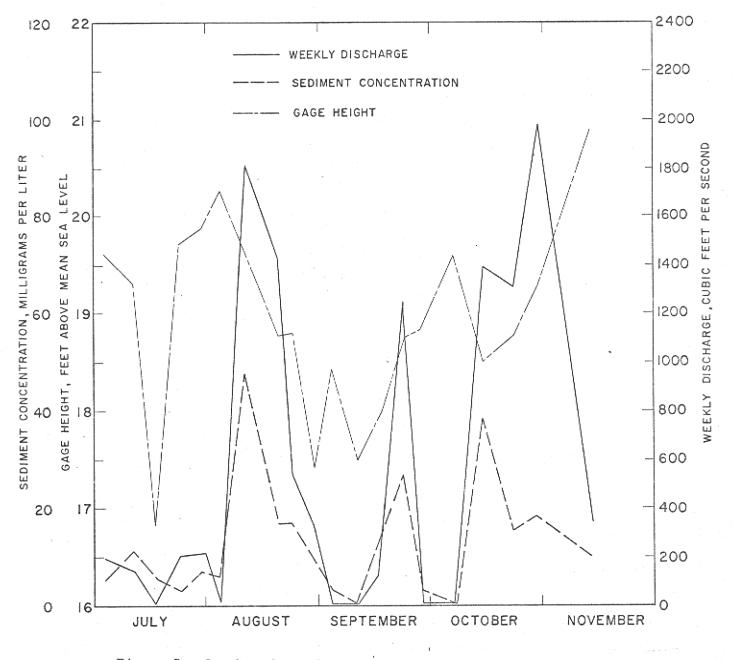
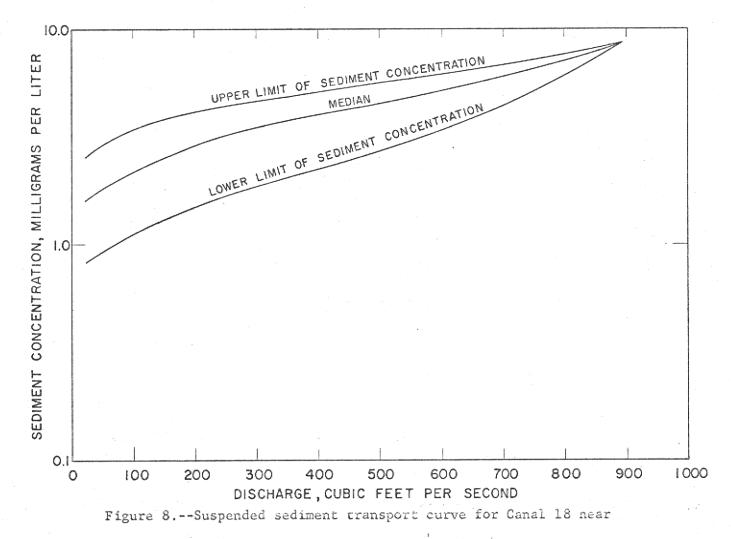
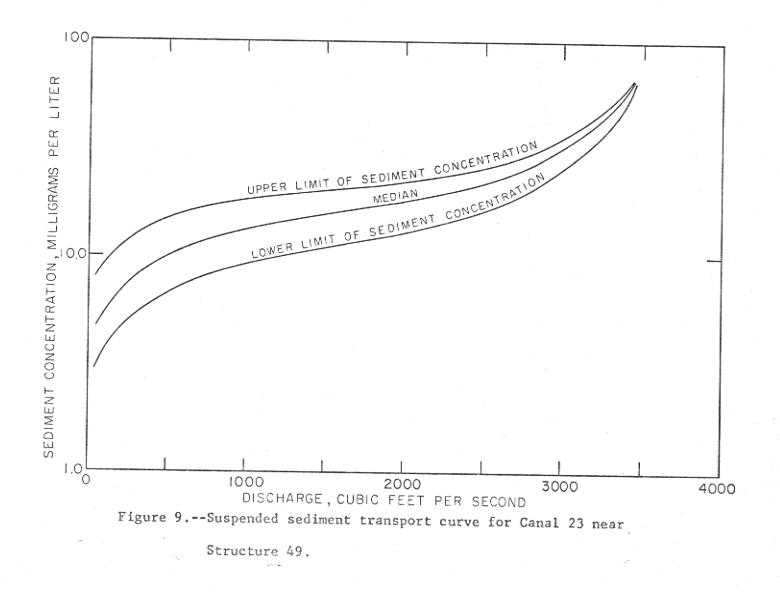
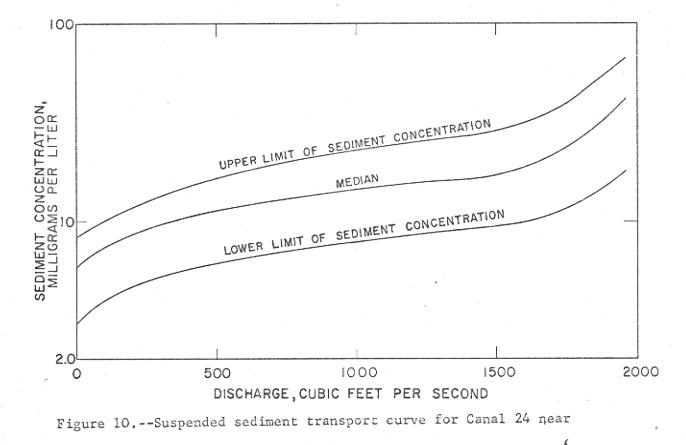
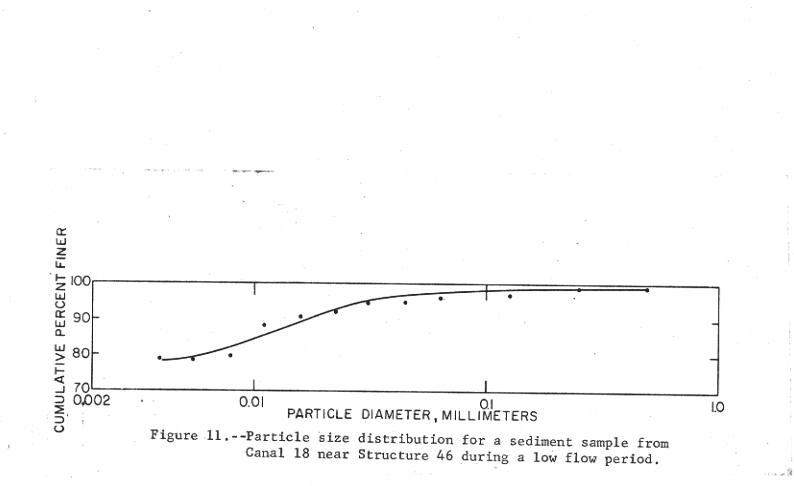
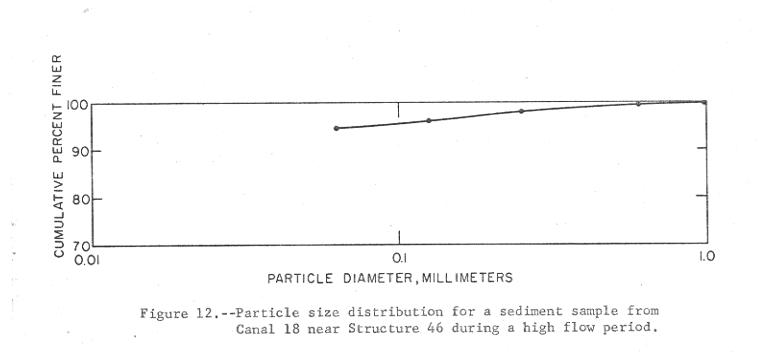
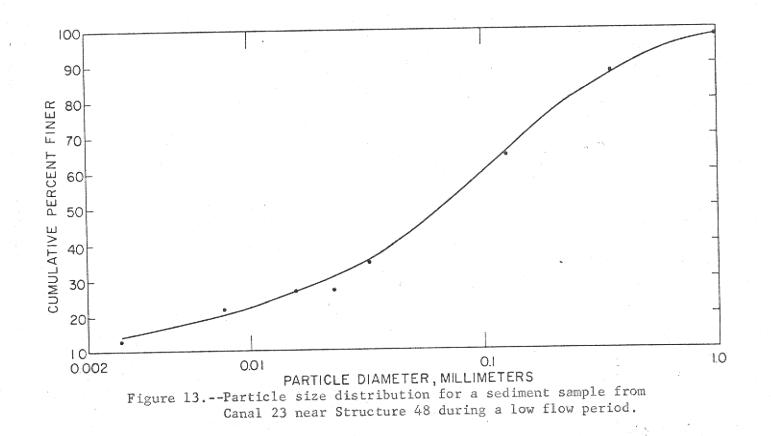
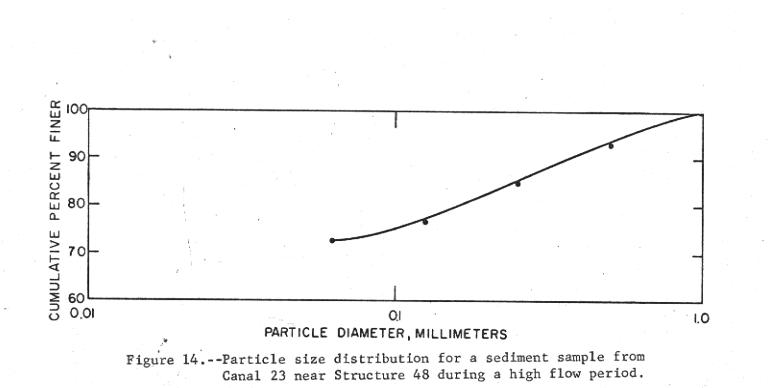





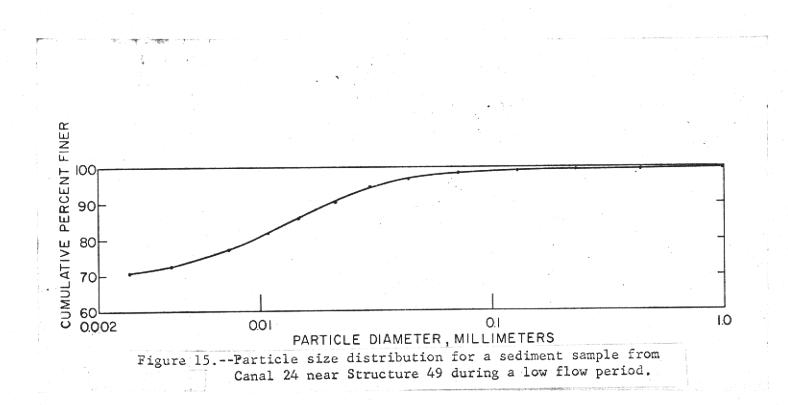
Figure 7.--Graphs of weekly discharge, gage height, and sediment concentration for Canal 24 near Structure 49

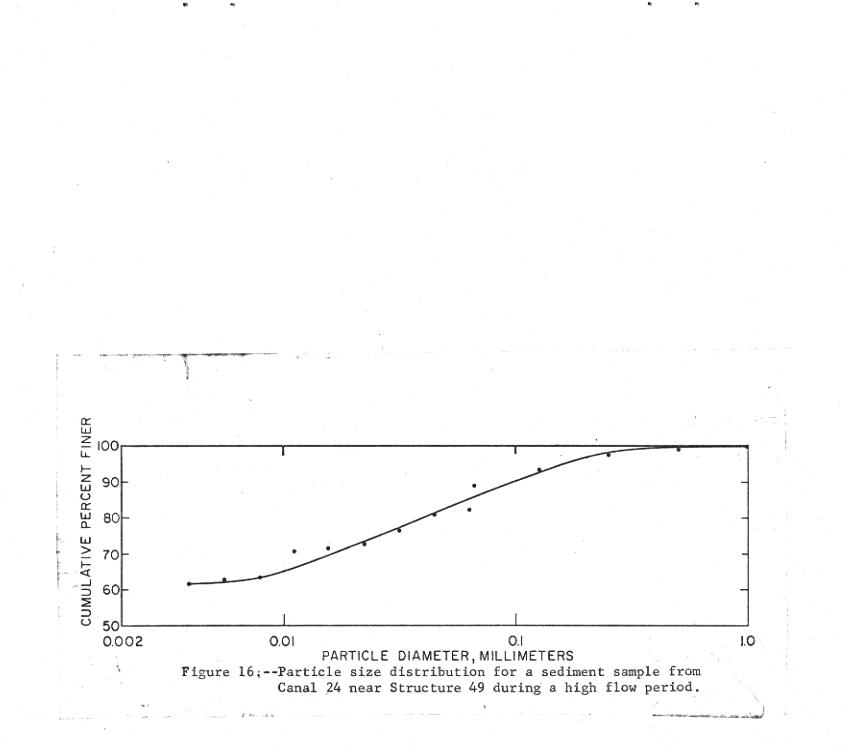



Structure 46.






Structure 49.



The Subcommittee on Sedimentation Terminology of the American Geophysical Union (Lane and others, 1947, p. 337) classifies sediment by particle size as follows:

> Clay Size: Smaller than 0.004 mm Silt Size: Between 0.004 and 0.062 mm Sand Size: Between 0.062 and 2.0 mm

The table below lists the particle-size distributions of the suspended sediment collected from the three canals.

The similarity in size distribution of suspended particles at low and high discharges and, consequently, at different velocities, indicates a uniform vertical distribution of sediments in the canals. This is because the whole suite of sediment sizes must be in suspension even at low velocities for that similarity to exist when the velocities are high.

		Instantaneous Sediment	Discharge		Particle Size (percent finer than)										
Sampling Site	Date	Concentration (milligrams per liter)	(cubic feet	<u>1.000</u>	0.5mm	0.25mm	0.125mm	0.0625mm	<u>0.004 mm</u>						
	1 1- 11 1060	0.2	Leakage	100	100	99	97	96	79						
anal 18 near S-46			170	100	100	98	96	95	86						
anal 18 near S-46	Oct. 15, 1969		40	100	93	85	77	73	66						
anal 23 near S-48	July 11, 1969			95	91	75	64	48	16						
anal 23 near S-48	*Oct. 15, 1969	8	170				99	98	72						
anal 24 near S-49	July 11, 1969	11	140	100				82	61						
anal 24 near S-49			1,380	100	99	0.5mm 0.25mm 0.125mm 0 100 99 97 100 98 96 93 85 77	04	UL.							

* Data incomplete; sediment would not settle.

Except for the particle-size data listed for the sample collected October 15, 1969, from Canal 23 at S-48, the table shows that the sediment concentration and discharge have little to do with particle-size (mostly clay-size) of the sediment. The particlesize data for this sample are anomalous because the sediment would not settle during analysis; the weight of the segment withdrawn from the bottom of the sedimentation tube was deficient by the amount remaining in suspension.

A study of the chemical analyses of these samples shows that there is no apparent relationship between sediment concentration and most chemical constituents.

Low iron concentrations and high color units, suggest the presence of organic compounds in the water. This is further indicated by the appearance of the samples at the time of collection and during analysis in the laboratory. Of the three sets of samples, only the set taken from Canal 23 showed an increase in nitrate with increase in suspended sediment. Two of the three sets of samples showed an increase in sulfate with increases in sediment concentration. Nitrate and sulfate are end products of decomposition of organic plant protein. No tests were made of the sediment to determine its nature, but the fragmentary evidence strongly suggests its organic composition.

Table 1 shows the results of chemical analyses of water samples Table 1 near taken from Canals 18, 23 and 24 at the sites of the control here structures.

Tables 2, 3, and 4 show the daily mean discharge, sediment concentration, and tons per day of sediment for Canals 18, 23, and 24 respectively.

The monthly and annual water discharge for Canals 18, 23 and 24 for 1963-69 are shown in table 5. The discharge during July 1 to November 15 represents, on the average, about 70 percent of the total yearly discharge of Canal 18. During the 1969 calendar year the same period represented nearly 70 percent of the total. Similarly, for Canal 23, the discharge for July 1 to November 15 represents, on the average, approximately 60 percent of the yearly discharge, and for 1969 the discharge for the same period represented about 60 percent of the total flow for the calendar year. In Canal 24 the approximate percentages are 50 percent of the discharge on the average and 60 percent of the total flow for the 1969 calendar year. Tables 2, 3 & 4 near here

Table 5 near here

						Man-		Nag-				B1-							Diss	olved	Hard As C	ness wC0 ₃	Spe- cline con-				е	kal ini	IV.	
11 ion 18 5-65	Dato of collection		e 1	ca	lros Ufel ug/t	i¢a∽ nrse (Xn i `		he* situs	Stron- tiun (Sr)	dias	Pu- tas- siun (K)	car- bon-	bon- ate	fate SO ₂ I	ride	ride	arate.	(phate)	sol Real- duo al 180°C	Calcu-	Cal- cium, mag- ne- sium	car- bon-	duct- acce (al-		Co)- or	Tes- per- alare ("C)	вь 1005	ан со _р	as Geory	Sedi- ment Conce tract
- 445 E	7-11-69	39	6.	Ð	•	• •	46	3.1		16	0.8	128	•	13	24	9,3	0.6		198	173	128	23		a, q	40	12	128	6)	105	
46	10-15-69	17	4		70	•	29	3.8	•	12	0,8	55	0	4,8	29	0.2	0,6		154	117	88	16	225	7.8	40	27		63	72	4
4.8	7-11-69	40	£.,		-	-	52	7.3	-	33	2.6	136	•	62 .	33	0.3	2.1		317	260	160	48	470	8.2	120					1
48	10-15-69	50	7.4	1	260		46	5.7		24	1.9	116	0	30	43	0.3	2.6	-	287	217	139	44		7,4					112	a
49	7-11-65	(4)	7.6		-	•	48	ц	-	36	2.6	108		43	106	3.0	ы		416							27	116	57	25	6
45	10-15-69	1,360	1.0		250		40	6.0												339	165	11	650	7.3	20	19.7	108	53	39	п
								6.0	•	28	1.6	92	0	31	56	0.5	1.3	-	267	211	125	49	402	7,5	120	27	92 ·	45	75	38

Table 1.--Chemical analyses of water from Canals 18, 23, and 24.

	JULY				AUGUST			SEPTEMBER			OCTOBER			NOVE MBE R	
Day	Discharge (cfs)	Sediment concen- tration (mg/1)	Sediment - discharge (tons per day)	Discharge (cfs)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)	Discharge (cisi	Sediment concen- tration lmg/1)	Sediment discharge (tons per day)	Discharge (cfs)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)	Discharge (cfs)	Sediment concen- tration (mgg)	Sedament discharge (tons per day)
1 2 3 4 5	64 64 67 63 63	* * *	0.72 .72 .75 .71 .71	141 152 0 212 218	100	1.1 1.1 0 1.7 1.7	128 142 130 131 20	****	1.4 1.6 1.4 1.4 0.15	178 267 193 262 104	3 4 3 4 3	1.6 2.5 1.7 2.6 0.73	271 300 227 315 285	5 3 3 3	2.3 26 16 26 23
6 7 8 9 10	59 59 6 59 0	4 0 4 0	7م. تام تام ت	186 - 591 220 119 111	5 2 2 2 2	1,4 7,7 1,5 0,55 ,45	166 142 152 - 130 131	4 3 2 2	16 12 - ЭЗ - Л7 - Б7	233 214 259 198 214	* * 3	2,2 1,8 2,4 1,7 1,9	300 271 391 292 300	3 3 3 3 3	2,4 1,9 3,5 2,1 2,1
11 12 13 14 15	0 0 0	000000000000000000000000000000000000000	0 0 0 0 0	240 7.8 10 246 155	1132	1.5 .01 .01 1.7 .ан	130 140 135 100 252	a n n nje	66. 66 83 1.9	167 220 123 170 173	3	1.4 2.1 .93 1.5 1.5	314 329 334 425 395	3 3 3 3 3	22 23 24 34 31
L6 L7 L8 L9 20	0 18 0 59	0 5 0 3	0 14 0 0	140 142 142 140 130	2 N N N N	79 92 96 94 91	138 264 154 241 129	e u stere	.78 2A 10 22 10	146 106 43 166 202	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.2 .74 .26 1.3 1.7			
21 22 23 24 25	0 0 400 0	00050 50	0 0 5,3 0	0 100 100 96 45	0 3 4 3	0 181 193 193 137	238 128 210 158 159	4 3 4 4	2.5 1.1 2.4 1.7 1.6	271 220 220 150 123	* >>>	2.6 1.8 1.9 1.0 .76			
26 27 28 29 30 31	0 0 891 699 835	0000	0 0 21 12 2,3	142 138 132 61 6/ 142	4 4 3 5	1.5 1.4 1.4 .56 .52 1.6	267 170 236 103 238	* * * * *	32 1.5 2.5 .51 2.4	281 225 195 168 99 159	Arean	2.6 1.5 1.2 2.6 1.0			
TOTAL	<i>i</i> .790		47	4.327		36	4.862		42	5,750		49	4,749		37

a derver i der

 $p \sim \infty$

Table 2.-- Daily mean discharge, sediment concentration, and tons per day of sediment for Canal 18.

Underlined values show that an actual sample was collected that day.

to reacting as

			T	T	AUGUST			SEPTEMBER	-		OCTOBER		NOVE MBER			
Day	Discharge (cfs)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)	Discharge (cls)	Sediment concen- tration (mg/j)	Sediment discharge (tons per day)	Discharge (cfs)	Sediment concen- tration (mg.1)	Sediment discharge (tons per day)	Discharge (cis)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)	Discharge (cis)	Sediment runcen- tration (mg(1)	Sediment discharige (tons per day)	
1 2 3 4 5	29 438 263 263 427	4 9 7 7 10	3,31 11 - 5,3 5,3 12	134 308 532 1470 91H	6 9 12 <u>18</u> 14	2.1 7.5 17 72 35	343 259 156 37 424	7 5 2 8 8	635 4,5 1,8 0,20 9,3	494 772 1,230 659 949	6 9 12 11 15	7.6 19 40 20 38	4460 1700 962 372 525	21 16 13 9 10	159 74 34 - 8,7 14	
6 7 8 9 10	530 77 420 34 407	11 7 11 6 12	16 15 14 55 13	545 532 639 1.180 724	12 11 11 14 10	18 16 19 44 20	44 437 406 98 1120	4 10 11 8 . 17	.53 12. 17 20 51	752 479 665 236 269	$ \frac{15}{14} 10 10 10 10 $	30 18 23 6,4 7,0	618 479 396 38 309	11 9 3 7 7	18 11 84 0.31 5.9	
11 12 13 14 15	37 32 23 15 398	2 6 5 5	.70 .52 .31 .20 11	614 549 447 1.640 1.440	9 7 12 14	15 12 38 34 54	569 731 413 628 568	14 15 12 13 12	22 50 14 22 18	444 260 192 153 227	11 10 8 7 <u>9</u>	13 7.3 4.0 3.0 6.0	269 30 477 1170 701	2 9 15 11	4,7 .16 11 41 21	
16 17 18 19 20	23 19 16 22 30	2	19 10 26 12 26	1031 1650 1190 1230 1070	12 15 14 14	33 67 45 47 37	341 604 492 470 432	9 11 9 8 7	8.6 19 1≠ 11 8,4	39 384 48 1.140 649	5 10 15 11	0.53 10 73 46 19				
21 22 23 24 25	26 127 335 327 167	1 3 4 4	27 Уб З.а 3.6 .90	SöH 737 622 330 704	12 14 15 13	19 29 25 12 29	392 401 496 527 404	7777	7.2. 7.5 9.1 10 5.4	619 942 478 1,760 1,440	11 13 10 17 15	18 33 12 81 58				
26 27 28 29 30	71 77 535 548 514	1 1 7 7 7	21 25 10 10 9.7 *.1	342 316 400 253 363 41	11 11 11 11 11 11	10 9.4 12 5.7 3.3 50	373 70 412 553. 539	4 - 1 2 2 4 +	36 19 21 30 64	979 881 300 2690 1610 2480	13 12 10 23 75 27	34 29 13 167 730 210				
31 TOTAL	304 6534	5	+.1 134	*1 21.939		762	12799		319	25,640		1.700	16,505		391	

Table 3.-- Daily mean discharge, sediment concentration, and tons per day of sediment for Canal 23.

Underlined values show that an actual sample was collected that day.

Sec.

.

1.1	JULY				AUGUST			SEPTEMBER			OCTOBER			NOVE MBER	
Day	Discharge (cfs)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)	Discharge (cfs)	Sectiment concen- tration {mg/1}	Sediment discharge (tons per day)	Discharge (cis)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)	Discharge (cfs)	Sediment concen- tration (mg/2)	Sediment discharge (tons per day)	Discharge Icfs)	Sediment concen- tration (mg/1)	Sediment discharge (tons per day)
1 2 3 4 5	135 113 158 160 178	4 4 4 10 0	14 1.1 1.7 22 3.1	669 412 770 1043 1203	12 11 13 <u>35</u> 15	22 12 27 44 49	391 350 390 374 374	8 7 7 7	8.5 7.6 7.4 7.1 7.1	402 459 767 851 850	7 6 10 11 11	7.6 9.9 21 25 25	1642 1265 1275 1122 945	31 18 18 17 17	154 61 62 52 43
6 7 8 9 10	507 174 187 161 122	10 8 10 10 11	14 3,9 4,8 4,4 3,5	668 750 779 1455 265	12 13 13 17 9	22 26 27 67 67	265 452 536 578 649	7 9 10 11 12	5.0 11 14 17 21	662 352 346 337 364	9 7 8 8 8	-16 6.7 d.8 7.3 d.3	1.323 1.082 1.063 622 671	19 16 19 16 16	68 53 55 27 29
11 12 13 14 15	105 73 70 59 43	10 10 9 9	28 21 17 14 0.5 H	277 272 705 1379 1229	10 11 16 15	74 6.9 25 60 50	1170 803 844 1574 1698	15 13 14 19 22	47 28 32 81 131	345 437 94 189 242	8 9 5 5 8	$\begin{array}{c} 7.5 \\ 11 \\ 1.3 \\ 3.3 \\ 5.3 \end{array}$	677 665 358 1.145 1.031	16 17 15 20 20	29 31 15 52 55
16 17 18 19 20	22 0 20 73	u u cijo -	دم. 0 27 29	1.254 1.640 1.443 1.14H 1.151	15 20 17 15	51 89 60 40 47	1.029 459 625 510 270	16 13 14 14 12	44 16 24 19 His	202 100 275 852 350	ช 5 ช 11 9	4.2 1.7 6.3 1.9 d.5			
21 22 23 24 25	145 201 200 170 167	station and the second	2,7 3.7 2,1 1,1 ,79	635 953 1052 333 214	14 10 19 <u>15</u> 13	32 +2 54 13 7.5	254 353 522 472 323	12 14 17 16 13	6.2 13 36 20 11	520 611 519 2208 1438	10 11 11 84 15	14 18 15 500 62			
26 27 28 29 30 31	195 220 712 743 275 1,079		15 25 19 22 55 38	LC14 L114 LC72 654 320 406	19 17 18 14 <u>13</u>	47 51 52 23 85 9.9	482 251 155 120 290	13 30 	17 658 530 1.5 554	980 952 653 1.949 4170 4530	15 15 41 7 <u>5</u> 360	40 39 - 23 816 460 550			
TOTAL	-576		151	20071		1.090	15864		- 630	Shear		4,140	15090		797

Table 4.-- Daily mean discharge, sediment concentration, and tons per day of sediment for Canal 24.

Underlined values show that an actual sample was collected that day.

Table 5.--Monthly and annual discharge, in acre-feet for Canal 18 at

Structure 46, Canal 23 at Structure 48, and Canal 24 at

Structure 49.

" (de

CANAL 18 NEAR STRUCTURE 46

YEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JOLY	AUG.	SEPT.	OCT.	NOV.	DEC.	AMNUAL	JULY 1 to NOV, 15
1963 1964 1965 1966	0 13,920 1,080 11,420	303 4,410 2,900 8,620	0 789 1,500 4,550	0 50 77 1,110	0 1,490 0 5,150	950 7,370 2,660 23,950	684 3,180 2,730 24,240	2,400 9,560 6,190 11,550	9,980 13,300 5,800 9,390	18,920 24,600 14,440 11,220	2,760 17,880 11,650 2,950	1,880 5,650 1,680 1,730	37,880 102,200 50,690 115,880 72,060	34,030 61,140 39,670 58,110 65,110
1960 1967 1968 1969	305 0 290	784 175 0	206 0 2,030	0 0 0	0 578 3,810	3,500 14,900 4,930	11,700 13,900 5,530	10,850 10,140 8,580	8,750 8,570 9,640	28,410 13,360 11,400	6,640 4,150 14,210	916 0 3,950	65,770 64,370	49,200 44,570
AVG.	3,860	2,460	1,300	1,300	1,580	8,320	8,830	8,470	9,350	17,480	8,610	2,260	74,690	50,260

CANAL 23 NEAR STRUCTURE 48

YEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	ANNUAL	JULY 1 to NOV. 15
1963 1964 1965	- 600	7,980	2,720 4,740	1,880 1,730	2,320 270	1,700 1,370	11,590 7,270	770 27,080 8,090	3,710 29,040 11,380	7,540 16,780 23,160	2,650 6,910 11,740	5,570 2,340 1,280	79,610	90,890 58,890
1966 1967 1968 1969	31,700 1,800 420 2,000	20,100 2,870 390 1,870	7,580 2,560 330 14,650	2,750 8,920 330 2,660	4,140 480 5,630 15,330	27,140 5,470 58,400 23,210	45,710 17,680 59,200 12,950	29,850 11,530 12,370 43,500	18,770 3,030 4,230 25,380	45,470 15,730 6,060 53,220	5,990 1,790 7,500 29,410	2,590 540 1,740 22,970	241,790 72,400 156,600 247,150	143,050 49,260 86,870 155,890
AVG.	7,300	6,640	5,430	3,050	4,700	19,550	25,730	19,130	13,650	23,990	9,430	5,290	159,510	97,480

						former and the								a second s
YEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	ANNUAL	JULY 1 to NOV, 15
1963 1964 1965	0 16,020 16,160	0 18,980 13,170	0 4,380 12,580	0 5,530 3,690	1,590 13,660 150	60 8,390 8,740	3,310 16,360 18,150	0 36,840 12,900	15,910 28,850 19,410	10,310 15,490 22,560	11,410 16,470 16,280	16,400 16,690 16,560	58,990 197,660 160,620	33,500 105,190 83,110
1966 1967 1968	25,860 0 3,400	19,430 1,170 0 0	12,460 0 18,760	8,950 0 0 760	16,390 0 12,050 18,380	27,670 9,690 84,120 21,240	30,420 20,170 32,510 13,040	24,030 12,090 7,110 52,690	15,690 12,290 7,760 32,450	35,890 11,580 12,470 45,560	12,020 790 3,550 47,070	11,580 0 0 34,660	240,390 67,780 159,570 288,010	111,490 56,920 62,420 173,670
1969 AVG.	8,780	7,540	1	2,700	8,890	22,840	19,140	20,810	18,910	21,980	15,370	13,700	167,570	89,470

Table 5 also shows that during February and April 1969 there was no flow in Canal 18 and, therefore, no sediment discharge. In January the sediment load must have been small, as the discharge was very low that month. March, May, June, and December were the only months (other than the months during which samples were collected) during which any significant amount of sediment could have been discharged; however, figure 8 shows that the sediment concentration will generally be below 3 mg/1 at discharges below 220 cfs. Examination of the daily discharges for the period not sampled shows that 3 days in late November and 2 days in early May were the only days in which a discharge of 220 cfs was reached. It seems that at no other time could the sediment discharge have exceeded 1 ton per day, and, therefore, the conclusion can be made that the annual suspended sediment discharged by Canal 18 in 1969 could not have been more than 350 tons, of which 211 was discharged during July 1 to November 15.

Analysis of the daily discharge data, comparison of these data with other discharge data for which sediment concentrations are known, and the sediment-transport curves of figure 9 were used in a similar manner to obtain an estimate of annual suspended sediment discharge for Canal 23. On that basis, it was estimated that the load carried by Canal 23 during 1969 did not exceed 4,500 tons, of which 3,310 tons was discharged during July 1 to November 15.

A similar examination of data for Canal 24 discloses that the total suspended sediment load discharged by it during 1969 was about 9,000 tons, of which 6,810 was discharged during July to November 15.

1.64

The relationships between sediment yield and drainage area, annual discharge, and length of canal are shown in table 6 for all Table 6 near three canals.

Table 6.--Relationships of sediment yield with drainage area, annual

discharge, and length of canal for Canals 18, 23, and 24.

Canal	Length (miles)	Drainage Area (sq. miles)	Annual Discharge (acre-feet)	Annual Sediment yield (tons)	Tons per sq.mile	Tons per thousand acre-feet
18	17	106	74,690	350	3.3	4.7
23	24	162	159,510	4,500	27.8	28.2
24	20	160	167,570	9,000	56.2	53.7

CONCLUSIONS

In contrast to Canal 18, Canals 23 and 24 carry relatively large quantities of suspended sediment into the St. Lucie River estuary at Stuart during high discharge. Maximum sediment-discharge rates of 730 and 2,550 tons per day and average rates of 23 and 42 tons per day during July 1 to November 15 were computed for Canal 23 and Canal 24, respectively, while Canal 18 carried little sediment, a maximum of 21 tons per day and an average of 1.5 tons per day during the same period.

Chemical analyses show that the water from Canals 23 and 24 are of similar chemical quality, but that of Canal 18 has considerably lower concentrations of most constituents.

The prependerance of citrus groves in the area drained by Canals 23 and 24 may partly explain the differences in sediment discharge rates and in water quality.

Most of the sediment in the canals originates in the cultivated areas; some of it comes from the decomposition of the vegetal matter in the canals. The sediment consists predominantly of particles that remain in suspension at low velocities. Clearing of virgin land and preparation of the land for farming or pasture results in an increase per unit area of the amount of sediment in runoff water. This is indicated by comparing the data for Canal 18, which drain a relatively virgin area, with data for Canals 23 and 24, which drain an area that is extensively developed for agricultural use and pasture.

Increasing agricultural activity in the area will probably increase the amount of suspended sediment discharged into the canals and estuaries in future years.

GLOSSARY

- Flatwoods: A vegetal environment characterized by clusters of cypress tress towering above the pond grasses and marshes and separated by sawgrass.
- <u>Muck</u>: A soil of extremely soft consistency. The term is applied herein to soils that are predominantly an organic silt.
- <u>Peat:</u> An extremely compressible, but loose soil that is very dark in color and which contains much fibrous organic material. When dry, it floats and can be easily transported with surface runoff.
- Sediment: Solid material that originates mostly from soils and is transported by, suspended in, or deposited by water; it includes chemical and biochemical precipitates and decomposed organic matter, such as humus.

<u>Sediment discharge</u>: The rate at which dry weight of sediment passes a section of a stream, or is the quantity of sediment, as measured by dry weight or by volume, that is discharged in a given time.

<u>Suspended sediment</u>: The sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Tons per day: The quantity of materials in solution or suspension that passes a stream section during a 24-hour period.

<u>Transit velocity</u>: The velocity at which the sampler is lowered and raised. The velocity should be uniform and slow enough to allow the air in the sampler to be compressed by the inflowing water proportionally to the hydrostatic head.

REFERENCES

- Benedict, P.C., 1969, Sediment measurement techniques: A. Fluvial sediment: Am. Soc. Civil Engineers Proc., Jour. Hydraulics Div., v. 95, no. HY5, Paper 6756 p. 1477-1514.
- Guy, H.P., 1969, Sediment measurement techniques: F. Laboratory procedures: Am. Soc. Civil Engineers Proc., Jour. Hydraulics Div., v. 95, no. HY5, Paper 6757 p. 1515-1543.
- Lane, E.W. and others, 1947, Report of the Subcommittee on Sediment Terminology: Am. Geophys. Union Trans., v. 28, no. 6, p. 936-938.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: Techniques of water-resources investigations of the U.S. Geol. Survey, Chap. C 1, book 5, Laboratory analysis 58 p. Rainwater, F.H., and Thatcher, L.L., 1960, Methods for collection and analysis of water samples: U.S. Geol. Survey Water-Supply Paper 1454, 301 p.