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1. Introduction

This document is intended to provide guidance for performing I/M program evaluations using
operating program data. The next section is a background of EPA regulation of state I/M
programs and a history of methods used to evaluate these programs”. Section 3 describes general
approaches to I/M program evaluation. Section 4 focuses on Process-Based measurements and
how they relate to I/M program effectiveness and evaluation studies, while Section 5 deals with
Results-Based program evaluation anal yses.

Equipment specifications, Quality Control and Quality Assurance procedures, test procedures,
vehicle pre-conditioning and other details specific to performing emission measurements in a
centralized or decentralized network can be found in the EPA guidance documents “IM240 and
Evap Technical Guidance” and “ASM Technical Guidance’. The importance of proper vehicle
pre-conditioning should not be overlooked and both of the guidance documents cited provide
information on thistopic. It should be noted that is pre-conditioning is not addressed, it is likely
that the estimation of program benefits’ will "be ‘underestimated as the resulting emissions
measurements will be higher.

It is strongly recommended that any state considering the use of in-program data for program
evaluation purposes work closely with their ‘respective regional EPA office and the Office of
Transportation and Air Quality (OTAQ) to ensure the most up-to-date practices are incorporated
into the evaluation. Methods other than those outlined in this guidance document may be
acceptable; however, close coordination with the appropriate EPA regional office and OTAQ
will be even more critical if a state intends to devel op program evaluation protocols and analyses
not discussed in this document.

It should aso be recognized given the difficulties associated with I/M program evaluations, that
an evaluation based on both out-of-program data (e.g. RSD or roadside pullover) and in-program
data will provide a more accurate estimate of overall program performance than ssimply relying
on one method alone. For instance, at this time there is no proposed method of estimating the air
quality benefit of pre-test repair using in-program data; however, analyses of RSD may provide
information on this important element of an I/M program.

2. Background History of 1/M

The Environmental Protection Agency (EPA) has had oversight and policy development
responsibility for vehicle inspection and maintenance (I/M) programs since the passage of the
Clean Air Act (CAA) in 19703 which included I/M as an option for improving air quality. The
first I/M program was implemented in New Jersey in 1974 and consisted of an annual idle test of
1968 and newer light-duty gasoline-powered vehicles conducted at a centralized facility. No
tampering checks were performed and no repair waivers were allowed.

“This section isidentical to Section 2 of “Guidance on Use of Remote Sensing for Evaluation of I/M Program
Performance July 2001 DRAFT”. Itisincluded in this document because it provides a short history of I/M program
development that many may find useful.
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I/M was first mandated for areas with long term air quality problems beginning with the Clean
Air Act Amendments of 1977¢. EPA issued its first guidance for such programs in 1978 this
guidance addressed State Implementation Plan (SIP) elements such as minimum emission
reduction requirements, administrative requirements, and implementation schedules. This
original I/M guidance was quite broad and difficult to enforce, given EPA's lack of lega
authority to establish minimum, Federa, I/M implementation. This lack of regulatory authority -
- and the state-to-state inconsistency with regard to I/M program design that resulted from it --
was cited in audits of EPA's oversight of the I/M requirement conducted by both the Agency's
own Inspector General, as well as the General Accounting Office.

In response to the above-cited deficiencies, the 1990 Amendments to the Clean Air Act (CAAA)°®
were much more prescriptive with regard to I/M reguirements while also expanding I/M's role as
an attainment strategy. The CAAA required EPA to develop Federally enforceable guidance for
two levels of I/M program: "basic" I/IM for areas designated as moderate non-attainment, and
"enhanced " I/M for serious and worse non-attainment areas, as well as for areas within an Ozone
Transport Region (OTR), regardiess of attainment status. ' This guidance was to include
minimum performance standards for basic and enhanced I/M programs and was also to address a
range of program implementation issues, such as network design, test procedures, oversight and
enforcement requirements, waivers, funding, etc. 'The CAAA further mandated that enhanced
I/M programs were to be: annual (unlessbiennia was'proven to be equally effective), centralized
(unless decentralized was shown to be equally effective), and enforced through registration
denia (unless a pre-existing enforcement mechanism was shown to be more effective).

In response to the CAAA, EPA published its I/M rule.on November 5, 1992’, which established
the minimum procedural and administrative requirements to be met by basic and enhanced I/M
programs. This rule also included a perfermance standard for basic I/M based upon the original
New Jersey I/M program and a separate performance standard for enhanced I/M, based on the
following program elements:

* Centralized, annual testing of MY 1968 and newer light-duty vehicles (LDVs) and light-
duty trucks (LDTs) rated up to 8,500 pounds GVWR.

e Tailpipetest: MY 1968-1980 - idle; MY 1981-1985 - two-speed idle; MY 1986 and newer
- IM240.

e Evaporative system test: MY 1983 and newer - pressure; MY 1986 and newer - purge test.

Visual inspection: MY 1984 and newer - catalyst and fuel inlet restrictor.

Note that the phrase “performance standard” used above was initially used in the CAA and is
misleading in that it more accurately describes program design. Adhering to the “performance
standard” does not guarantee an I/M program will meet a specific level of emissions reductions.
Therefore, the performance standard is not what is required to be implemented, it is the bar
against which a program is to be compared.
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At the time the I/M rule was published in 1992, the enhanced I/M performance standard was
projected to achieve a 28% reduction in volatile organic compounds (VOCs), a 31% reduction in
carbon monoxide (CO), and a 9% reduction in oxides of nitrogen (NOXx) by the year 2000 from a
No-I/M fleet as projected by the MOBILE model. The basic I/M performance standard, in turn,
was projected to yield a 5% reduction in VOCs and 16% reduction in CO. These projections
were made based upon computer simulations run using 1992 national default assumptions for
vehicle age distributions, mileage accumulation, fuel composition, etc., and were performed
using the most current emission factor model then available for mobile sources, MOBILE 4.1.
That version of the MOBILE model was the first to include a roughly 50% credit discount for
decentralized I/M programs, based upon EPA's experience with the high degree of improper
testing found in such programs. This discount was incorporated into the 1992 rule, and served to
address the CAAA'simplicit requirement that EPA distinguish between the relative effectiveness
of centralized versus decentralized programs.

The CAAA also required that enhanced I/M programs include the use of on-road testing and that
they conduct evaluations of program effectiveness biennially (though no explicit connection was
made between these two requirements). “In-establishing guidelines for the program evaluation
requirement, the 1992 I/M rule specified that enhanced I/M programs were to perform separate,
state-administered or observed IM240's on a random sample of 0.1% of the subject fleet in
support of the biennial evaluation. Unfortunately, the program evaluation procedure for
analyzing the 0.1% sample was never developed with sufficient detail to actually be used by the
states. In defining the on-road testing requirement, the 1992 rule required that an additional
0.5% of the fleet be tested using either remote sensing devices (RSD) or road-side pullovers.
Furthermore, the role that this additional testing was to play -- i.e., whether it was to be used to
achieve emission reductions over and above those ordinarily achieved by the program, or
whether it could be used to aid in program evaluation -- was never adequately addressed.

At the time the 1992 I/M rule was being promulgated, EPA was criticized for not considering
aternatives to the IM240. Californiain particular argued in favor of the Acceleration Simulation
Mode (ASM) test, a steady-state, dynamometer-based test developed by California, Sierra
Research, and Southwest Research Institute. In fact, this test had been considered by EPA while
the I/M rule was under development, but the combination of IM240, purge, and pressure testing
was deemed sufficiently superior to the ASM that EPA dismissed ASM as a credible option for
enhanced I/M programs. Nevertheless, EPA continued to evaluate the ASM test in conjunction
with the State of California and by early 1995, sufficient data had been generated to support
EPA's recognizing ASM as an acceptable program element for meeting the enhanced
performance standard (even though the ASM itself was still deemed marginally inferior to the
IM240, in terms of its emission reduction potential).

In early 1995, when the ASM test was first deemed an acceptable alternative to 1IM240, the
presumptive, 50% discount for decentralized programs was still in place. Even at that time,
however, the practical importance of the discount was waning, in large part due to program
flexibilities introduced by EPA amed at alowing enhanced I/M areas to use their preferred
decentralized program designs. This flexibility was created by replacing the single, enhanced
I/M performance standard with atotal of three enhanced performance standards:
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* High Enhanced: Essentialy the same as the enhanced /M performance standard originally
promulgated in 1992.

* Low Enhanced: Essentially the basic I/M performance standard, but with light trucks and
visual inspections added. This standard was intended to apply to those areas that could
meet their other clean air requirements (i.e., 15%, post-1996 ROP, attainment) without
needing al the emission reduction credit generated by a high enhanced I/M program.

* OTR Low Enhanced: Sub-basic. Intended to provide relief to those areas located inside the
OTR which -- if located anywhere else in the country -- would not haveto do I/M at all.

Degspite the additional flexibility afforded enhanced I/M areas by the new standards outlined
above, in November 1995 Congress passed and the President signed the National Highway
Systems Designation Act (NHSDA)® which included a provision that allowed decentralized I/M
programs to claim 100% of the State Implementation Plan (SIP) credit that would be allowed for
an otherwise comparable centralized I/M ‘program. These credit claims were to be based upon a
"good faith estimate” of program effectiveness, and were to be substantiated with actual program
data 18 months after approval. The evaluation methodology to be used for this 18-month
demonstration was developed by the Environmental Counsel of States (ECOS), though the
criteria used are primarily qualitative, as opposed to quantitative. As aresult, the ECOS criteria
developed for the 18-month NHSDA evaluations were not deemed an adequate replacement for
the CAAA and I/M rule required biennial program effectiveness evaluation.

In January 1998, EPA revised the I/M rule's original ‘provisions for program evaluation by
removing the requirement that the evaluation be based on IM240 or some equivalent, mass-
emission transient test (METT) and replacing this with the more flexible requirement that the
program evaluation methodology simply be "sound'®. In October 1998, EPA published a
guidance memorandum that outlined what the Agency considered to be acceptable, "sound,”
alternative program evauation methods.’ ‘All' the methods approved in the October 1998
guidance were based on tailpipe testing and required comparison to Arizonas enhanced |/M
program as a benchmark using a methodology developed by Sierra Research under contract to
EPA. Even though EPA recognized that an RSD-based program evaluation method may be
possible, a court-ordered deadline of October 30, 1998 for release of the guidance prevented
EPA from approving an RSD-based approach at that time.

The focus of this document is to provide methods states may use to estimate I/M program
benefits using program data. A separate guidance document is devoted to program evaluations
using RSD. As its operating premise, EPA recognizes that every program evaluation method
will have its limitations, regardless of whether it is based upon an RSD approach or more
traditional, tailpipe-based measurements.  Therefore, no particular program evauation
methodology is viewed as a "golden standard.” Ideally, each evaluation method would yield
similar conclusions regarding program effectiveness, provided they were performed correctly.
Unfortunately, it is unlikely we will see such agreement among methods in actual practice, due
to the likelihood that different evaluation procedures will be biased toward different segments of
the in-use fleet. Therefore, it is conceivable that the most accurate assessment of I/M program
effectiveness will result from evaluations which combine multiple program evaluation methods.
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3. General Approachesto I/M Program Evaluation

3.1 Defining Program Evaluation

Aside from the technical challenges involved in gathering I/M program evaluation data, there are
also subtleties regarding what data is necessary that must be understood. The evaluation of Basic
[/M programs is strictly qualitative as per standard SIP policy protocols used to evaluate
stationary source emission reductions. Historically, these type of qualitative evaluations have
included verification of such parameters as waiver rates, compliance rates, and quality assurance/
quality control procedures, but they have not involved quantitative estimates of emission
reductions using in-program or out-of-program data.

The evaluation of Enhanced I/M programsis not as clearly defined and is left to the discretion of
the Regional EPA based on the dataavailable. In some instances, it may be possible to estimate
the cumulative emission reductions, that'is the current fleet .emissions are compared to what that
same fleet’s emissions would be if no I/M program were in existence. However, directly
measuring the fleet’s emissions to determine the No-1/M baseline is not possible in an area that
has implemented an I/M program. Therefore,.in order to determine quantitatively whether the
level of SIP credit being claimed is being achieved in practice, it becomes necessary to rely on
modeling projections to estimate the No-I/M fleet emissions or measure the emissions of a
surrogate fleet that is representative of the I/M fleet. Obtaining emission estimates from a No-
/M test fleet based on in-program data would obviously require a traditional tailpipe test be
performed on afleet of No-1/M vehicles; however,. it is recognized that this may not be possible
to doin all cases due to time, resource or operational constraints.

Two other analyses are also possible that can provide useful information regarding program
performance. The first method may be thought of as *one-cycle” since it compares the current
I/M fleet emissions to the same I/M fleet’ s emissions from a previous year or cycle. An analysis
such as this would yield information with regard to how the program is improving or declining
from year to year. The other method should be considered “incremental” in that it compares the
current I/M fleet’s emissions to that same fleet’s emissions while being subjected to a different
I/M program, for instance, comparing a fleet’s emissions in an area that has just implemented an
IM240 program to that same fleet’s emissions the previous year when a Basic Program was in
operation. It should be noted, that there is awindow of opportunity prior to and during the start-
up of any I/M program, or program change, to actually analyze the fleet emissions that would
provide empirical data on the No-I/M fleet emissions. If resources and time permit, it is
recommended that these baseline data be analyzed in order to reduce I/M program evaluation
dependency on modeling projections and provide the most accurate measure of |/M program
performance.

3.2 Process vs. Results Based Analysis

Anaysis of I/M program performance can be thought of in two distinct ways: Results-Based or
Process-Based. A Results-Based analysisis more commonly used for looking at the
performance of I/M programs, including comparisons of emissions reductions, pass/fail/waiver
rates, and other uses of the data collected within the program. Out-of-program data may also be
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used, such as remote sensing or roadside tests to determine the emission levels of vehicles
between and independent of regular I/M tests.

In a Process-Based analysis of I/M program effectiveness, each of the mgjor stepsin the I/M
process is evaluated separately:

. achievement of proper fleet coverage
. performance and documentation of accurate emissions inspections
. documentation of repair operations on failing vehicles

The underlying concept of a Process-Based analysisisthat if one step in the processis
ineffective, then the I/M program is ineffective. A single ineffective process can become the
bottleneck of the entire program. On the other hand, even if all processesin an I/M program are
operating as designed, the overall effectiveness is not guaranteed; the program isjust more likely
to be effective.

For example, greater fleet coverage means more vehicles arereceiving tests and possible repairs.
Similarly, factors such as the test method used, instrument calibration and operation, choice of
cutpoints, absence of inspection station fraud, and the effectiveness of vehicle repairs contribute
to the effectiveness of an I/M program. Results-Based analysis may show significant fleet
emissions reductions resulting from the program, but if the tests were done with uncalibrated
instruments, the repairs last only for a short time, or only asmall portion of the fleet is actually
being tested, then the I/M program may not be effective.

When Process-Based analysisis used in-combination with Results-Based analysis, a much more
thorough understanding of the effectiveness of an I/M program may be achieved. If a Results-
Based analysisindicates that an I/M program is ineffective, a state can have difficulty in
determining the cause. In this situation, a Process-Based analysis can help identify where the loss
of program effectiveness occurs.

For Process-Based measures to be used to evaluate an I/M program, some methods or standards
for evaluation are needed. Unfortunately, EPA is not in a position to provide these standards as
the standards should be based on actual operating data, although EPA may provide broad
guidelines and/or standard cal culation procedures for performing these Process-Based analyses
as needed. Nonetheless, EPA recognizes that in many instances, judging the Process-Based
performance of an I/M program may be performed by states operating similar programs
exchanging results from their analyzer, dynamometer and OBDII Tester audits, aswell as repair
datarelating to number and type of repair, etc. This sharing of knowledge is occurring
informally in many forums such as IM Solutions, Clean Air Conference, monthly status calls
between states and routine phone calls and Emails. It isnot clear at thistime if the IM
community would support routinely providing this information to an agreed upon clearing house
to facilitate the exchange of thisinformation, or if the program information is felt to be too
sensitive to permit its free distribution.

In the following sections, methods are described and examples presented for both Process-Based
(Section 4) and Results-Based (Section 5) analyses. Many of the examples presented use actual
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I/M program data taken from several regions; however, the locations will be identified ssmply as
State 1, State 2, etc.

4. Process Based M easur es of Effectiveness

4.1. Participation Rate

Thefleet for an I/M program area may be defined either as the set of vehiclesregistered in the
area, or asthe set of vehiclesdriven inthe area. Results from various RSD programs have
shown that the two fleets are often quite different. Figure 4-1isadiagram of atypical mix of
vehiclesfor an I/M Program area. The vehicles driven in the area may be registered in the area,
or may originate outside the area. Some of the vehicles registered in the I/M program area may
no longer be driven there, if the vehicle owner moves or the vehicleis sold. The set of vehicles
that participate in the I/M program may include most of the vehicles that are both registered in
the areaand are located (driven) there. The greatest emissions reduction benefit would be
achieved if the set of vehicles that are driven in the program areaall participated in the I/M
program. This goal is more difficult to achieve in'some areas than others; for example, the
Kansas City metropolitan region is partly in the state of Missouri and partly in the state of
Kansas, so many of the vehicles driven in Kansas City, Kansas are registered in Kansas City,
Missouri, and vice-versa.

/et of vehicles \/ Set of vehicles register%

registered outside of in I/M Program Area
I/M Program Area
/ Vehiclesdrivenin \

I/M Program Area

Vehicles participating in
I/M Program

N )
\_ %

Figure4-1. Mix of Vehicleswithin an I/M Program Area

To evaluate the performance of an I/M program, afirst basic step isto define the participation
rate of vehicles eligible for the program. Even the most carefully administered |/M program may
be undermined if asignificant portion of the fleet avoids the tests. The goal hereisto compare a
set of vehicles participating in the I/M program to both the registered fleet and the driven fleet.
Emphasis should be placed on comparison to the registered fleet, since location of registration is
almost always used to define the program area; however, even greater emissions reductions
could be achieved in any area by expanding the program to include all vehicles driven in the
area.
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The most basic measure of fleet coverage isto compare counts of the number of vehiclesin the
registered fleet, the driven fleet, and the I/M fleet. Although these rough estimates will contain
errors, given the minimal effort required to obtain these estimates, they should be performed and
recorded. For example, the registered fleet (usually taken from a state registration database)
often includes large numbers of vehicles that have been sold or moved out of area. A registration
database that is not consistently updated as vehicles migrate makes the I/M program participation
rate appear to be lower than it is, and makes it difficult to identify vehicles that really are located
in the area but not participating in the program. License plate readers, such as those used by
RSD and pneumatic vehicle counting devices can be used to estimate the driven fleet. However,
such readers and counters can have sampling errors depending on the locations for the readers.
Because newer vehicles are usually driven more than older vehicles, the RSD data may actually
catch more of the “travel fraction” than the “registration fraction” in an area.

The analysis described in this and the following sections is based on data from states’ Vehicle
Inspection Databases, registration databases, and repair databases. Datasets may have several
million records and require multipl e gigabytes of-computer memory to process. The EPA
contractor (Eastern Research Group) who performed these analyses used a Digital Alpha DS20
Unix system with 100 GB of hard drive space’and 1 GB of RAM with SAS statistical analysis
software.

4.1.1 Comparing Vehicle Age Distributions

One method of assessing the participation rate is to compare the vehicle age distribution of the
registered fleet, the I/M fleet, and the driven fleet. Distributions are used in place of counts due
to the large differences in the fleets. In'the absence of a fully updated registration database,
distributions may still be compared to determine whether the registered and tested fleets are
gualitatively the same. Thistype of comparison isshown in Figure 4-2 using data from State 2.
From thisfigure it may be seen that the set of registered vehicles has alarger proportion of early
1980’ s vehicles than does the I/M set, which might indicate that owners of older vehicles are
avoiding inspections. The driven fleet that was observed on the roads by RSD contains even
fewer vehicles from the oldest model years than the |/M set, indicating that some of the older
vehicles that are registered but not participating in the /M program may not be driven often.
The registration fleet has a mean age of 9.4 years, the I/M fleet, 8.2 years, and the RSD fleet, 7.0
years.

4.1.2 Matching Registration Records with I/M Records

Comparisons between the registered fleet and the I/M fleet could be done directly by attempting
to match each registration record with an I/M record. However, the registration database may
not be updated each time a vehicle is sold outside the area, leading to overstatement of the
difference between the two fleets. Figureslike 4-2 include the implicit assumption that these
sales are evenly distributed over the model years; if thisis not the case, then bias may be
introduced.
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Figure 4-2. Distribution of Vehiclesin1/M Program, Registration Database, and Observed
through Remote Sensing

4.1.3Using Y ear-to-Y ear Trends

Y ear-to-year trends in the age distribution of the I/M fleet may also be informative even though
there can be many reasons for shifts. For example, if afleet had alarger portion of new vehicles
each year, it might be concluded that an'improving economy was helping encourage the
replacement of old vehicles with new ones.  This doesn’t seem to be the case for State 3, shown
in Figure 4-3. The average vehicle ageincreases from 7.3 years in the first program year shown
to 8.0 by the fourth program year.

10 ¢

Percent of Vehicles

O L N W H» 01 O N 0 ©

0 2 4 6 8 10 12 14 16 18 20

Vehicle Age
Figure 4-3. Vehicle Age Distribution over Four Years of I/M Tests

4.1.4 Using Multi-Y ear Trends
Multiple years of 1/M program data may also be used to find the rate at which vehiclesleave the
program between test cycles. Vehicles that |eave the program may have been sold and removed
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from the fleet, or they may remain in the area without participating in the I/M program. For
State 3, vehicles were tracked over the four years of data being used. It was found that almost
80% of the vehicles tested each year returned for testing the next year, as shown in Figure 4-4.
From the data available, it is not possible to determine whether the other 20% of vehicles were
sold outside the program area or ssmply dropped out. Figure 4-4 shows that the percentage of
vehicles returning the next year decreases significantly for vehicles aged 10 years or greater.
These vehicles are also the most likely to fail the I/M test, possibly leading the owners to avoid
further testing. In Figure 4-5, the percentage of vehiclesthat return the year following afailed
I/M test is presented. Since the return rate is considerably lower than the overall average shown
in Figure 4-4, it seems reasonable to conclude that fear of failing the test has led some vehicle's
owners to drop out of the program.
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Figure 4-4. Percentage of Tested Vehicles That Return for Testing the Following Y ear
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Figure 4-5. Percentage of Failing Vehiclesthat Return for Testing the Following Y ear

4.1.5 Parking Lot Sticker Surveys

Datafrom parking lot sticker surveys have been used by states as a cost-effective method to
estimate I/M program compliance rates™ **. Care must be taken to ensure that the surveys
capture a representative sample which will require appropriate geographic coverage. Also,
procedures must be documented and in place to minimize the opportunity for fraudulent stickers
to be obtained by those motorists seeking to avoid the program.

4.1.6 Recommended Best Practice

One of the five methods described above should be used to verify compliance rate estimates used
in the SIP, aswell asfor estimating average emission reductions when used with failure rate and
emission data. The primary goal isto diligently update and maintain the accuracy of the vehicle
registration database, so that direct comparison between the sets of vehicles registered and
participating in the /M program'may be made. ‘License plate reading equipment like that used in
RSD studies may be used to confirm the accuracy with which the vehicle registration database
represents the fleet. Until ahigh level of confidence in the accuracy of the registration database
is developed, comparisons of distributions such.as those shown in Figures 4-2 and 4-3 should be
used to qualitatively compare the set of vehicles thatundergoes I/M testing to the registration
database. Figureslike 4-4 and 4-5 should be used to estimate the rate at which vehicles drop out
of the I/M program. Parking lot surveys have been used by many states as a cost-effective way
to estimate compliance rates al so.

4.2. |/M Effectiveness

4.2.1 QA/QC

The effectiveness of the inspection processitself may be influenced by many factors. The
inspection is primarily based on the measurement of vehicle emissions. Any factors that degrade
the accuracy of the emissions measurement contribute to the degradation of the I/M program.
Such factors might include improper analyzer calibrations, analyzers that require maintenance,
inaccurate data entry of vehicle information, emissions cutpoints that are too |oose or too
stringent, emissions tests with excessively large measurement errors, and inspection station
fraud.

The following sub-sections provide a discussion and examples of ideas for techniques that can be
used to evaluate many of the factors that contribute to ineffective I/M programs. Passing grades
on al factors does not necessarily guarantee a successful I/M program. On the other hand, a
poor grade on one factor can act as a bottleneck preventing an I/M program from being effective.
Beyond merely using these techniques to demonstrate I/M program effectiveness, a state can use
these techniques to identify for itself areas of inspection effectiveness that are good and areas
where improvements need to be made.

Thisanalysis of in-program |/M data should also be performed prior to any analysis of emissions
reductions so that emissions reduction calculations will be based on the data of known quality.
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4.2.1.1 Instrument Calibrations

Records of I/M program analyzer calibrations can be used to measure the drift of analyzers
between cadlibrations. If many analyzersin astate’s I/M program drift substantially, the results of
measurements are suspect. Ideally, all analyzers should drift no more than the specification of the
analyzers.

For example, in State 3 analyzers must be calibrated at |east every 72 hours. Before calibration,
each analyzer is checked for drift by measuring the calibration gas mixture, whose concentration
is known within a specified precision. If the analyzer has not drifted since the last calibration, its
readings for the calibration gas will be close to the bottle |abel value, and little calibration
adjustment will be necessary. The difference between this pre-calibration analyzer reading and
the label concentration in the gas mixture is a direct measure of instrument drift. Analyzers that
consistently drift little from calibration to calibration can be expected to produce more accurate
measures of vehicle emissions than those that drift grestly.

Six months of instrument pre-calibration data containing 90,781 calibrations from 2,324
instruments was examined. We examined the analyzers' drift characteristics on readings for HC,
CO, CO,, and O, for zero, mid-span, and high-span gases. For this example, the CO high-span
gasisanayzed, which had alabel value of 4.0%. The BAR90 analyzers, which were used in this
[/M program, have an accuracy specification of £0.15 % for a 4% CO gas. Accordingly, itis
expected that most of the 90,781 pre-calibrations should fall within about £0.15 % of 4.00%.
Any pre-calibrations that fall greatly outside this range would cause concern.

Figure 4-6 shows a histogram of the 90,781 pre-calibrations for all instruments in the state during
this period. About 86% of the values are within £0.15 % of 4.00%. However, 3.7% of the values
are zero, and 0.5% of the values are between 0.1% and 3.5%. These unexpected values raise
concern and should be investigated. Several explanations may exist for these unexpected values.
In any case, states that have tighter distributions of pre-calibration values and have asystemin
place for addressing out-of-spec val ues have a better chance of having an effective I/M program.
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Figure 4-6. Distribution of Values for High-Span CO Pre-Calibrations

Instrument Calibrations Recommended Best Practice

Instrument calibration data, especialy the pre-calibration readings, are a good indicator of
instrument drift and should be tracked regularly. Instruments that consistently drift more than
the instrument specifications should be repaired.

4.2.1.2 Instrument Audits

Independent instrument audits of I/M program emissions analyzers with certified bottled gas can
also be used to evaluate analyzer accuracy. This additional instrument check is valuable because
instruments can experience periods when they are out of calibration even if the pre-calibration
data shows that the instrument haslittle drift. One possible causeis problems with the line
leading from the tailpipe probe to the instrument. Instrument calibrations introduce gas at the
instrument; instrument audits and-vehicle testsintroduce gas at the tail pipe probe. Obstructions,
leaks, or contamination might cause audits (and emissions measurements) to be out of
calibration.

For example, I/M analyzers were calibrated as normal using a station’s normal supply of
calibration gas. Nothing abnormal was seen in the calibration data recorded in the VID. The
instruments were routinely challenged using a supply of bottled gas separate from the station’s
calibration gas. Most instruments passed the audits for zero, low-span, and high-span gases, asis
shown for CO, in Figure 4-7. However, one instrument showed varying behavior from day to
day with values biased low by about 30% on several days, asis shown in Figure 4-8.
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Figure 4-8. Poor Analyzer Results for 3 Audit Gases

These audits indicated a recurring instrument problem that was not caught by the station staff or
the VID data. The problem was serious even though the measured quantity (CO,) isnot a
pollutant of interest (HC, CO, or NO), since CO, is used to correct for exhaust dilution;
inaccurate corrections would be made with an erroneous CO, value. The result would be
inaccurate determinations of dilution-corrected HC, CO, and NO,.

States that have some sort of instrument audit program in their I/M program would potentially be
able to identify instruments that are out of calibration by analyzing the data as described above.

Instrument Audits Recommended Best Practice

A standardized method of instrument audit program provides an added level of confidence that
instruments are accurate. We have found cases where instruments calibrated well and showed no
drift between calibrations, but provided inaccurate results when challenged with a separate
source of gas.

4.2.1.3 DCF Check

The measurement of exhaust emissions concentrations can be confounded by the dilution of the
exhaust gas by non-optimal probe placement, leaking exhaust systems, cylinder misfires, and
excess oxygen from air pumps. Some I/M program emissions analyzers use measured CO and
CO, concentrations to calculate a dilution correction factor to correct raw exhaust emissions
concentration values for this dilution to arrive at emissions values on an undiluted basis.

Assuming stoichiometric combustion of gasoline, an exhaust dilution correction factor (DCF)
can be estimated using a carbon mass-bal ance and the measurements of CO and CO,. These
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constituents are measured in the non-dispersive infrared bench of the analyzer. The equations are
based on the average composition of gasoline.

First, define the variable x:

CO2

X=— %
C02+CO

where the CO, and CO values are in percent.

Then the dilution factor, dcf ¢, , ISasfollows:
X /(4.64 +1.88x)

CO2

dcf oo, =100

If afuel other than standard gasolineis used, the 4.64 constant will be different. For example,
the constants for methane (CNG), propane (LNG), methanol (M-100), and ethanol (E-100) are
6.64, 5.39, 4.76, and 4.76, respectively. The constants for reformulated gasoline and oxygenated
gasoline will depend on gasoline composition, but are generally not far from 4.64.

In addition, many emissions analyzers also measure exhaust gas oxygen concentration with an
electrochemical cell. Assuming an ambient air axygen concentration of 20.9%, the exhaust
oxygen measurement can aso be used to.estimate dilution in the exhaust. A dilution correction
factor based on the measured oxygen concentration O, is:

dai, (=209
2 209-0,

This relationship assumes that the tail pipe oxygen concentration for stoichiometric combustion
and no air in-leakage is 0.0% O,. Field measurements indicate that new vehicles with no exhaust
system leaks and operating at stoichiometric air/fuel ratio have 0.0% tail pipe oxygen
concentrations.

If CO, CO,, and O, are measured correctly, the independent DCFs (CO/CO, and O,) for each
vehicle inspection should agree well with each other. Emissions results for two-speed idle tests
in State 3 were examined and the DCFs were calculated for each test on each vehicle. Figure 4-9
shows a plot of the high-speed idle DCF based on CO/CO, versus the high-speed idle DCF based
on O, for each emissions test. The plot shows that many of the points fall near the 1:1 line as
expected; however, many aso fal far off the 1:1 line. Those pointsthat fall off the line represent
analyzer sensors for CO, CO,, or O, that are broken or out of calibration, data entry errors, or
tests on vehicles that use fuels far different from gasoline. Idedlly, all points would fall near the
1:1line.
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Figure 4-9. Comparison of High-Speed Idle DCFsin State 3.

Each state could use this evaluation of CO, CO,, and O, data for every emissions inspection to
demonstrate the fraction of inspectionsthat meet'a minimum requirement. Tolerances for
agreement between the two types of DCFs can be determined from the I/M analyzer accuracy
specifications for CO, CO,, and O, and the local gasoline composition. The plot with this data
indicates that the difference between the two DCFs should be no larger than about +0.14.

The dilution correction factor relationships are a consequence of gasoline combustion
stoichiometry. Therefore, it also follows that arelatively constant relationship exists among the
undiluted exhaust gas concentrations of O,, CO, and CO, from a gasoline-fueled engine even if
the engine produces significant concentrations of HC, CO, and NO,. Analyzer manufacturers
could use this relationship to provide a check of each emissions test as it was being performed. If
the relationship was not satisfied, the analyzer operator would see a flag to indicate that analyzer
maintenance should be performed.

DCF Check Recommended Best Practice

The raw (before any corrections) concentration measurements of all emissions tests should
indicate that combustion of gasoline (or of whatever fuel is used) isthe source of emissions. One
way to check thisisto compare calculated dilution correction factors based on CO/CO, against
those based on O,. For every emissions test they should agree within about +0.14. If they do

not, the emissions test may be inaccurate. DCF checks can be made on recordsin the VID, but it
may be best to incorporate them in the analyzers so that inspection stations can address the
problem immediately.
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4.2.1.4 Inspection-Repair Sequence

An analysis of vehicle inspection/repair records from the VID can be used to evaluate the
accuracy and completeness of datain the VID system. States that have better VID systems have
more reliable inspection and repair data and therefore can better support their claims of effective
I/M programs. The following is an example of an analysis of inspection/repair sequences for
State 3. Inthis state no repair records were kept, and so the example cannot make use of repair
information. One of the key items of Section 4.3 is the strong recommendation for states to
maintain good records for vehicle repairs performed as part of an I/M program.

Each vehicle wastested at an I/M station on one or more occasions. On each occasion, the VID
contains avariable that gives the type of test (Initial or Re-test) and avariable that givesthe
result of the emissions test (Pass or Fail). The Test Type variable has special rules for
designating whether atest isan Initial or a Re-test. For Initial tests, customers are charged for the
inspection. If they fail the inspection but return after repairs within 5 days, then the second test is
designated a Re-test, and the customer. is not charged for the Re-test. If more than 5 days have
elapsed, then the second test is designated-an-Initial test and the eustomer is charged again.
Consequently, atest that is designated Initial may actually be a follow-up test in an effort to get
the vehicle to meet I/M requirements. In any case, four combinations of these two variables are
possible for each occasion. For analysis purposes, the four combinations were given designators
asshownin Table 4-1.

Table 4-1. Designatorsfor Test Type and Result

Designator | Test Type | Emission Test Result

IF Initial Fail
IP Initial Pass
RF Re-test Fail
RP Re-test Pass

Then, for each unique VIN, the designators were concatenated in chronological order to create a
sequence number that describes the testing sequence that each vehicle experienced during I/M
testing. For example, for avehicle that initially failed and then passed on are-test, the test
sequence would be IF, RP. The frequency distribution of the resulting test sequencesis shown in
Table 4-2.

The distribution shows that the top ten most frequently found sequences accounted for 99.64% of
the vehiclestested. Although it is recognized that some of the vehicles may have incomplete test
cycles because the test cycle was begun in the last few days of the data set period, some of these
sequences raise questions. Why are 1.37% of the vehicles tested a second time after they pass?
Why do 0.82% of the vehicles undergo no further testing when they failed initially? An
important part of an analysis of inspection/repair sequences is to document the explanation for
these apparent anomalies.

Table 4-2. Frequency Distribution of Test Sequencesin State 3

Test Sequence Vehicle Frequency|% of Vehicles

DRAFT August 2001 -21-



O©CO~NOOITAWNE

IP 3,413,802 94.24
IF, RP 66,987 1.85
IP, IP 49,771 1.37
IF 29,682 0.82
RP 21,509 0.59
IF, IP 9,183 0.25
IF, RF, RP 7,037 0.19
IF, RF 4,790 0.13
IP, RP 4,365 0.12
IF, RF, IP 2,192 0.06
450 Other Test Sequences 13,093 0.36
Tota 3,622,411 100.00

Approximately, 450 less frequently used sequences accounted for the remaining 0.36% of the
tested fleet. Many of these remaining sequences seem to be unlikely. For example, what could be
the reason for 21 vehicles having the sequence | P, IR, 1P, 1P, AP, IP, IP? It is suspected that these
sequences represent database data entry problemsinstead of real situations. Better inspection
database systems should be able to reduce the occurrence of these unlikely test sequences.

Inspection Repair Sequence Recommended Best Practices

When a good inspection data set is combined with a good repair data set, the sequences of
inspections and repairs should make sense. Cross-checking between these data sets can identify
many errorsin VID datasets. The sequence of eachvehicle should tell asimple story. If it does
not, data entry problems probably exist.

4.2.1.5VID Check

Since the in-program datais the primary, basis of the |/M program evaluation, a series of basic
data checks should be used to demonstrate the accuracy and completeness of the datain the
database. Thefollowing list may serve as a starting point for basic validation checks in future
[/M program evaluations.

1) The beginning and ending dates of the VID data under consideration should be
specified.

2) A frequency distribution of almost all database variables should be provided to
demonstrate the accuracy and completeness of data entry. Missing and
nonsensical values should be included in the distribution to show the frequency of
improper entry.

3) A distribution of the emissions measurementsis a special case of the above.
Idedlly, no observations with missing values should be present. Also, al
observations should have a CO, concentration between about 6% and 17%, since
a combustion process must be present.

4) The fraction of observations with both the license plate and the VIN missing
should be determined.

DRAFT August 2001 -22-



O©CO~NO U, WNPE

5) The validity of each VIN should be checked in some manner. In the simplest
method, the check digit in 1981+ VINs can be checked. More extensive VIN
checking efforts could involve comparison of the recorded vehicle description
information with the corresponding information from a VIN decoder.

6) Each license plate should be associated with only asingle VIN.

7) Within asingle I/M cycle, each vehicle should have arecognizable and
reasonabl e test and repair sequence. For example, a vehicle with a“fail, repair,
fail, repair, pass’ sequence isreasonable, but one with a*“fail, repair, pass, pass,
pass, repair, fail, fail” sequenceisnot. Data entry problems by test stations and
repair stations can produce unreasonable sequences. Accordingly, a frequency
distribution of sequences can be an indicator of the extent of data entry problems.

VID Check Recommended Best Practices

These checks are probably the most fundamental V1D data checks. They involve sanity checks
on every fieldin the VID. Distributions of numeric variables, frequency distributions of
categorical fields, x*y plots, and range checks can all be used to find how dataisimproperly
entered in the database.

4.2.2 Test Data

A discussion of the effectiveness of emissions inspections is necessary to evaluate their
contribution to the overal I/M program of a state. If a state’s1/M program covers the fleet well
and has great repair stations, but the emissions inspection stations cannot properly identify high
emitting vehicles, the overall effectivenessof thel/M program will suffer.

Perhaps the most fundamental part of the discussion of emissions measurement is a definition of
the ingpection flow sequence. The inspection sequence would first define the vehicles that are
subject to I/M testing. For example, thismight'be 1975 to 1995 light-duty, gasoline-fueled
vehicles. Then, perhaps all-wheel-drive vehicles get atwo-speed idletest, and all remaining
vehicles get an ASM test. All of the stepsin the inspection flow would be defined, including
station type (e.g. test only, test and repair, centralized, decentralized), test type (e.g. IM240,
ASM, gas cap check) and associated cutpoints, model year group selections, waiver thresholds,
and exemption criteria. This inspection sequence should be presented as a flow diagram.

Next, the flow diagram should be annotated to show the number of vehicles and inspections that
occurred in the state for the evaluation period. Thiswould allow a between-state comparison to
be made of corresponding parts of the emission inspection sequence. For example, one state
might have awaiver threshold of $200 with 2% of vehicles waived, while another state has a
waiver threshold of $500 with only 0.3% of vehicles waived.

Next, the important characteristics of the emissions tests used should be defined. Thiswould
include emissions test type and emissions pass/fail criteria(i.e. cutpoints).

Correlations can be built to use short emissions test results (e.g. ASM, two-speed idle, IM240) to
predict reference emissions test results (e.g. IM240, FTP). The importance of vehicle pre-
conditioning in any correlation study or program evaluation effort must not be overlooked as
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inconsistent pre-conditioning will have an adverse impact on the test program. The IM240 test
can be the reference tet, or it can be a short test when the FTP isthe reference test. Studies that
apply these correlations indicate that the greatest source of error for avehicle receiving an
incorrect pass/fail designation by the short test is the difference in the responses of vehiclesto
the short and reference tests®*. These studies indicate that measurement errors of the short test
and of the reference test are small contributors to incorrect pass/fail designations. Therefore,
states should report the variance of the deviations between their short test (if they use one) and a
referencetest. A state could measure this variance by performing out-of-program reference tests
on asample of program-eligible vehicles. Alternatively, a state could ssmply quote the variance
measured by other states. However, states that can demonstrate a smaller variance will tend to
have the better inspection effectiveness.

4.2.2.1 Measurement Error

The measurement error of an emissionstest is an estimate of the uncertainty in the reported
emissions of asingle measurement. Tests that have large measurement errors will cause the
pass/fail status of some vehiclesto be improperly designated; however, studies have shown that
such tests can still provide emission reduction benefits for the fleet as awhole (14 above). For
each emissions test type, the measurement error (as determined by replicate testing of vehicles)
should be reported. States may choose to report measurement error calculated from datataken in
other states, or they may choose to cal culate measurement error based on their own data of repeat
emission measurements.

This measurement error for an emissions test can be calculated from repeat emissions
measurements on a sample of vehicles, A state could obtain repeat measurements by performing
them on vehicles that are being inspected as part of the normal 1/M program. The vehicles that
receive repeat measurements should be selected to cover the range of emissions levels
represented in the fleet. In general, a stratified sampling technique will provide the most useful
information from the fewest measurements. | The measurement error is calculated by pooling the
variance of each repeated vehicle' s measurements. However, the variance for each vehicle must
be calculated after transforming all emissions measurements to a space where measurement error
isrelatively constant for all emission levels. We have found that the natural log transformation
provides this attribute for most emissionstests. An example of the calculation of measure error
isprovided in Reference 13 above and is briefly outlined in Appendix A.

4.2.2.2 Cutpoints

The cutpoints applied to emissions measurements to designate a vehicle as apass or fail also
have an important influence on the correctness of the designation and thereby on the overall
measurement effectiveness. An analysis of cutpoint effectiveness could be performed on in-
program data. States should already have an understanding of the role that cutpoint selection
playsin identifying vehicles that need repair versus vehicles that are sent to repair. The following
conceptua discussion is meant to reinforce that understanding, and it will lead to suggestions for
evaluating and optimizing cutpoint selection. With regard to optimizing cutpoints there are those
who believe there should be methods to get information on the emissions and repair rates of
vehicles below current cutpoints. The rational for this approach is that without this information,
state I/M program administrators would only be able to look to higher cutpoints to search for an
optimum.
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Figure 4-10 qualitatively shows the emissions distributions of vehiclesin astate’s I/M program
fleet subject to a common cutpoint. All vehicles that have a properly functioning emission
control systems arein the lower emitting distribution (shown by the thin line); these vehicles are
non-repairable since they have no problems. All vehicles that have problems with their emission
control systems are in the higher emitting distribution (shown by the thick line); these vehicles
could be repaired if the I/M program could identify them. The two distributions have a
significant overlap in emissions. Thisoverlap is a consequence of the emissions characteristics
of specific non-repairable and repairable vehicles. For vehicles of the same age and technology,
some broken vehicles will have emissions lower than some properly operating vehicles.

Wherever the cutpoint is chosen (shown by the dashed vertical linein the figure), some vehicles
will be properly designated and some vehicles will be improperly designated as pass or fail.
Improper designations include two types: non-repairable vehicles called afail, and repairable
vehicles called apass. Where should the state set its cutpoint? If astate sets a high (loose)
emissions cutpoint, most failures will be repairable, few failures will be non-repairable, but only
asmall fraction of all repairable vehicleswill-be sentfor repairs., The state’ s airshed incurs an
environmental cost from these false passes. If a state sets alow (stringent) emissions cutpoint, a
larger fraction of al repairable vehicles willbe sent for repairs, but many non-repairable vehicles
will aso be sent for repairs. In this case, vehicle ownersincur an expense for taking their vehicle
to get arepair for a problem that does not exist.
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Figure 4-10. Conceptual Emissions Distributions of Repairable and Non-Repairable Vehicles

With estimates of the cost of false passes, the cost of false fails, and the distributions of
repairable and non-repairable vehicles (as shown conceptually in Figure 4-10), a state could
optimize the selection of the cutpoint by minimizing the total cost, which isthe sum of false pass
and falsefail costs.

Although the actual accounting in this situation will likely be difficult, a state could estimate the
costs of false passes and false fails by an-economic analysis. False pass costs would be driven by
the influences of excess emissions released and would include health costs, cost of further
stationary source limits, and costs of not achieving SIP goals. Falsefail costs would be driven
by inconvenience costs including time and repair costs lost by owners taking vehiclesto repair
shops for problems that do not exist. Excess emissions identified estimates would have to be
obtained from paired testing using a state’s I/M test and a suitable reference test, and in many
instances, such aswith idle, IM240 and ASM tests, data sets exist that could aid in this effort.

For a state to optimize the location of the cutpoint, knowledge of the shape of the non-repairable
and repairable distributions at emissions above and below the cutpoint is also required. An
analysis of the distributions above the current cutpoint should be performed first since the I/M
program will already have the data. The parts of the distributions for emissions above the
cutpoint value can be determined by an analysis of in-program emissions and repair data. The
state should analyze these distribution shapes and report them; they are an indication of the
ability of the emissions measurements to resolve (i.e. separate) the repairable from the non-
repairable vehicles. Some emissions tests may be better able to resolve repairable and non-
repairable vehicles than other tests. Later, the discovery of repairable and non-repairable
distributions below the current cutpoint using typical in-program I/M data could be made, but it
ismore difficult. There aretwo potential problems. fast-pass and fast-fail emissions
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measurements and the unknown repair needs of vehicles with emissions below the cutpoint.
Without accurate emissions and repair datafor at least a sample of vehicles with emissions
below the current cutpoint, the search for a more cost-effective cutpoint below the current
cutpoint cannot be made with in-program data.

The use of fast-pass and fast-fail emissions measurements increases throughput at I/M stations
but impedes determination of the emissions distributions. Whenever an emissionstest is cut
short by invoking fast-pass or fast-fail criteria, the emissions level of the full test is obviously
lost. 1n some I/M programs, whether atest result isfrom afast test or afull test may not be
recorded. Use of fast-pass algorithms contaminates emissions measurements below the cutpoint;
fast-fails contaminate measurements above the cutpoint. If in-program dataisto be used for
optimizing cutpoints, fast-fail algorithms should be used only above some high emissions value,
where cutpoints would never be considered, and fast-pass agorithms should be used only if the
instantaneous emissions measurement of avehicleis at afraction (e.g. 50%) of the standard
cutpoint value. Thiswould alow an analysis of the full cycle emissions datafor all inspectionsin
awindow, for example, between 50% of the cutpoint-and 400% of the cutpoint.

The second area of information required to aptimize the cutpoint is the distribution of the
repairable and non-repairable vehicles below the current cutpoint; however, thereis no
unobtrusive, cost-effective method to obtain such data Normally, no vehiclesthat are
designated pass are sent to repair, and therefore, the fractions that are repairable and non-
repairable are not known. Therefore, the only way to find these fractionsisto try to repair or to
diagnose a sample of the passing vehicles. This could be done with arandom sample of the fleet
that passed by offering the vehicle owner an incentive to participate. The cost of the incentive
would be paid for by the increased cost-effectiveness of the I/M program after cutpoints are
adjusted. Given the anticipated difficulties'of suchastudy, it may be best left for ajoint study
between EPA and interested states to perform a pilot study that would provide insight into this
question. But it does seem clear that states that had access to such cutpoint optimization
procedures would tend to have better I/M programs than states that did not, and their I/M
programs would benefit from the optimization.

4.2.2.3 Recommended Best Practices

A state should provide a process flow diagram of the flow of vehicles through its1/M program.
The diagram should show vehicle counts at al points. The emissions tests used should be
defined and evaluated in terms of measurement error and vehicle-vehicle response differences
with respect to areference test (FTP or IM240). A definition and effectiveness evaluation of
cutpoints should be made. Effectiveness should be evaluated in terms of false fails and false
passes based on the repairs performed whenever possible.

4.2.3 Out-of-Program Comparison Data

States also may be able to use out-of -program comparison data to demonstrate inspection
effectiveness™ Only in-program data can be used to demonstrate the I/M program data quality of
astate' s particular program as discussed in Section 4.2. However, the quality of the emissions
inspections themselves may be judged using out-of-program comparison data. Two techniques

“The term out-of-program comparison data is used here to distinguish from the term out-of-program data that is
typically used to refer to RSD or road side pullover data.
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for doing so are discussed below. States may be able to suggest other techniques to help put the
inspection effectiveness of a state’s I/M program in perspective.

A round robin is a technique commonly used by laboratories to cross check analytica methods
among a group of laboratories. For example, diesel fuel samples taken from a single bulk
guantity are sent to different labs for analysis of aromatics. The labs may analyze the aromatics
by their method of choice (e.g. FIA Hydrocarbon, HNMR, CNMR, GC-MS, Aniline Point, etc.)
or by all the methods each |ab has available. Analysis of the round robin results from all labs
reveals which labs reported results that were significantly different from the participants in the
round robin. Those “outlying” labs can then investigate the details of their analytical methods. If
several different types of samples are sent to each lab, the results can also be used to ook for
biases among the analytical methods. The same round robin technique may be applied to
emissions inspections as well and is commonly used by auto manufacturers and regulatory
|aboratories.

4.2.3.1 Vehicle Round Robin Testing

The first technique might be to send test vehiclesto different I/M stations for testing. Shipment
could be done using vehicle transporters so that the emissions characteristics are not changed
greatly as aresult of mileage accumulation; some states already do this. The vehicles would be
selected to cover arange of technologies, model years, and emissions levels. The emissions of
these vehicles could be tested at different I/M stationswithin the state. Analysis of results would
indicate the variability among I/M stations in the state. If repeat tests were performed on the
vehicles at each station, the variability of emissions testing at participating stations could be
determined.

A dlight variation of this application mightbe even more useful. Vehicles could be transported
for testing at I/M stations in neighboring states. Where large populations are near a state border,
private vehicle owners could be paid an incentive to participate in a state-to-state /M program
comparison effort. Since neighboring states may use different emissions measurement methods
(e.g. IM240, ASM, two-speed idle, pressure, purge and pressure, gas cap check, etc.), these
results would provide data to eval uate emissions measurement effectiveness of the different
techniques and to establish relationships among the different methods. If the transport of
vehiclesis not possible, at a minimum, gas bottles of known concentration could be measured at
the respective test facilities within a give state or anong neighboring states to assess analyzer
accuracy and judge the relative effectiveness of the slight differences that will invariably exist
between analyzer QA/QC procedures.

4.2.3.2 Test Crew Round Robin Testing

In a second technique, instead of transporting vehicles, I/M instruments and test crews could be
sent to neighboring states. The crews would set up at neighboring state I/M stations and inspect
some of that state’ s vehicles. Vehicles would be inspected by their state’s crew and then would
be offered an incentive to undergo I/M testing by the out-of-state crew. Reciproca agreements
among neighboring states would provide for reciprocal testing visits and sharing of data. This
technique would provide a much large sample of vehicles tested by two emissions measurement
methods than the first technique.
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4.2.3.3 Recommended Best Practices

The quality of the emissions inspections themselves can be judged using out-of-program
comparison data. Round robins of vehicles or I/M analyzers with crews sent to I/M stations of
adjacent states can be sources of datafor comparisons. Emissions measurements of vehicles or
gas bottles of known concentration analyzed by two different I/M programs will reveal
measurement bias between the programs. If resources permit, the information provided by such
effortsis believed to be worth pursuing.

4.3. Effectiveness of Repairs

4.3.1 Number and Type

State 3 requires all state-certified repair stationsto record in the Vehicle Information Database
the repairs that were made to each vehicle. For each repair event, the repair station records all
repair actions that were made to the vehicle from alist of 34 repair types. Supporting information
isalso entered for station identification, vehicleidentification, repair cost, repair date and time,
etc.

Tables 4-3 and 4-4 show the frequency of repair station actions taken for each repair type for
passenger carsin two different model year groups. Table 4-3 shows results for 2,486 repair
events on 1976-1980 model year vehicles, and Table 4-4 shows results for 2,593 repair events on
1991-1995 model year vehicles. These model year groups were chosen to show the differences
in repair types and frequencies for vehicles of different technologies and ages. The 34 repair
types are described in the first column of ‘each table.. The last column of each table gives the
percent of repair events that involved the item indicated.

In general these tables show the level of repairs that were made to these vehicles. Such data
documents that repairs are being made and therefore, on'the simplest level, the /M program is
causing repairs to be madeto vehiclesin thefleet. A state that has alarger fraction of its
vehicles undergoing repairs in comparison to another state can, al other things being equal, be
expected to have a more effective I/M program. Obviously, stations that perform repairs where
none are needed will decrease effectiveness. Additionally, whether these repairs are effective at
reducing emissions must also be demonstrated. Thisis the subject of the next sub-section.

4.3.2 Emission Reductions

A state can demonstrate the effectiveness of its I/M program by performing an analysis of in-
program emissions measurements before and after repairs. At the ssmplest level, this can be
demonstrated by the average emissions of repaired vehicles before and after repair and the
average emissions change. State 3 used the ASM 2525 test for its I/M program. Table 4-5 shows
the averages for the repaired vehicles in the two chosen model year groups.

Initially, such atable seemsto indicate that the /M program is producing real emissions
reductions. However, because of the “regression toward the mean” effect, any emissions
reductions based on the same measurements used to declare vehicles as emission failures are
biased. Thus, even if no repairs were made to failing vehicles, the average change of measured
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Table 4-3. Repair Station Actions for 1976-1980 Cars

Reconnected | Defective Not Itemis |Replaced| Repaired, % Replaced,
and Not |Applicable] OK Cleaned, or Repaired,
Repaired Adjusted Cleaned, or
Adjusted
1/SPLUGS spark plugs 0 7 309 1693 443 34 19.2
2|IGWIRE ignition wires 5 15 320 1987 159 0 6.6
3|DISTR distributor 0 7 327 1909 203 40 9.8
4|SPAADV spark advance 9 37 258 1908 23 251 114
5/SPATIM spark timing 0 5 180 1321 1 979 394
6/VACLEA vacuum leaks 34 76 7 1739 16 614 26.7
7/IDLMIX idle mixture 0 23 93 287 5 2078 83.8
8|IDLSPE idle speed 0 8 122 478 3 1875 75.5
9|CARINJ other carburetor or fuel 8injection work 1 328 287 1321 98 451 221
10|AIRFIL air filter 0 9 219 1736 477 45 21.0
11|CHOKE choke 1 32 442 1861 17 133 6.1
12|TAC thermostatic air cleaner 28 156 495 1708 18 81 5.1
13|PCV positive crankcase ventilation 5 16 376 1841 144 104 10.2
14|AIRINJ air injection 22 222 1301 874 19 48 36
15|EGR exhaust gas recirculation 81 213 785 1124 159 124 14.6
16 EVAP evaporative control 14 81 572 1795 8 16 15
17|GASCAP gas cap 0 9 869 1604 4 0 0.2
18|CATCON catalytic converter 3 555 846 996 86 0 3.6
19|FFR fuel filler restrictor 0 57 1133 1294 1 1 0.1
20|O2SENS 0OXygen sensor 0 4 2405 66 10 1 0.4
21|TPS throttle position switch 0 1 2369 107 1 8 04
22\WOT wide open throttle sensor 0 0 2402 81 1 2 0.1
23|MAP manifold absolute pressure sensor 1 0 2430 54 1 0 0.1
24 MAF mass air flow sensor 0 13 2367 87 3 16 0.8
25|CTS coolant temperature sensor 0 3 2166 311 4 2 0.2
26|TVS thermal vacuum switch 9 57 1471 909 33 7 2.0
27|OTHSEN other sensors 1 24 1933 522 5 1 0.3
28 PROM engine management computer 0 8 2335 141 2 0 0.1
29/ENGINE engine management computer 0 401 1049 1011 0 25 1.0
30|PVALVE carburetor power valve 0 128 918 1271 66 103 6.8
31|CFLOAT carburetor float 0 96 809 1365 66 150 8.7
32|EGRPAS egr passages 1 179 973 1205 2 126 5.2
33|EGRCTL egr controls 36 143 1009 1213 19 66 4.9
34|OTHER other repair items 0 53 1299 1045 59 30 36
Table 4-2. Repair Station Actions for 1991-1995 Cars
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11
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Reconnected | Defective and Not Itemis |Replaced| Repaired, % Replaced,
Not Repaired |Applicable] OK Cleaned, or Repaired,
Adjusted Cleaned, or
Adjusted
1|SPLUGS |spark plugs 1 10 214 1614 697 55 29.1
2|IGWIRE |ignition wires 2 15 274 2086 213 1 8.3
3|DISTR digtributor 0 8 883 1479 187 34 8.5
4|SPAADV |spark advance 0 1 398 2152 3 37 15
5/SPATIM _|spark timing 0 2 401 1741 2 445 17.3
6|VACLEA |vacuum leaks 13 3 10 2384 6 175 75
7|IDLMIX |idle mixture 0 9 681 1508 0 393 15.2
8|IDLSPE |idle speed 0 5 531 1690 0 365 141
9|CARINJ |other carburetor or fuel 8injection 1 35 535 1670 27 323 135
work
10|AIRFIL air filter 0 6 312 1798 425 50 18.3
11|CHOKE |[choke 0 0 1875 704 6 6 0.5
12|TAC thermostatic air cleaner 1 5 1585 989 1 10 05
13|PCV positive crankcase ventilation 5 1 454 1900 169 62 9.1
14|AIRINJ  |air injection 2 4 1685 883 6 11 0.7
15|EGR exhaust gas recirculation 9 14 982 1370 99 117 8.7
16 EVAP evaporative control 1 1 517 2060 4 8 0.5
17|GASCAP |gascap 0 0 793 1795 3 0 0.1
18|CATCON |catalytic converter 1 342 154 1512 582 0 225
19|FFR fuel filler restrictor 0 1 795 1786 8 1 0.3
20|O2SENS | oxygen sensor 9 48 170 1445 872 47 35.8
21|TPS throttle position switch 0 2 486 2027 16 60 29
22|\WOT wide open throttle sensor 0 0 1282 1305 1 3 0.2
23|MAP manifold absolute pressure sensor 2 2 1033 1549 3 2 0.3
24| MAF mass air flow sensor 0 5 1355 1207 9 15 0.9
25|CTS coolant temperature sensor 1 1 452 2103 22 12 14
26|TVS thermal vacuum switch 1 0 1137 1450 1 2 0.2
27|OTHSEN |other sensors 1 5 654 1910 16 5 0.8
28/ PROM engine management computer 0 21 537 1994 31 8 15
29|ENGINE | engine management computer 0 143 762 1544 1 141 55
30|PVALVE |carburetor power vave 0 2 2449 133 1 6 0.3
31|CFLOAT |carburetor float 0 1 2469 117 2 2 0.2
32|EGRPAS |egr passages 0 10 1170 1309 1 101 3.9
33|EGRCTL |egr controls 5 12 1134 1359 26 55 33
34|OTHER |other repair items 0 17 1156 1223 49 146 75

emissions for the fleet would show a decrease. The reason for thisisthat vehiclesthat are
declared failures tend to have measurements with positive emissions measurement errors.
Therefore, states need to use atechnique for producing the datafor atable such as Table4-5ina

manner that corrects for regression toward the mean. Section 4.3.4 describes such a method.

Table 4-5. Observed Average Emissions Before and After Repairs

N Average ASM 2525 Average ASM 2525 Average ASM 2525
Concentration Before| Concentration After Concentration
Repair Repair Change
HC CO NO, | HC CoO NO, | HC CoO NO,
(ppm) | (%) | (ppm) | (ppm) | (%) | (pPM) | (ppM) | (%) | (PPM)
1976-1980 Cars 2486 187| 1.58 1143 106 1.05 870 -81 -052 -273
1991-1995 Cars 2591 87 0.84 902 35 014 511 -52| -0.70, -391

By combining the repair data with the emissions data, an analysis will revea the emissions
effects of different combinations of repair types. For example, Table 4-6 shows the most
frequent combinations of repair types for the two chosen model year groups. The 15 most
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1 frequent repair combinations for the 1976-1980 cars accounted for 33% of the repair events for
2 thisvehicle group. For the 1991-1995 car group, the 8 most frequent repair combinations
3 accounted for 33% of the repair events.
4
5 Anexamination of individual repair combinations, their associated average emissions before
6 repair, and the emissions changes that the repairs produced shows expected effects of repairs on
7 emissions. For example, for the 1991-1995 car group, Repair Slate D5 (EGR) was applied to
8  vehicleswith very low HC, very low CO, and very high NO,_ emissions and resulted in small
9 changesin HC and CO, but large decreasesin NO,. On the other hand, Repair Slate D3
10 (Catalytic Converter and O, Sensor) was applied to vehicles with moderately high HC, CO, and
11  NO, emissions and resulted in relatively large decreases in HC, CO, and NO, emissions. For the
12 1976-1980 car group, Repair Slate A10 (major carburetor work) was applied to vehicles with the
13  highest average HC and CO and just about the lowest NO, and resulted in large decreasesin HC
14  and CO and largeincreasesin NO,.
15
16  Each stateis encourage to collect-repair datain asimilar way, then comparison of results such as
17  those shown in Table 4-6 could be part of arepair program evaluation. For example, it would be
18  expected that repair stations perform the same repair slates on corresponding technology vehicles
19 indifferent states, although the frequency distribution will vary with test type and cutpoints. In
20  addition, the average before-repair emissions and emissions changes for those repair slates
21  should be similar among different states with comparable repair programs. If one state’ s repair
22  stations applied repair slates more indiscriminately than another state’s, the differences among
23  before-repair emissions averages would be smaller and emission decreases would be smaller.
24
25 Table 4-6. Emission Reductions Associated with Combinations of Repairs
Type of Repair Average ASM 2525 Average ASM 2525
Concentration Before Concentration
Repair Change After Repair
< g e
o
8 o9 s 2 3
& a8 < § o = S o
5 Z23Ez£Ei% s 2888
= x| x|x|3 & o= = a
@ X ¥ ¥ 5 2 Q&mﬁ(%ﬂﬂb
& S 228 s =/B =08« 8BS HC|CO | NO | HC | CO | NO,
@ N B & F> 220 /W0 0[O0 5 (ppm)| (%) |(ppm) | (ppm) (%) | (ppm)
1976-1980 Cars
Al | 258 XX 140, 144 812 -37| -0.38 56
A2 121 X XX 142 1.32] 1129 -46| -0.27) -237
A3 75 X 123 1.53 928 -10) -0.31 11
A4 63 X[ XXX 122/ 099 1114 -500 -0.29 -279
A5 51 X[ XX 140, 241 749 -10] -1.19 165
A6 40 XXX 150, 1.05 900 -56 -0.25 10
A7 35 X 115/ 0.16] 2780 -38| -0.02 -1720
A8 32 XX X 132 143 973 -7/ -0.20 26
A9 28 XX XX 114) 1.30] 1320 -25 -011 -217
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Al10 | 22 XXX XX 219 3.78 598 -79] -1.73] 333
All | 19 X X[ XX 165/ 3.50] 589 -74 -211 483
Al2 | 18 X | X X 89 042 2265 -1 018 -1278
Al13 | 18 X X XX 118 2.76] 757 -41 -1.04 -165
Al4 | 17 X X XX 216/ 1.01 1246 -99| -0.07 -67
Al5 | 16 X XX 98 058 989 -30f 0.6, -351
1991-1995 Cars
301 X 101] 1.75] 581 -74  -1.66 -169
237 X 69 025 1317 -48 -0.20, -812
80 X | X 85 0.60 1159 -70, -0.55 -728
58| X 85 034 783 -40| -0.23] -273
55 X 25 011 1589 7 004 -719
49 X 45/ 019 570 -19 -0.13 -225
44 X 80 0.63 1176 -41 -0.36) -446
38 X X 120] 1.79] 559 -89 -1.80, -194
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4.3.3 Repair Lifetimes

Once a state has shown that its I/M program is causing repairs to be made and the repairs are
causing emissions reductions, the final effect the state should quantify is the lifetime of the
repairs. If repairslast only a short time, the emissions benefits may only last ashort time. If the
repairs last many years, then it is at least possible that the emissions benefits may last many
years. In addition, long lasting repairs help reduce the number of repairs that will be expected in
future years. In other words, one reason the number of repairsislow in agiven year may not be
because of afailure of the vehicle inspections to identify them. Instead, it may be because
repairs made in previous years are durable.

The duration of repairs can be evaluated by analyzing a good repair database. For this example,
the repair datafrom State 3 was analyzed. 'For this state the I/M program repair data for five
consecutive years was available and subset of the vehicles that had any repair performed in the
first year was selected. The number of days between that first repair and the next repair of any
kind was calculated. If the vehicle did not get a second repair in the five-year data set, then the
duration was set to 1825 days for plotting purposes. Figure 4-11 shows the result of that
distribution.
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Figure 4-11. Distribution of Intervalsfrom Any Year 1 Repair to Any Next Repair

The cumulative distribution shows that about 25% of the vehicles that had arepair in the first
year had at |east a second repair by the fifth'year. Thisleaves 75% of the vehiclesthat had a
repair in the first year and did not receive arepair (or at least did not have a second repair
recorded in the database) for the next four.years.: Perhaps more importantly, the plot also
indicates that by the end of the second year about 20% of the vehicles already had a second
repair. Thisrapid rise in subsequent repair intervals suggests that some vehicles require frequent
repairs.

The programmatic implications will depend on an analysis by repair type. Some repairs may be
routine adjustments that are not really the result of serious degradation. Examples areidle speed
and idle mixture adjustments on carbureted vehicles. This contrasts with catalytic converter
replacements, which should not be performed routinely on any vehicle.

A more detailed analysis of thisrepair data by vehicle age, vehicle technology, and repair type
should illustrate the situations where repair durability is strong and where it needs to be
increased. Such an analysis could help a state improve its repair stations' performance. From an
I/M program evaluation perspective, an analysis of overall repair duration for the repaired
vehicles and atargeted analysis for different repair types would demonstrate that, beyond simply
making repairs, the repair stations are making repairs with a quantifiable durability.

4.3.4 Other Measures

In an effective I/M program the vast majority of vehiclesthat initially fail the emissions
inspection will require only asingle repair event to pass the emissions inspection. Inless
effective /M programs, some vehicles will make repeated trips between inspection and repair in
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an effort to meet annual 1/M emissions requirements. The cause for such “ping-ponging” may be
emissions measurement error, faulty repair diagnosis, or poor repair quality. Whatever the
cause, the vehicle owner will be frustrated. Emissions measurements and repair events with date
and time stamps are required to evaluate “ping-ponging” events.

[/M program inspection and repair databases also reveal that some owners of failing vehicles will
go from ingpection station to inspection station to try to find a station that will pass their vehicle.
This so-called “shopping around” is distinguishable from “ping-ponging” because for “shopping
around” consecutive inspections do not have repair events between them.

In this example, State 3 apparently recorded all repair types, even if they occurred at different
repair events, asasingle repair event. Accordingly, separate “ping-ponging” from “shopping
around” cannot be filtered out. Table 4-7 shows the distribution of repeated fails for State 3 as
an example of the type of result that could be expected from an analysis of “ping-ponging.”

Table 4-7. Distributionof Repeated Adjacent Inspection Failures Prior to a Pass

Fail Sequence Number of Vehicles

F 78,878
FF 16,871
FFF 2,711
FFFF 587
FFFFF 130
FFFFFF 25
FFFFFFF 13
FFFFFFFF 2
FFFFFFFFFF 1

Another measure of repair effectivenessisacomparison of the cost of al repairs to the reduction
of al emissions. Cost-effectiveness values ($/ton) could be calculated for the I/M program
overall and for individual repair dates. The calculations would require the logging of the repair
bill for each repair event. Calculated cost-effectiveness values can then be compared with
reference values from sources such as U.S. EPA and CaliforniaBAR or other states.

4.3.4 In-Program Studies to Measure Repair Effectiveness

Various methods can be used to quantify repair effectiveness using modifications to normal in-
program procedures. The effectiveness of repairs can be examined by comparing the changein
emissions of failing vehicles when they are repaired with changes in emissions of vehicles that
are not repaired but just tested again. This comparison must be performed to avoid so-called
regression toward the mean, which would cause repair emission benefits to be over-estimated.
An exampleis described below. Other such methods for measuring repair effectiveness may be
devised.

A subset of vehiclesfailing the initial emissions test (Test A) would be assigned to the
Evaluation Group or the Control Group. These vehicles would be selected from the set of all
failing vehicles using a stratified random sampling method. Vehiclesin the Evaluation Group
would immediately receive a second emissions test (Test B) and would then be sent for repairs
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based on their result on Test A (i.e., even if they passed Test B). When these vehicles returned
from repair, they would be given the repair follow-up emissionstest (Test C). Following Test A,
vehiclesin the Control Group would immediately receive a second emissionstest (Test D) and
would immediately be given athird emissionstest (Test E). Then, these vehicles would be sent
to repair and would return for their repair follow-up emissions test.

The actual emissions benefit of repairsis (C-B) - (E-D). Thisisthe change in emissions before
and after repairs of the Evaluation Group vehicles less the change in emissions of vehiclesin the
Control Group that did not receive repairs. Itiscritical that Test A results not be used to
calculate repair benefits. Doing so would introduce a bias in the calcul ated benefits. Itisalso
critical that all vehiclesthat fail Test A and pass Test B be sent for repairs. To not do so would
also introduce a bias in the cal cul ated benefits.

4.3.5 Repair Data Collection

Repair data needs to be collected by 1/M programs for analyses of repair effectivenessto be
made. Development of data collection requirements can begin with the approaches used in states
that are currently collecting such data. Then, improvementsto the approaches can be made as
states gain experience collecting and analyzing the data.

Repair stations should enter vehicle, emissions, and station information for each repair they
make:

. station identification,

. vehicle identification,

. repair date and time,

. repair cost, and

. repair codes for standard repairs such as those in Table 4-1a.

Thisrepair information should be entered each time a vehicle enters arepair station for work. In
most states, most repair work isdonein repair stations that are not connected to the VID, or
repairs are done by the vehicle owner. Therefore, to allow the VID to achieve completeness and
accuracy targets for repair data, techniques need to be developed for acquiring repair data.

4.3.6 Recommended Best Practices

Section 4.3 discussed methods for evaluating the effectiveness of repairsin an I/M program.
Unfortunately, most current I/M programs place greater emphasis on accurately measuring
vehicle emissions and designating vehicles as pass or fail than on ensuring or even monitoring
the quality of vehiclerepairs. This natural emphasisis probably a consequence of the more
guantifiable aspect of emission measurement over vehicle maintenance. Asthe discussionsin
Section 4.3 demonstrated, acquiring a database of vehicle repairs would provide information and
opportunities that are not currently available in most I/M programs. Therefore, one the most
important recommendationsis for states to devel op database systems which are capable of
monitoring vehicle repairs so that the beneficial aspects of the analysis of those databases can be
realized. Thelist below summarizes the key aspectsin this regard:

Repair data collection. States need to make a concerted effort to collect repair information on
all vehicles participating in the I/M program. The data should be collected in a manner such that
it can be matched to emissions data for each vehicle. Each visit of avehicleto arepair station
should generate arecord in the database. The record would include vehicle identification, codes
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for the types of repairs performed, and the cost of the repairs. Strategies must be developed to
ensure that al repairs performed would be recorded in the database. One possibility worth
consideration is for statesto certify repair stations.

Number and type of repairs. Once the database is created, simple counts of the number and
type of repairs demonstrate that repairs are being performed. Analysis of the data would show
what types of repairs are common for different types of vehicle technologies.

Repair lifetimes. Analysisof the repair data set could be used to quantify the duration of
repairs. While some repairs are routingly performed as vehicles go out of adjustment, others
reflect the lifetime of repair components and the general competence of repair stations. Repair
lifetimes should be compared among different states to determine the typical repair lifetimesin
different I/M programs.

Emissionsreductionsfor repairs. By combining the emissions database with the repair
database, it would be possible to demonstrate that repairs are actually reducing emissions. More
specifically, an analysis would quantify how emissions are being reduced for each type of repair.
Such analyses from different states'sould be compared to arrive at a consensus estimate of the
reductions that can be achieved by certain types of repairs. Asaside benefit, the fingerprint of
emissions on vehicles that have failed the inspection could be associated with the types of repairs
that successfully caused the vehicle to pass the follow-up emissions test. Such relationships
could be used to devel op diagnostic guidance for repair stations to use.

M easur es of customer inconvenience and repair cost. The combined repair and emissions
databases could be used to determine the extent.of customer inconvenience produced by repeated
visits between inspection and repair stations at the time of the annual or biennial inspection.
Such so-called ping-ponging can be produced by excessively stringent cutpoints, inspection
emissions test measurement error, faulty repair diagnosis, or poor repair quality. When repair
costs areincluded in the repair database, the total customer repair dollars can be determined.
Also, the repair costs for each type of repair can be determined with respect to the emissions
reductions that are achieved.

In-program studiesto measurerepair effectiveness. Slight modifications to the inspection
sequence for a subset of vehiclesin the I/M program can produce data that will provide an
estimate of the effectiveness of the I/M program. The modifications are used to eliminate biases
produced by the so-called regression toward the mean effect.

5. Results Based M easur es of Effectiveness

This section will outline procedures for analyzing the datain I/M vehicle inspection records.
Previous methods devel oped by stakeholders, contractors and EPA for this analysis will be
reviewed in Section 5.1 and 5.2. Section 5.3. contains descriptions of anew set of analysis
procedures as well as abrief discussion of the use of out-of-program data. Section 5.5 discusses
the testing of evaporative emissions. None of the procedures use MOBILE modeling;
comparisons are made between different years of test data and between different programs, but
projectionsto no-1/M levels are not attempted. The significance of any results obtained through
analysis of the I/M test records must be weighted by the findings from the procedures in Sections
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3 and 4. Additiondly, the data validation methods described in Section 4 must be applied prior
to analysis. Itisalsoimportant to realize that the model year results described in this section
should be weighted by vehicle miles traveled or some other travel fraction weighting.

5.1 ECOS Method

The Environmental Council of States (ECOS) Group was formed in 1996 to develop an
evaluation process for state I/M programs with test and repair networks®. The primary objective
of the group was to develop common criteriato demonstrate equivalency to EPA’s I/M program
standard. Twelve criteriawere developed for a short-term qualitative evaluation that was to be
performed 6 months after program start-up. A successful completion of each criteria conferred a
set number of points that counted toward a successful fulfillment of the ECOS program
evaluation requirements. However, the focus of the criteria was on the comparison of test-and-
repair I/M stationsto test-only stations, so that other differences that might exist between
programs, such astest type, data quality assurance, or cutpoint stringency, were not evaluated. A
second longer-term quantitative evaluation was then to be performed 18 months after program
start-up. One of the difficulties with theimplementation of the ECOS method was that each state
chose a set of criteriafrom the twelve options toapply to their program, so it was possible to
choose analyses that provided favorable results, and ignore other analyses with unfavorable
results. Use of the ECOS criteriawas discontinued in 1999.

5.2 EPA Tailpipe | Method

This method was based primarily on work done for EPA by Sierra Research, Inc. in 1997*. The
original study done by Sierrawas focused on comparing designer I/M tests to known reference
tests such asthe IM240. However, in response to.a court ordered deadline that required EPA to
establish program evaluation protocols, this study was used and modified so that it could meet
this need.

Under this method, a small sample of vehicles that has already met the I/M program
requirementsis recruited for an additional 1/M test. Emissions data from these vehiclesis
compared to a baseline program that closely matches EPA’s requirements for an “Enhanced I/M”
program. Regionsthat use I/M tests other than the IM 240 are required to develop and apply a
correlation to relate emissions data from their program to equivalent IM240 results. The
MOBILES model is used to correct for regional differences between the two programs, such as
atitude, climate, or fuels. The specific steps that have been taken to apply the method for
severa |/M programs™* arelisted in Table 5-1. Thefinal result of the comparison between the
program under evaluation and the benchmark program is aratio of the effectiveness of the two
programs.

The benefit of the Tailpipe | method is its capacity to condense comparisons between the |/M
program and the benchmark program into asingleratio. Also, the concept of developing a
correlation between the program test (TSI, ASM, etc.) and the IM240 test is a valuable tool for
comparing in-program data from programs using different tests. However, the reliance on the
MOBILES model to make the regional corrections and determine the no-1/M levels (see Table 5-
1) may introduce error to the results. The method also requires the use of an I/M program
compliance rate, which can be difficult to determine. Finally, while the use of asingle
comparison between the two programsis convenient, it may result in some loss of detail, and
relevant information that might be found through a multi-faceted approach could be missed.
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Table 5-1. Stepsfor Application of the EPA Tailpipe | Method for an I/M Program Using the
Two-Speed Idle Test

1 | A random, stratified sample of about 800 vehiclesis selected for use in developing a
relationship between the state’ s two-speed idle test results and 1M 240 test results.

2 | Back-to-back IM240 and two-speed idle tests are conducted on the sample of vehicles. This
dataset is used to develop a correlation between the results of the two speed idle test and
IM240 emissions.

3 | Anestimated IM240 result was calculated for each I/M test record, using the correlation
between two-speed idle test results and IM 240 emissions that was developed according to
Step 2.

4 | The 2% random sample of complete IM240 tests that is collected annually by Phoenix,
Arizonais obtained, representing data from a benchmark program.

5 | Separately for each program (program under evaluation and benchmark program): An average
IM240 emissions level iscalculated by model year.

6 | Separately for each program: Travel fractions based on registration distributions and
MOBILES annual mileage accrual rates are used to calculate a single average emissions level.

7 | The Arizonamodel year average emission levels are converted to match the program under
evauation by correcting for any differencesin fuel, altitude, climate, and calendar year
effects.

8 | MOBILESb isused to model Arizona s average emission levels with and without an 1/M
program in place. Inputs are based on local area parameters for the program under evaluation.
The results of this modeling are used to calculate a percent reduction in emission levels, or
benefit, achieved by the benchmark Arizona program.

9 | Average IM240 emissions levelsfor Arizona were calculated in Step 5. The benefit of the
Arizona program was calculated in Step 8. These two results are used to calculate the average
IM240 emissions level for Arizonawithout an I/M program in place (No-1/M levels).

10 | The No-I/M emission levels calculated in Step 9 are compared to the average estimated
IM240 emission levelsin program under evaluation that were calculated in Step 5. These
results are used to calculate the percent reduction, or benefit, of the program under evaluation.

11 | The benefits of the two programs are then compared.
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5.3 Use of Data Trends

The use of data trends can be used to highlight differences between programs that may provide
useful information if investigated further. Several different types of analysis using I/M program
records are considered:

Fleet average emissions changes for asingle I/M program year,

Fleet average emissions changes comparing multiple years of testing,
Emissions changesin individual vehicles over multiple years of testing, and
Comparisons with other I/M program results (different states or regions).

Fleet average emissions changes over asingle year are computed in order to determine whether
the I/M program results in emissions reductions over a single program cycle, after any failing
vehicles areidentified, repaired, and re-tested. Without an I/M program in place, the vehicle
would deteriorate and emissions would increase over time. With an I/M program in place,
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deterioration should be identified and the vehicle repaired at each test cycle. Looking at vehicle
emissions over multiple years where overall fleet emissions are being reduced as new vehicle
emissions technologies are introduced into the fleet makes this problem of identifying I/M
program effectiveness even more difficult. The goal in investigating fleet average emissions
changes over asingle year is to determine whether deterioration is actually being identified and
reduced through repairs. A lack of emissions reductions in one year of program data would
indicate that any long-term fleet average emissions reductions are attributable to fleet
composition changes, rather than I/M program results. Thistype of analysisis demonstrated in
Section 5.3.1.

If an I/M program benefit within a single year is shown, then the emissions averages of the fleet
over time should be examined for long-term effects. Due to the problems associated with
determination of no-I/M emissions levels (i.e., moving away from empirical datawith MOBILE
modeling, or attempting to project next years emissions levels from thisyears failed test
results), analysis methods are presented herein that are based on year-to-year data. These year-
to-year comparisons are included-in Section 5.3:2, Section 5:3.3 contains asimilar analysis, but
fleet changes are eliminated by tracking individua vehicles that participated in the program over
multiple years.

In Section 5.3.4, program data from three different areas is compared. The comparisons are
made using two-speed idle data from two areas and 1M 240 data from athird. An additional
discussion of using a correlation to predict IM240 emissions levels from TSI results, as proposed
in the EPA Tailpipe | method, isincluded there. However, none of the analysis suggested
requires use of a correlation to compare data from states that use different types of tests.

5.3.1 Fleet Average Emissions Anaysisfora Single Program Y ear

The single-cycle effect of an I/M program on a fleet may be found by comparing average
emissions levels at the beginning and the completion of the test cycles (atest cycleincludes all
tests and retests for a vehicle, until it completes or drops out of the program). In Figure 5-1, for
State 1, the initial and final IM240 HC emissions of all passenger cars are presented. The State 1
program allows vehicles to fast-pass the IM240 test, so results for the shorter tests must be
projected to full test results. Methods for projecting full test results from fast-pass data may be
found in the literature™ ; however, care must be taken to fully understand the implications of
using such algorithms as they may bias the results of the program evaluation analysis. The data
in Figure 5-1 is grouped by initial and final test result. It can be seen that the average emissions
of the vehiclesthat initially failed but were eventually repaired and passed decreased
significantly, ailmost to the level of the vehicles that passed on the first attempt. Vehicles that
dropped out of the program before being repaired and passing an inspection show almost no
reduction (the two lines are difficult to differentiate because they lie almost on top of each other).
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IM240 HC Emissions [g/mi]

Model Year

—aA— Initial Emissions of Final Pass Vehicles —a— Final Emissions of Final Pass Vehicles
Initial Emissions of Waived Vehicles Final Emissions of Waived Vehicles

—o— Initial Emissions of Incomplete Sequences —e— Final Emissions of Incomplete Sequences

—¥— Initial Pass Vehicles

Figure 5-1. Initial and Final Emissions for All Passenger Cars, IM240 HC, State 1

While Figure 5-1 gives agood visual representation of the emissions reductions, it could be
misleading on its own. For example, the figure showsextremely high emissions for 1992
vehicles that received waivers, but it doesn’t show that this group includes only one vehicle. A
minimum of 25 records per bin is often considered to be a cutoff below which averages are
unreliable (as for the 1992 waived vehiclesin Figure 5-1). Table 5-2 provides additional
information about the data presented graphically in Figure 5-1, for the vehicles that initially or
ultimately passed the I/M test. From the table, it may be seen that sample sizes vary grestly
among the model years. It may also be seen that the standard deviation of the resultsis often as
large or larger than the mean value; thislarge spread is not apparent from Figure 5-1.

Table 5-2. Initial and Final Emissions for All Passenger Cars, IM240 HC, State 1

Initial Pass Initial Fail (for Vehicles that Ultimate Pass (After Initially
Ultimately Pass) Failing)
Model Number of | MeanHC | Std. Number of | MeanHC | Std. | Number of | Mean HC | Std.
Y ear Vehicles [g/mil€] Dev. Vehicles [g/mil€] Dev. Vehicles [g/mil€] Dev.
82 4831 1.66 0.97 889 4.67 5.38 889 2.15 1.18
83 12760 1.37 0.83 1689 391 4.03 1689 1.79 1.05
84 9885 1.37 0.86 1508 3.96 4.62 1508 1.77 1.07
85 23440 0.98 0.65 3910 2.75 3.12 3910 1.18 0.82
86 14504 0.87 0.62 1935 2.88 3.30 1935 1.16 0.82
87 32629 0.72 0.54 3028 242 2.94 3028 0.94 0.71
88 18189 0.73 0.56 1495 2.73 4.17 1495 0.98 0.75
89 41190 0.57 0.46 1707 2.30 3.79 1707 0.81 0.64
90 19388 0.54 0.45 812 227 3.67 812 0.78 0.68
91 45202 0.41 0.36 1351 1.73 291 1351 0.62 0.58
92 18782 0.36 0.34 533 1.80 2.63 533 0.64 0.57
93 44006 0.29 0.27 792 141 2.47 792 0.47 0.45
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13

14

15

16

94 38857 0.21 0.22 393 1.09 2.32 393 0.31 0.39
95 22329 0.16 0.18 231 0.67 1.26 231 0.18 0.27
96 15457 0.12 0.12 159 0.43 1.37 159 0.14 0.19
97 9327 011 0.09 57 0.38 1.79 57 0.09 0.12

The other point of information not shown in either Figure 5-1 or Table 5-2 is that the emissions
datathat is averaged to generate each data point does not exhibit a normal (Gaussian)

distribution. Figure 5-2 shows the distribution of values of IM240 HC in all records for the

initial test on 1990 vehicles that ultimately passed. The data does not have a symmetric normal

distribution: the vast majority of vehicles have emissions near zero, while the high emitting

vehiclesform along “tail.” When plotted on alogarithmic scale, the distribution is more nearly
symmetric, as shown in Figure 5-3. Because the log-normal distribution includes only positive

values, and because it condenses high values while spreading out the lower values, it is often

used to transform emissions data. Averages of emissions should still be performed on the raw
(linear space) values as for Table 5-2 since those averages represent the emissions of the model
year average vehicle.

Number of Vehicles
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Figure 5-2. Distribution of Records for Single Data Point, IM240 HC, State 1

Figure 5-3. Log-Scale Distribution of Records for Single Data Point, IM240 HC, State 1
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Figure 5-1 presented only the IM240 HC emissions levels for passenger cars. |If the purpose of
this report were to analyze the program effectiveness of State 1, additional figures would be
given for light duty trucks (and heavy duty trucks, if covered by the program), and results for
IM240 CO and NO, would be presented aswell. Thislevel of detail isuseful inidentifying
groups of vehicles with anomalous results, but larger trends may be easier to seein amore
general presentation such as Figure 5-4. Thisfigure presents the overall emissions reductions for
passenger cars, as a percent decrease from initial to final test. Vehicleswith only onetest (i.e.,
initially passed or initially failed and dropped out of program) are included in the averages for
both the initial and final tests. It isclear that the vast majority of emissions reductions result
from the older vehicles.

30

25 ¢

—=—1M240 CO

—¥—IM240 HC
—6—1IM240 NOx

Percent Emissions Reduction

_5 1 T 1 1 1 1 1 1
1982 1984 1986 1988 1990 1992 1994 1996  Awe
Model Year
Figure 5-4. Overall Emissions Reductions for Passenger Cars, Incomplete Sequences Included,
State 1

One assumption behind the datain Figure 5-4 was that the vehicles that |eft the program before
passing atest (dropping out before completing their test sequence) remained in the area; data for
their last inspection isincluded in the average. However, if these vehicles were sold or otherwise
moved outside the program area, then they are no longer part of the fleet and the data for their
last ingpection should be removed from the final test average. This change was made for Figure
5-5, but resulted only in slightly greater average reductions.
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Figure 5-5. Overall Emissions Reductions for Passenger Cars, |ncomplete Sequences Not
Included, State 1

In addition to emissions reductions, the rate at which vehiclesfail the inspection can be
informative; for example, avery low fail rate may indicate that cutpoints are too high to identify
some vehicles that would benefit from repair (see discussion of cutpointsin Section 4.2.2.2).
Therate at which vehiclesfailed their initial test in State 1 is shown in Figure 5-6. The overall
height of each bar indicates the total percentage of vehiclesthat failed their initial test; the
different sections within the bars divide the vehicles by the result they finally achieved before
leaving the program. Vehicles that receive waivers comprise avery small percentage of the
total.
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Figure 5-6. Fail Ratefor Initial Test, IM240, State 1
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Finally, the number of tests required for vehiclesto complete the program is shown in Figure 5-
7. Vehiclesthat passed their initial test are not included on this figure, since they each had
exactly onetest. Thisinformation is somewhat related to the repair information presented in
Section 4.3, i.e. more effective repairs require fewer repeat tests before avehicle passes. Itis
interesting to note that vehicles that eventually drop out of the program before passing tend to
average amost as many repeat tests as vehicles that eventually pass. However, from Figure 5-1
it was seen that the emissions levels of these vehicles were amost unchanged from initial to fina
failed test. It ispossible that these vehicles are not being repaired between tests, or that the
owners |leave the program in discouragement when repairs show no emissions benefit.

7 _
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6 c—o Did Not
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5 5 I Sequence
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2 Retest
5 3
@ - .
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1+ Waiver
0
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Model Year

Figure 5-7. Average Number of Tests Required to Complete Program, State 1

5.3.1.1 Recommended Best Practices

It is recommended that analyses as illustrated in Figure 5-1 be used with vehicle miles traveled
(VMT) datato obtain average emissions by model year and test sequence. Figures 5-4 and 5-5
demonstrate how in-program data may be used to estimate average emissions reductions by
model year. Analyses such asthose in Figure 5-6 should be used to track the rate at which
waivers are issued; the rate at which vehicles are repaired, resulting in an air quality benefit; and
the rate at which vehicles drop out the program, resulting in alost air quality benefit, while
Figure 5-7 type of analyses provide information to track the progression of vehicles through the
program.

Each of these analyses uses only a single year of program data; thisis the most basic level of
emissions results analysis. Whenever possible, the use of analyses such as those depicted in
Figures 5-1 and 5-4 through 5-7 should be combined with the multiple-year and multiple-state
analyses described in 5.2.2 through 5.2.4.
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5.3.2 Fleet Average Emissions Analysis for Multiple Program Y ears
The comparison of multiple years of 1/M test records allows the observance of fleet emissions
trends over time.

Trend analyses as portrayed in Figure 5-8 have been used by others® may be used to examine the
changing emissions of the fleet over different program years. Each line shows the average
emissions for theinitial test of adifferent model year vehicle, plotted against the age of the
vehicle at the time of test. Without an I/M program in place, the emissions of each model year
would be expected to increase as the vehicles age. For the two-speed idle HC data of State 3,
shown in the figure, the average emissions in the newest model years actually do show
increasing emissions over time. However, the emission levels may still be so low that the
vehicles are not yet affected by the I/M program. The significant increase in emissions levels
between 1988 and 1987 illustrates the significance of cutpointsin fleet emissions as the 1987 HC
cutpoints are amost twice as high as the 1988 cutpoints. For other fleets without a similarly
large change in cutpoints, the gap in emissions between 1987 and 1988 is not seen, indicating
that the gap on Figure 5-8 is not due to vehicle technology changes. For the model years older
than 1987, the decrease in emissions as the vehicles age is clear; possibly indicating that the
program is having an effect on this component of the fleet, or that high-emitting vehicles drop
out of the program or are sold out of the program areato avoid further testing.

In summary, the primary purpose of Figure 5-8 istolook for potential problems, such as gaps
between the model years that indicate inadequate cutpoints, or large increases in emissions
within amodel year as the vehicles age, indicating unchecked deterioration.
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Figure 5-8. Emissions Averages at Different Vehicle Ages, TSI HC, State 3

Figure 5-9 shows the percent emissions reduction from initial to final test for State 3 over four
years of 1/M testing (similar to the single year of data shown in Figure 5-4). The x-axis of the
figure isthe vehicle age, so avehicle with an age of five yearsin the first year of program data
will be shown as six years old in the second year of program data and seven years old in the third
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year of data. This age-based presentation allows the emissions reductions over the different I/M
program years to be compared based on the length of time the vehicle has had to deteriorate.
Thus Figure 5-9 may be used to investigate whether the effectiveness of the I/M program
changes over time. For example, an ideal case would be afleet with no immigration of vehicles
from outside the program area, covering afleet of well-maintained vehicles. Inthissituation it
would be possible for all vehiclesto eventually be repaired to passing emissions levels, and no
further emissions reductions would be achieved. While reductions didn’t drop to zero for State
3, asshown in Figure 5-9, it does appear that the reductions decrease over the four years
presented. This may indicate that many high-emitting vehicles have been repaired, fewer
vehicles are failing the test, and the program is having a benefit. Conversely, it is possible that
the emissions levelsfor theinitial testsareincreasing. Figure 5-8 is based oninitial emissions,
and indicates that while initial emissions for the 1988 and newer vehicles increase slightly from
year to year as they age, theinitia emissions of the older vehicles do not increase as they age
from year to year.
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Figure 5-9. Percent TSI HC Reduction Over Four Y ears, State 3

Theinitial fal rate for the vehicles of State 3 is shown in Figure 5-10, for four years of program
data. Thetrends correlate to what was seen in Figure 5-9 as the high fail rate for the older
vehicles, which decreases over the four program years, fits well with the high reductions seen in
Figure 5-9. Any inconsistencies between these two figures (i.e., avery low fail rate but high
emissions reductions) might be an indication of a problem with the I/M program data.
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Figure 5-10. Initial Fail Rate, State 3

Figure 5-11 illustrates another type of analysis done-by McClintock®, looking at the skewness of
State 3's TSI HC emissions. This figure shows the percent of total emissions that are contributed
by the dirtiest 10% of vehiclesin each model year, which is as high as 50% for State 3. Since
they contribute such alarge portion of the total emissions, repair of these vehicles provides a
large portion of the emissions reductions an I/M program.achieves. From Figure 5-11, it can be
seen that the emissions contributed by the dirtiest 10% of the vehicles remains relatively constant
over the program years. Again, there could be more than one explanation. For example, the
overall fleet emissions may be decreasing, with emissions from the dirtiest 10% decreasing in
approximately the same proportions, or the highest emitters result may be due to new vehicle
equipment malfunctions or immigration of high-emitting vehicles.

Another way of looking at the skewnessisto look at the emissions contributed by 10% of the
dirtiest vehicles of the overall fleet, chosen without stratifying by model year. These vehiclesare
concentrated in the oldest model years, as shown in Figure 5-12, with very few newer vehiclesin
the group. The percent of the emissions that the overall 10% dirtiest vehiclesin the fleet
contribute to each model year is shown in Figure 5-13. For the oldest model years, this
contribution is over 80%. Thistype of information could have several uses. For example, if a
high-emitter identification program is being considered, Figures 5-12 and 5-13 could help
identify model years with the greatest number of target vehicles. Also, changesin the
distribution shown in Figure 5-13 from year to year of program data could identify cutpoint
problems. For instance, if high emitters were increasingly concentrated at a certain age range,
the cutpoints at that age might be too lax.

5.3.2.1 Recommended Best Practices

The analyses shown in Figures 5-8 through 5-13 should be used when multiple years of program
dataare available. Figure 5-8 may be used to look for potential problems, such as gaps between
the model years that indicate inadequate cutpoints, or large increases in emissions within a model
year as the vehicles age, indicating unchecked deterioration. The percent reductions over the
program years shown in Figure 5-9 should be used to confirm that the program retains its
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effectiveness over time. Theinitial fail rates shown in Figure 5-10 should be analyzed in
conjunction with Figure 5-9; high fail rates that are not coupled with high emissions reductions
indicate problems with the program.
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Figure 5-11. Percent TSI HC Emissions Contributed by Dirtiest 10% of Each Model Y ear, State
3
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Figure 5-12. Distribution of the Dirtiest 10% of Vehiclesin the Ovadl Hed, State 3
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5.3.3 Emissions Changesin Individua Vehicles Over Multiple Program Y ears

Emissions changes over four years of testing were discussed in the previous section. However,
possible changes in fleet composition (immigration and emigration of vehicles) lead to
uncertainty about the meaning of some of the results: Inthis section, datafrom State 3 is used
again, but only records for vehicles that were tested in all four years are used. Thus, any effects
from changes in fleet composition are eliminated.

First, Figure 5-14 shows emissions levels as vehicles age (as was done for the entire fleet in
Figure 5-8,in 5.3.2). The emissionslevelsfor each of the newer model years, years that are not
yet greatly affected by the program, are similar in the two figures. In the older model years,
however, the emissions of the constant fleet in Figure 5-14 are lower than that of the entire fleet
shown in Figure 5-8. This could indicate that an influx of dirtier vehiclesis pushing up the
average emissions of the fleet in Figure 5-8. The older model yearsin Figure 5-14 do not show a
pronounced decrease in emissions levels as they age, as was seen in Figure 5-8. Since the
decreases with age are not found in the constant fleet, the decreases seen in Figure 5-8 must have
been due to the departure of high emitting vehicles from this portion of the I/M program fleet.
However, the difference between Figures 5-8 and 5-14 cannot be used to estimate program
benefit from attrition, since it is not known whether the departing vehicles moved out of the area
or dropped out of the program without leaving the area. 1f more accurate vehicle tracking data
were available, this type of analysis could provide some estimate with regard to program benefits
resulting from vehicle attrition.
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Figure 5-14. Emissions Averages at Different Vehicle Ages, Vehicles Tested All Four Y ears,
TSI HC, State 3

The same type of plot is repeated again in Figure 5-15. :However, this plot includes only vehicles
in the year after they failed an I/M inspection initially and passed on aretest (i.e., if avehicle
failed and then passed on retest in Year 3, it isincluded in the Year 4 data here). The sample
Sizes are smaller so more scatter is evident in the'data, but it is clear that the emissions are
considerably higher than for the fleet as a whole; either these vehicles are poorly maintained and
new problems arise each year, or repairs are not lasting afull year. Theinitia fail rate for these
vehicles that previously failed and then passed is shown.in Figure 5-16. Especially for the
newest vehicles and years three and four of the program, the initial fail rate is significantly
higher than the rate for the entire fleet, shown in Figure 5-10. Thistype of information might
indicate that the program could achieve greater emissions reductions over the year if the test
interval is shortened for vehicles that failed an earlier test. The collection and analysis of repair
data described in Section 4.3 should be used to determine whether such changes could result in
increased emissions reductions.
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Figure 5-15. Emissions Averages at Different Vehicle Ages, Vehicles That Failed in Previous
Year, TSI HC, State 3
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Figure 5-16. Initia Fail Rate, Vehicles That Failed in Previous Y ear, State 3

Figure 5-17, showing total reductions from initial to final test for the set of vehiclestested in
each of the four years, correlatesto Figure 5-9 for the whole fleet. The decreasing reductions
seen in Figure 5-9 are seen again here, so it can be concluded that they were not caused by
immigration or emigration of vehicles. Figures5-17 and 5-9 are very similar overall.
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Figure 5-17. Percent TSI HC Reduction for Vehicles Tested All Four Y ears, State 3

If initial-to-final test emissions reductions are achieved by the same fleet year after year, a
guestion arises as to whether the fleet is simply getting cleaner each year, or whether some of the
gains made in onetest cycle are lost by the start of the next test cycle. The change in emissions
from final test one year to initial test the next year should be investigated as shown in Figure 5-
18. Unlike Figure 5-17, this figure shows the percent increase. Vehiclesthat initially passed as
well asthose that initially failed and were repaired are included in the figure. Figure 5-18 shows
that initial test scores are indeed higher each year than the previous year’ sfinal test scores,
indicating that year-to-year vehicle deterioration does provide opportunities for I/M programs to
achieve air quality improvements.
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Figure 5-18. Increase in Emissions fromFinal Test in a Cycleto Initial Test in the Next Cycle,
TSI HC, State 3

Comparison of Figure 5-15 and 5-8 indicated that emissions levels are somewhat lower for the
vehiclesin Figure 5-15 that participated in the I/M program for four yearsin arow compared to
vehicles that were not tested in one or more of those years. The higher emissions of vehicles
new to the program are shown in Figure 5-19; the bars indicate the ratio of the TSI HC emissions
of vehicles new to the program to emissions for vehicles tested in at least one previousyear. The
new-to-program vehicles exhibit consistently higher emissionsfor Years 2, 3, and 4 of 1/M
program data examined. The lower emissions of the fleet that was tested yearly, as compared to
the emissions of immigrating new vehicles, may indicate that the I/M program is providing a
lasting benefit to the vehiclesin the program, outweighing the effects shown in Figure 5-18.

The new-to-program vehicles comprise about 10% of the total tested vehicles for each model
year, which might be alarge enough sample to use them asa“No-I/M” fleet. However, since the
origin of the vehiclesis unknown (they may have just migrated from an I/M program in another
ared), it wouldn’t be certain that the new-to-program vehicles would really represent “No-I/M”
vehicles. If thel/M program could determine the location of prior registration for these vehicles,
then only those from non-1/M areas could be used to estimate the emissions of the No-1/M fleet
while operating under the state’ slocal area parameters.
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Figure 5-19. Ratio of Emissions of New Vehiclesto Returning Vehicles, TSI HC, State 3

5.3.3.1 Recommended Best Practice

The value of the analyses described in this section is that they permit the examination of program
trends without any effect of changes in fleet compositionover the years. As seen by comparing
Figure 5-14 to 5-8 the effects of vehicleimmigration or emigration on emissions levels can be
examined. Figures5-15 and 5-16 should be used in conjunction with repair effectiveness
analysisto determine repair durability between tests,-and used to indicate if a change in testing
frequency should be made. Figure 5-17 should be used to determine whether emissions
reductions are achieved after several years of testing the same group of vehicles, while analyses
depicted in Figure 5-18 should be used to determine how much of the reductions within a
program year illustrated in Figure 5-17 are negated out by increases between program years.

5.3.4 Comparisons with Other Programs

The following comparisons between different I/M programs are qualitative only, due to the
numerous differences in the programs being compared. Quantitative estimates may be possible,
but would require the programs being compared be much more similar.

In this example, State 1 uses an IM 240 test with a fast-pass component and a two-year test cycle;
States 2 and 3 usesa TSl test with ayearly cycle and different cutpoints. Regional factors such
as climate, altitude, and fuel are aso different. However, these comparisons can be used to
identify unusual trends that might not otherwise be noticed. For example, earlier Figure 5-8 for
State 3 showed alarge jump in TSI HC emissions between 1988 and 1987, when the cutpoints
changed. In Figure 5-20 below, total percent reductions (similar to Figures 5-4 and 5-9) for three
different I/M programs are presented. Total percent reductions are calculated from the changein
average emissions from initial to final test. The data used is comprised of IM240 HC results for
State 1, and TSI HC results for States 2 and 3. From the figure, it can be seen that the emissions
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reductions of State 3 excelled for the newest 10 model years, after which the cutpoints were
increased to much higher levels, and the emissions reductions dropped well below the reductions
achieved by the other states. The comparison to other programs, at first, suggests that State 3
might benefit from more stringent cutpoints for the older model year vehicles. However, upon
further reflection, it could a'so mean that State 3 has achieved more significant reductions from
more durable repairsin past years.

These two very different interpretations of Figure 5-20 demonstrate a key concept in I/M
program evaluation, i.e. an I/M program must be evaluated using many different and
complementary analysis tools to provide a balanced view. For example, to look only at the
emissions reductions achieved during the inspection/repair cycle, but ignore emissions increases
during the rest of the year, may lead to an inaccurate evaluation of the I/M program.
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Figure 5-20. Comparison of Percent Reductions

Using the percent emissions reduction as the basis for comparison, as was done in Figure 5-20,
eliminates the effect of the different units used by the TSI and IM240 tests. Thus comparisons
may be made without having to convert the results of the two different tests to acommon basis.
However, the magnitude of the emissions reductions may differ for the different types of tests, so
the information obtained from figures such as Figure 5-20 is only useful for identifying trends.

It should be noted that in general, comparing mass emission reduction estimates between
programsis preferred to comparing percent reductions. Reporting reductions in units of mass
would allow direct comparisons between programs to be made with less misunderstanding. For
instance, an idle program study could report a 15% reduction in CO, while an IM240 program
could report an 8% CO reduction and one may be led to believe that the idle program was twice
as effective. However, thisis not necessarily the case because the CO excess mass emissions for
an idletest could be 25 g/mi, with I/M yielding a 3.75 g/mi reduction, while the IM240 area
could have a CO excess mass emission of 80 g/mi, that would translate an 8% reduction into 6.4

g/mi.
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Appendix A outlines procedures used for predicting IM240 mass emissions from TSI datain
State 4. Input parameters for the correlation included TSI test result data, vehicle type, age, and
engine size, aswell asinformation about the emissions equipment of the vehicle. The
correlation was applied to statewide TSI data. In Figures 5-21 and 5-22, the percent emissions
reductions are shown when calculated using measured TSI data as compared to predicted IM240
data. It can be seen from the figures that the reductions are smaller when calculated using the
IM240 data. Thus, comparison of TSI reductions in one state to |M 240 reductions in another
state may overstate the relative benefit of the TSI program. Thisiswhy it is preferred to report
and compare emission reductions on a mass basis.
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Figures 5-23 and 5-24 show the initia fail rate in each of the three states, and the average
number of tests from theinitial failed test to the final passed test. From Figure 5-23, it is
apparent that State 2 has a high failrate when'compared to the other two states. However, Figure
5-24 shows that the average number of tests required to progress from the first failed test to the
final test is comparatively low in State 2. Possible explanations might be that repairs madein
State 2 are not holding between tests and must be repeated each year, or that motorists are
learning to “beat the test” after they have failed once. Whatever the reason, the combination of
information given by Figures 5-23 and 5-24 should be used by a state to highlight areas for
further investigation of an I/M program.

5.3.4.1 Recommended Best Practice

The analyses presented in this section are very qualitative, since differences between the
programs under comparison are not accounted for (i.e., climate, fuel, atitude, test type). A
correlation to convert al teststo an equivalent basis could be used, but without additional
corrections for program differences, results will still be qualitative. The use of amodé like
MOBILE would be required to completely bring the results of the three areas to an equivalent
basis. However, Figure 5-20, 5-23, and 5-24 should be used as atool to identify discrepanciesin
emissions reductions trends between different states. Differencesin trends may indicate a
weakness in one of the programs that would not appear without comparison to another program.
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Figure 5-24. Average Number of Tests To Pass

5.3.5 Tracer Vehicles
The data analysis methods described in Section 5.3 include useful tools for understanding the
effectsan I/M program is having on one fleet, and some basic methods for comparing fleet-
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average resultsto different fleets are provided. A different approach for comparing fleets would
be to select “tracer vehicles.” Tracer vehicles are make/model/engine combinations chosen
because of their prevalence in most areas. Emissions comparisons from fleet-to-fleet based on
these tracer vehicles would be used to highlight differences between the fleets. Since all tracer
vehicles of agiven make/model/engine combination should have had the same emissions levels
when they were new, differences as they age may be attributable to the I/M program. Comparing
the I/M program effects on tracer vehicles instead of on the entire fleet eliminates the effects of
different fleet composition and allows a more direct comparison.

This comparison is made below, using data from States 3 and 5, both of which administer a
yearly IM240 test. The IM240 HC emissions distributions of three late model year
make/model/engine combinations from each state are presented in Figure 5-25. Model year 1994
vehicles are used, since that is the newest model year that isfully represented in both of the state
data sets. The three make/model/engine combinations, which are the same for both states, were
chosen as the three that are most heavily represented in both of the fleets. These distributions are
intended to represent the emissions of vehiclesinthetwo states when they are new. Similarly,
IM240 HC emissions distributions for three 1984 make/model/engine combinations for both
states are shown in Figure 5-26. These represent vehicles that have been affected by the I/M
program as they have been operated within the state over many years. The make/model/engine
combinations and sample sizes are listed in Table 5-3. The sample sizes are reasonably large,
ranging from 400 to 1500 vehicles per combination.

Figure 5-25 does appear to show some differentiation between the two fleets. The curve for
vehicles of Combination 4, State 3 is shifted to the right of the curve for Combination 4 vehicles
from State 5; the same is true for Combinations 5-and 6. This may indicate that regional effects
such as atitude, fuel, and climate are causing the emissions distributions of the two states to
differ, since these vehicles are nearly new and should not be affected by deterioration. However,
the emissions levels for these new vehicles are very low, and in State 3 a sharp peak is seen
instead of a smooth distribution. Since the values are so clustered, it seems possible that this
peak is located at some minimum measurable conecentration. Both State 3 and State 5 allow a
fast-pass and then use the results to project full test scores and many of the newest model year
vehicles achieve afast-pass at the earliest allowable second of the test, making it difficult to
accurately project full-test emissions. Difficulties associated with projecting full test scores from
fast-pass results were mentioned earlier in Section 5.3.1. Asaresult, it isnot entirely clear
whether the difference between the two distributionsisreal or is an artifact of data collection and
processing methodology. The emissions distributions for the 1984 vehiclesin Figure 5-26 do not
show this effect. The distribution traces for each combination are now very similar for either
state. If the new-vehicle differences shown in Figure 5-25 did represent real emissions
differences between the two aresas, the lack of differencein Figure 5-26 would indicate that
greater deterioration is occurring in State 5 than in State 3, since the State 5 emissions
distributions are lower when the vehicles are new but not lower after the vehicles have aged.

Table 5-3. Make/Model/Engine Combinations for States 1 and 5

Combination | Model | Make | Modé Engine Count, Count,
Y ear Displacement | Statel State 5

[L]
1 1984 | Chev. | Cavalier 2.0 556 1339
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2 1984 Chev. Celebrity 2.8 422 745
3 1984 | Ford Tempo 2.3 435 615
4 1994 Ford Escort 1.9 722 1843
5 1994 Honda | Accord 2.2 1220 685
6 1994 | Toyota | Coralla 1.6 624 1490
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5.3.5.1 Recommended Best Practices

The concept of tracer vehicles could be avaluable tool for benchmarking the results of one
program against another, assuming states are willing to coordinate their efforts and support this
concept. The effectiveness of 1/M programs from two different areas may be compared using the
emissions distributions of the tracer vehicles, without the need for correcting for regional
differences (altitude, fuel, etc). However, fast-pass/fast-fail options seem to obscure the results.
Additional work will be needed to determine the value of thistype of analysis.

5.4 Evaporative Emission Reductions

This section outlines recent data from EPA and CRC studiesto develop afirst order estimate for
the possible emission reductions from evaporative emissions for vehiclesidentified and repaired
for evaporative emission control problems. Very small numbers of vehicles are included in these
studies and clearly more data is needed to more accurately. quantify the possible emission
reductions from gas cap and pressure test results; Ardetail ed discussion about the methodol ogy
used in the EPA and CRC studiesis available el sewhere®.

5.4.1 Estimate of Single Vehicle Gas Cap.|/M Benefit

The first study (Reference XX X), conducted in 1997/1998 by Automotive Testing Labs, was
performed under an EPA contract on vehiclesrecruited from the Arizonal/M Program. Vehicles
were tested with the following conditions:

Fuel RVP of 6.3 psi.

38 hour 72-96°F diurnal.

1 hour hot soak at 95°F.

3x LA4 Running loss at 95°F.

The volatility of the fuel is described by Reid Vapor Pressure (RVP) with units of pounds per
squareinch. Diurnal emissions were measured with a 38-hour ambient temperature profile made
up of a72°F to 96°F increase, a 96°F to 72°F decrease, and another 72°F to 96°F increase. The
specific temperatures are taken from the EPA 72-hour enhanced diurnal profile used for diurnal
evaporative emissions testing. The hot soak emissions were measured for one hour with an
ambient temperature of 95°F following an FTP driven at 95°F. Running losses were measured
while driving three consecutive LA4 cycles. An LA4 cycleisthe 1372-second cycle used for the
first two bags (cold start + warm stabilized) of the FTP.

These conditions were considered appropriate for Arizona conditions in 1997/1998 because they
were thought to be representative of in-use evaporative emissions generation. They are different
from new vehicle certification test conditions, which are designed to be severe test conditions
under which new vehicle emission control hardware and purge strategies must control emissions.
Datafrom the EPA study includes the before-repair and after-repair evaporative emissions of the
26 vehiclestested. The estimated total evaporative emissions reduction was calculated using the
24-hour diurnal, hot soak, and running loss measurements before and after repair and using
assumptions of 3 hot soaks per day and 30 milestraveled per day for each test vehicle.
Evaporative emissions reductions for pressure, purge, or fuel cap based repairs are assigned for
al the vehicles considered in the study.
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Table 5-4 presents a summary of the emission reductions associated with the following

categories:
. Pressure system repair;
. Purge system repair; and
. Gas cap repair.
Table 5-4. Summary of EPA WA1-8
Evapor ative Emission Reductions (g/mile)
Running L osses Only All Evap Emissions (Hot Soak, Diurnal,
and Running L 0sses)
Repairing Repairing Repairing Repairing Repairing Repairing
Pressure Purge Gas Cap Pressure Purge GasCap
Problems Problems Problems Problems Problems Problems
Carbureted 0.88 (1)* 2.50 (2) 0.56 (3) 1.01(1) 2.50(2) 1.07 (3)
Vehicles
Fuel 1.83(10) - 3.90(9) 2.47 (10) - 4.37 (9)
Injected
Vehicles
All Vehicles | 1.75(11) 2.50 (1) 3.07 (12) 2.34 (11) 2.50 (1) 3.55(12)

*Numbersin parenthesis denote vehicle-sample size.

The table shows the emission reductions for carbureted and fuel-injected vehicles. In addition,
running loss and total evaporative emissions reductions are shown. For this analysis the gas cap
emission benefits are most important because State 1 uses a gas cap test to identify gas cap
failures. The sample size for the data represented in Table 5-4 issmall. EPA, California ARB,
CdliforniaBAR, and CRC al plan to conduct more SHED tests to quantify the changein
evaporative emissions due to evaporative system repair. However, SHED tests are expensive
and time consuming (compared to IM240 tests), so not as many tests are performed. The datain
Table 5-4 is a best-estimate of evaporative emissions given the available data at thistime.

The scatter of before- and after-repair evaporative emissions can provide additional insight
beyond ssmply comparing means. Figures 5-27 and 5-28 show plots of the total evaporative
emissions after repair versus before repair. The plots use different symbols for repair type and
fuel metering system type, respectively. Logarithmic scales are used so that the data scatter can
be seen more clearly. Figure 5-27 indicates that the scatter of data points for pressure fails and
fuel cap failsis about the same. On the other hand, Figure 5-28 indicates that different but
overlapping regions may characterize different fuel metering types. The 1:1 lineinthe figuresis
drawn to assist the readers in interpreting the data. Data points below the line represent vehicles
whose emissions prior to repair were higher than emissions after repair. The magnitude of the
distance of the points away from the 1:1 line denotes the amount of emission reduction caused by
evaporative system repair.
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Figure 5-27. Effect of Repair Typeon Evaporative Emissions System Repairs
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Figure 5-28. Effect of Fuel Metering Type on Evaporative Emissions Systems Repairs

In asecond study (CRC Project E-35 Reference XX X), testing was conducted by CRC using
approximately 7 psi RVP and 1 LA4 to measure running losses in the SHED. Thus, test
conditions for this study were also different from new vehicle certification tests, and they were
different from the test conditions used in the EPA study. Procedures, vehicle recruitment, and
small sample sizes all contribute to the numerical results in emissions from the two studies.
Only running losses were measured in this study. The vehicle testing was also conducted by
Automotive Testing Laboratory (ATL). Running loss emissions for 29 vehicles were diagnosed
with faulty gas caps or filler neck problems. The average running loss emissions of vehicles
prior to gas cap repair was 0.36 g/mile.
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In the CRC study, only running losses were considered in the evaporative emissions estimate.
The fuel cap related failure was diagnosed but post-repair emissions are not available. A
comparison of the measured before-repair running loss emissions from the CRC and EPA studies
isshown in Figure 5-29. A logarithmic scale was used to help see the data scatter more clearly.
The figure shows that pre-repair running losses were about 7 times higher in the EPA study, but
the amount of scatter was comparable in the two studies. Higher running loss emissions can be
expected from the EPA study, which used 3 LA-4sfor itstest cycle, in comparison with the CRC
study, which used 1 LA-4.
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Figure 5-29. Comparison of Before-Repair: Running Losses from EPA and CRC Studies

To calculate the emission reductions from the CRC data, it was assumed that the average post-
repair running loss emissions for the CRC test vehiclesis the same as that for the EPA test
vehicles, i.e. it was assumed the CRC vehicles could be repaired to the same levels as the
repaired vehiclesin the EPA study. Thisis shown in Table 5-5. Average post-repair running
loss emissions were cal cul ated from the EPA data described in Table 5-4. Finally, the estimated
running loss emission reductions associated with gas cap repair is calculated by difference for the
CRC samplein Table 5-5. Because the CRC test fleet and the EPA test fleet are not the same,
the subtraction of the EPA post-repair average from the CRC pre-repair average provides large
uncertainty. However, failure to subtract some estimate of post-repair emission values would
surely over-estimate the size of emissions reductions due to gas cap repairs.

Table 5-6 presents calculations to estimate the total evaporative emissions reductions for gas cap
repair. The results of both studies are combined to arrive at estimated reductions. The top of
Table 5-6 presents the emission reduction estimates from the two studies. The table showsthe
measured running loss reductions from the EPA study, the estimated running loss reductions
from the CRC study, and the total evaporative emissions reductions from the EPA study. Total
evaporative emission reductions are not available from the CRC study. The average running loss
reductions for carbureted and fuel-injected vehicles are calculated by averaging the average
running loss reductions for the CRC and EPA studies with the number of vehicles (in
parentheses) as weighting factors. Then, total evaporative emissions (for hot soak, diurnal, and
running losses) are calculated by using the weighted running loss estimates instead of only the
EPA estimates. As shown, the best estimate of possible evaporative emissions reductions for
vehicles that fail the gas cap test are 1.00 g/mile for carbureted emissions and 3.25 g/mile for
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fuel-injected vehicles. 1t would be beneficial to provide error bars on these estimates but due to
the small sampleit is difficult to quantify these with any degree of confidence. EPA and
California are conducting additional studies to improve these estimates.

It isreadily recognized that the sample sizes used to arrive at these estimated evaporative
emissions are small; however, these are the only measurements available to states to make these
estimates. Accordingly, the uncertainties of these estimates are large.

Table 5-5. Estimate of Running Loss Emission Reductions from Gas Cap Repairsin CRC Study

(g/mile)

Carbureted Vehicles | Fuel-Injected Vehicles
CRC Pre-Repair Running Loss 0.538 (25) 0.334 (4)
Average
EPA Post-Repair Running Loss 0.059(5) 0.088 (20)
Average
Estimated CRC Running L0ss 0.48 0.25
Reduction

*Numbersin parentheses denote vehicle sample size.

Table 5-6. Total Evaporative Emission Reduction Calculation for Gas Cap Repairs

Running L oss Reductions for Gas Tota (RL + DI + HS) Evap
Cap Repair Reductions for Gas Cap Repair
EPA CRC EPA CRC
Carbureted 0.56 (3) 0.48 (25) 1.07 -
Vehicles
Fuel-Injected 3.90(9) 0.25 (4) 4.37 -
Vehicles

*Numbersin parenthesis denote vehicle sample size.

Weighted Running L oss Reductions

Carbureted Vehicles 0.49 g/mile

Fuel-1njected Vehicles 2.78 g/mile

Estimated Total Evapor ative Reductions

Carbureted Vehicles 1.07-0.56 + 0.49 = 1.00 g/mile

Fuel-Injected Vehicles 4.37—3.90 + 2.78 = 3.25 g/mile

5.4.2 Fleet I/M Evaporative Benefit

In the last section, two studies were discussed to estimate the evaporative emissions benefit
associated with the repair following a gas cap test failure. Before this datais used to project fleet
benefits, several issues need to be discussed. These include the following:

Emissions Deterioration

Repair Effectiveness
Collateral Defects
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Evaporative Emissions Control Technology/OBD.

Emissions Deterioration: The previous section estimates the emissions reduction that are
achieved immediately after repair. Asvehicles go back into their normal usage following this
repair, the emissions can creep up as the emissions control system degrades. Emissions can aso
increase if the fuel cap is not tightened or replaced following refueling. The frequency of
occurrences of these eventsis not fully known at thistime.

Repair Effectiveness: Inthereal world not all identified defects get repaired. Based on
conversations with state I/M staff, it is assumed that 90% of the emissions reductions estimated
for the roadside fleet associated with gas cap repair will actually be realized by the I/M program;
however, this estimate is not based on any observed data. Asmore VID and roadside datais
collected this assumption will be re-considered.

Collateral Defects: Vehicles which have a gas'cap defect can al'so have other evaporative
emissions control problems. In asmall sample of roadside datain which 1992 and older vehicles
were considered, 62.6% of the vehicles that failed the gas cap test also failed the fuel evaporative
pressure test. Since the pressure test is conducted after removing the gas cap, thisimplies that
these vehicles had other pressure leaks in addition to a gas cap defect. It is possible that some of
these vehicles, which have gas cap and pressure defects, would benefit from a gas cap repair.

For thisanalysis, State 1 assumed that 70% of the possible emissions reduction from gas cap
repair will be achievable. Thisimpliesthat 30% of the emissions reduction will be negated due
to other evaporative emissions problems with the vehicle.

Evapor ative Emissions Control Technology/OBD: Newer vehicles have more robust
evaporative control systems and have fewer defects. In addition, 1996 and newer vehicles with
OBDII system checks set an engine malfunctionindicator light (MIL) if the evaporative control
system fails the on-board test. The evaporative system monitors were optional/experimental on
1996-1997 Federal vehicles, monitors were required on at least 20% of 1996 model year vehicles
and on at least 40% of 1997 model year vehicles. It is expected that future gas cap benefits may
be reduced as more vehicles with OBD systems penetrate the fleet. New issues with OBD
systems may occur over time but thisissue will need to be studied as OBD equipped vehicles
age. Inthisanalysis, no gas cap emissions benefit is assumed for 1996 and newer vehicles.

Fleet Emissions Reduction Calculation: Figure 5-30 shows the gas cap failure rates observed
in State 1 roadside data. V ehicles which had undergone an inspection were observed to have a
lower fail rate than vehicles which were tested prior to their inspection. The results of the gas
cap repair benefit from Table 5-6 and fail rates from Figure 5-30 were used to estimate the fleet
emissions benefit. This calculation isshown in Table 5-7. The table shows the evaporative
emission calculations for each model year. Thefail rates shown in Figure 5-30 and repeated in
thistable are calculated from the roadside data. The percent of fuel injected vehicles are taken
from EPA estimates. The evaporative benefit for carbureted and fuel injected vehiclesis
calculated as follows:

Evaporative emissions benefit for carbureted vehiclesin any model year =

(1-F)* (FR,—FR) * EV_,,
Where:
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Fl = Fraction of fuel injected vehiclesin the model year
FR,, = Failure rate for roadside vehicles before and after Smog Check
EV,, = Evaporative benefit for carbureted vehicles estimated in Table 3.
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Figure 5-30. Gas Cap Failure Rates from California Roadside Data

The emissions benefit associated with fuel injected vehiclesis calculated in asimilar fashion
using the emissions estimates for fuel injected vehiclesfrom Table 5-6. The total model year
evaporative emissions estimate is then cal culated and multiplied by the travel fraction to estimate
the weighted model year emissions benefit. The total calendar year 1999 estimate is then
calculated by summing the emissions benefit for all the model years. Thisis calculated to be
0.076 g/milein Table 5-7. The net evaporative emission estimate is then calculated by using the
assumptions discussed above that 90% of the emissions associated with vehicles with gas cap
defects are actually repaired and that 30% of the emissions benefit is negated due to collateral
defects. The net evaporative estimate was hence cal culated to be 0.048 g/mile.

Other states that do not conduct roadside tests could use gas cap fail ratesin their states and

compare them to aNo-1/M areagas cap fail rates. Datafor No-1/M areas would have to be
developed by EPA and other stakeholders in order for thisto be viable.

DRAFT August 2001 -68-



1 Table5-7. Caculation Summary for Estimating California Fleet Evaporative Emissions Benefit
2 for Gas Cap Repairs
Model Travel GasCap Fail  |% of Fuel-| Evap Benefits | Evap Benefits | Total Model Weighted
Year | Fraction* | Before | After | Injected | for Carbureted |for Fuel-Injected| Year Evap Evaporative
Vehicles Vehicles Vehicles Benefits Emissions Benefit
(g/mile) (g/mile) (g/mile)
1974]  0.00326| 44.44%| 14.29%| 0.000% 0.30159 0.00000 0.30159 0.00098
1975]  0.00275| 64.71%)| 14.29%|  0.000% 0.50420 0.00000 0.50420 0.00139
1976]  0.00428| 37.04%| 33.33%| 0.000% 0.03704 0.00000 0.03704 0.00016
1977 0.00632| 41.27%| 9.38%| 0.000% 0.31895 0.00000 0.31895 0.00202
1978|  0.00816| 32.00%| 9.38%| 0.000% 0.22625 0.00000 0.22625 0.00185
1979 0.00979| 33.94%| 6.82%| 0.000% 0.27127 0.00000 0.27127 0.00266
1980|  0.00857| 26.17%| 8.33%| 0.000% 0.17835 0.00000 0.17835 0.00153
1981] 0.01000| 29.57%| 4.08%| 9.000% 0.23190 0.07454 0.30644 0.00306
1982| 0.01275| 22.07%| 0.00%| 16.800% 0.18361 0.12050 0.30411 0.00388
1983| 0.01622| 15.76%| 4.30%| 27.100% 0.08354 0.10093 0.18447 0.00299
1984| 0.02713] 14.33%| 5.16%| 39.200% 0.05575 0.11682 0.17258 0.00468
1985] 0.03274| 14.63%| 6.06%| 51.500% 0.04158 0.14350 0.18508 0.00606
1986/ 0.03907| 12.50%| 5.00%| 67.600% 0.02430 0.16478 0.18908 0.00739
1987| 0.04284| 11.46%| 3.37%| 74.100% 0.02094 0.19469 0.21563 0.00924
1088] 0.04621] 9.40%| 5.26%| 89.900% 0.00418 0.12092 0.12510 0.00578
1989 0.05222| 5.38%| 4.07%| 87.200% 0.00167 0.03708 0.03875 0.00202
1990| 0.04967| 7.30%| 4.63%| 98.100% 0.00051 0.08513 0.08564 0.00425
1991] 0.05314] 5.25%| 1.91%| 99.800% 0.00007 0.10825 0.10832 0.00576
1992| 0.04733| 1.80%| 1.80%| 99.800% 0.00000 0.00000 0.00000 0.00000
1993 0.05763] 1.63%| 0.00%| 100.000% 0.00000 0.05285 0.05285 0.00305
1994| 0.06222| 3.62%| 1.87%| 100.000% 0.00000 0.05701 0.05701 0.00355
1995/ 0.07303| 1.42%| 0.00%| 100.000% 0.00000 0.04599 0.04599 0.00336
1996] 0.06497| 4.17%| 4.17%| 100.000% 0.00000 0.00000 0.00000 0.00000
1997|  0.08405| 0.00%| 0.00%| 100.000% 0.00000 0.00000 0.00000 0.00000
1998| 0.10832| 0.00%| 0.00%| 100.000% 0.00000 0.00000 0.00000 0.00000
1999] 0.07732] 0.00%| 0.00%| 100.000% 0.00000 0.00000 0.00000 0.00000
Evap benefit g/mile = 0.07564
Discount for repairs= 90.0% 0.06808
Discount for Collateral Defects= 30.0% 0.04766
3  *From CdiforniaBAR May 1999 Travel Fraction Calculator.
4
5 5.4.3 Other Evaporative Control Measures
6 Inaddition to pressure tests and gas cap tests, recent CRC and EPA studies have also led
7  researchersto identify and repair liquid leaking vehicles (Reference XX X). The CRC study,
8 CRC-E35, has pointed towards the existence of avery small fraction of vehicles which can be
9 designated asliquid leakers. Drops of fuel are seen to be leaking from these vehicles.
10  Experienced mechanics can usually identify these vehicles due to the strong gasoline smell
11 emanating from these vehicles. California BAR is developing atesting protocol to identify,
12 repair, and quantify the emission reductions possible from repairing such vehicles. EPA’s
13 MOBILE6 mode also includes these vehiclesin the fleet and includes estimates of both the
14 freguency and the evaporative emissions estimates of these vehicles. However, procedures for
15 quantifying the emission benefits realized by identifying and repairing these vehicles must till
16  bedeveloped.
17

DRAFT August 2001 -69-



OCO~NOUIAWNPEF

6. Summary

A number of methods for estimating I/M program effectiveness using in-program data were
outlined in this guidance. Effort was made to document, reference or provide examples for data
collection procedures, QA/QC protocols, analysis methods, and sources of error or possible bias
associated with a given method; however, it is recognized that improvements to the methods
outlined in this document will continue to evolve. Therefore, it is strongly recommended that
any state considering the use of in-program data for program evaluation purposes work closely
with their respective regional EPA office and the Office of Transportation and Air Quality to
ensure the most up-to-date practices are incorporated into the evaluation. Furthermore, states
interested in using in-program data for program evaluation must recognize the need within their
own agencies to develop a minimum level of expertise with the technology and procedures to
ensure reliable data are collected and analyses performed.

It should also be recognized, given the difficulties associated with I/M program evaluations, that
an evaluation based on both out-of-program data (e.g."RSD or roadside pullovers) and in-
program data, will provide a more accurate estimate of overall program performance than ssmply
relying on one method alone.
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Appendix A: Development of a Model to Predict I M 240 Emissions Concentrations
from Two-Speed Idle Data

Although the performance standard for an I/M Program is the IM 240 test, many states
choose to administer different types of tests such as the two-speed idle test (TSI) or the
ASM test. Sierra Research proposed that if results of aternative types of tests are to be
compared to baseline program results or results from other states, models must be built to
predict IIM240 emission rates from the measured aternative test emissions
concentrations. This appendix contains an outline of the specific procedures to develop
such a correlation, based on work done by Eastern Research Group for the Texas Natural
Resource Conservation Commission.” Since Texas uses a two-speed idle test,
development of a correlation between IM 240 measurements and a different type of test
will differ in the details of the fundamental procedures outlined below.

The correlation of TSI and IM240 results is based on emissions data from a sample of
Texas vehicles that received boththe TSI and 1M240tests. Procedures for selecting a
suitable vehicle sample, developing a correlation model, testingthe model for bias,
quantifying uncertainty, and the limitations of applying the mode! to the fleet will be
described.

A.1 Data Collection

Two types of data were acquired for the development of the dataset on which models can
be developed: two-speed idle (TSl) data, and IM240 dynamometer data. The two-speed
idle measurements were made at two |/M' inspection stations according to normal station
procedures. Since valid datais critical for successful model development, the TSI
instruments were calibrated and zeroed as usual, and then independently checked at the
beginning of each workday with zero and span audit gases separate from the I/M station’s
normal supply. IM240 tests were performed using a portable dynamometer located just
outside the I/M station. All equipment was calibrated and operated according to EPA
specifications.

Selection of vehicles to participate in the test program was based on a stratified random
sampling scheme using model year group, TSI test results, and vehicle type.
Stratification is used to prevent selection of predominantly new, relatively low-emitting
vehicles. While a stratified random sample does not represent the vehicle distribution in
the fleet, it does provide a model-building dataset containing the full range of emissions
levels.

Model year groups are used as a stratification category instead of individual model years
to reduce the number of stratification levels. For the TNRCC work, four model year
groups were used: 1981 to 1984, 1985 to 1988, 1989 to 1992, and 1993 to 1997. Also,
for each of the four TSI measures (high-speed idle HC and CO and low-speed idle HC
and CO), bins were created based on these model year groups and TSI concentration
groups. Historical Texas TSI datawere used to define TSI concentration groups so that
each represented approximately a quintile of the TSI distribution for each model year
group. The goal of vehicle selection was to achieve an equal number of vehiclesin each
model year group/TSI concentration group bin for each type of TSI. In addition, the
vehiclesin each bin were targeted to be 64% passenger cars and 36% light-duty trucks
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(trucks, vans, MPVs, SUVs) asin the Texas fleet. When the TSI results, model year, and
vehicle type of avehicle a the /M station indicated that the vehicle would be a suitable
candidate for the stratified sample, the vehicle owner was offered an incentive in
exchange for allowing the vehicle to be receive an IM240 test following the TS| test. A
smaller stratified sample of repeat two-speed idle measurements was also collected to
cover the range of HC and CO low-speed idle and high-speed idle. Additional incentive
was offered to the vehicle owner for allowing a second IM240 and TSl test to be
performed.

TSI measurements were performed using the I/M station’s BAR90 analyzers. All TSI
and I/M CO and CO, measurements were determined by non-dispersive infrared (NDIR).
IM240 NO, was determined by chemiluminescence. In the case of hydrocarbons, the

IM 240 hydrocarbon was measured by flame ionization detector (FID) and the TSI
hydrocarbon was measured by NDIR. Magjor differences in response factors to different
types of hydrocarbon compounds are known to exist between FID and NDIR. Therefore,
proper application of the models that were developed-requiresthat TSI hydrocarbon be
measured by NDIR.

The overall goal for the TSI/IM240 data set was to acquire test pairs of test results for
800 vehicles, divided among the four model year.groups, five emissions level quintiles,
and two vehicle types.

A.2 Model Development
The stepsinvolved in developing the models for TNRCC were:

. General quality assurance of the raw dataincluding review of the TSI
anayzer calibration and gas audit results;

. Data preparation consisting of humidity corrections for IM240 NO,
values, correction of TSI valuesfor vehicle exhaust system dilution,
removal of suspect observations from the dataset, and special handling for
low TSI values;

. Investigation of transformations of the variables to be used in the models
to make the variance across the range of values homogeneous;

. Various types of variable screening techniques to determine variables
which could be expected to be important to the prediction of IM240 vaues
and to discover any major curvature that might be present;

. Variable screening through the use of model building using ordinary least
sguares modeling techniques. With ordinary least squares modeling, the
independent variables are assumed to have no measurement error;

. Estimation of the error variances of IM 240 measurements and the error
variances and covariances of TSI measurements; and
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. Using the independent variables which produced the best ordinary |east
sguares models, to develop the final models using the measurement error
model building technique. In thistechnique, the error variances and
covariances of the TSI measurements and the error variances of the IM240
measurements were used to build models which are less biased than the
ordinary least squares models.

Each of these different steps in the modeling approach is discussed bel ow.

Data Preparation

After an exhaustive quality assurance check was performed on the TSI and 1M 240 data,
the TSI datawas corrected for dilution. 1M 240 data does not require adilution
correction, although the NO, values are corrected for ambient humidity when collected.

Adjustment of L ow Two-Speed IdleValues

The presence of negative two-speed idle valuesis known to exist in the Texas VID
system. Therefore, during field data collection inthis project, we were aware that
negative values might occur. Negative values can be expected in any instrumental
measurement. Even though negative concentration values make no physical sense, itis
important to remember that the output of instruments is simply avoltage or current which
can have negative values. Thus, asmall error in zeroing the instrument can produce
negative values in the dataset. During model building, negative and zero values need to
be handled appropriately to arrive at amodel which is unbiased on the low concentration
end.

In the dataset collected in this study, no negative two-speed idle values were obtained.
The smallest non-zero values reported by the TSI analyzers were 1 ppm HC and 0.01%
CO. Many zero values (0 ppm HC and 0.00% CO) for two-speed idle concentrations
were measured (11 low-speed idle HC zeroes, 246 low-speed idle CO zeroes, 55 high-
speed idle HC zeroes, and 324 high-speed idle CO zeroes) for the modeling dataset. For
model building purposes, zero two-speed idle HC values were set to 1 ppm, and zero
two-speed idle CO values were set to 0.01%. These changes are well within the
measurement error of the TSI method and instruments. The changes are necessary to
allow logarithmic transformations of TSI values for model building purposes.

Negative and zero IM 240 values were not reported on the test vehicles.

Selection of Appropriate Variable Transfor mations

Plots of IM240 emission rates versus dilution-corrected TSI concentrations indicate that
the values of both variables are highly positively skewed and the variance of any
relationship between the two variablesisinhomogeneous. |nhomogeneous variance
means that the scatter at high emissions levels is much different than the scatter at low
emissions levels. Thisdifferencein scatter can be seen in the sample plot in Figure A-1
for IM240 CO versus high-speed idle CO in linear space. The figure shows much larger
scatter at high emissions than at low emissions. Another serious problem with building
variablesin linear space for this datais aresult of the “kite and string” nature of the data.
Because of the highly skewed distribution for the dependent and independent variables,
asisseenin Figure A-1, any regression line will be anchored near the origin by the large
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number of data pointsthere. Then, the presence or absence of the few high values on the
upper right portion of the plot will influence the position of the regression line far out of
proportion to their abundance in the data set.

DRAFT August 2001 -75-



Figure A-1. IM240 CO versus High-Speed Idle CO
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Other transformations were sought to help correct these problems. The natural logarithm
of both the IM240 emission rates and the TSI concentrations was chosen. Figure A-2
shows the scatter plot in log-log space for 1IM240.CO versus high-speed idle CO. The
plot shows that the data for both variablesin log space isnot highly skewed and that the
variance (the scatter of points) is nearly homogeneous across the range of the variables.
Thelog-log plots for al combinations of IM240 emission rates and TSI emission

concentrations were also examined.
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Figure A-2. Comparison of IM240 CO and High-Speed Idle CO
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Investigate I ndependent Variables

Asthefirst step in model building, correlation coefficients were calculated and plots were
made to investigate the rel ationships among the different variablesin the dataset. The R
values were tabulated and the strongest relationships noted. The R between IM 240
emission rates and different variables which are candidates for predictors were also
calculated.

Statistical Variable Selection Using Conventional Regression

The second step in the selection of variablesto be usedto predict IM240 emission ratesis
the development of ordinary least squares regression models. Unlike correlation
coefficients and scatter plots that can only consider the influence of one independent
variable at atime on the IM240 emission rate, multiple linear regression can consider the
influences of many variables at the same time on 1M 240 emission rates.

In the process of performing ordinary least squares regression, dozens of models were
created and evaluated in an effort to find the best model for predicting IM240 emission
rates. The PROC REG procedure in SAS was used with the stepwise option to select
input variables from the TSI measurements and vehicle characteristic descriptors. Main
effects, two-factor interactions, and squared effects of the following variables were
considered for inclusion as termsin the models:

High-Speed Idle HC (ppm)
High-Speed Idle CO (%)

L ow-Speed Idle HC (ppm)
L ow-Speed Idle CO (%)
Engine Displacement (L)
Age (year)
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Truck/Car Indicator (+0.5, -0.5)
Carbureted/Fuel-Injected Indicator (+0.5, -0.5)
Oxy-Catalyst Indicator (+0.5, -0.5)

Three-Way Catalyst Indicator (+0.5, -0.5)
Exhaust Gas Recirculation Indicator (+0.5, -0.5)
Air Injection Reactor Indicator (+0.5, -0.5)

Only terms which had coefficients that were significant at the 99.9% confidence level
were retained for further consideration. The terms which survived thistest were then
used to devel op the measurement error models.

Estimation of IM240 and TSI Measurement Error

The measurement error variances of IM240 HC, CO, and NO, and of TSI HC and CO are
needed for development of measurement error models and for evaluation of the
influences of measurement error on model predictions. In the context of this study,
measurement error is used in the statistical sense and includes all, sources of error that
would cause the emissions measurement of avehicle to be different if the vehicle were
tested at different I/M stations. Correctly determining the measurement error would
involve measuring the emissions of a set of vehicles at different times and at different
stations and instruments. Instead of using this type of comprehensive effort, we used
repeat measurements on a set of vehiclesto estimate measurement error. |M 240 repeat
measurements were performed following each other on the same dynamometer. TS|
repeat measurements were performed at the same I/M station within about one hour of
each other; some repeats were performed on the same BAR90 analyzer, and some were
performed on different BAR90 analyzers. In any case, the repeat measurements will
under-estimate the true measurement error since variability contributions of different
stations, dynamometers, and days are not present. Nevertheless, the use of estimated
measurement error values is significantly better than ignoring measurement error in
model development, which would essentially be assuming all measurement errors are
zero.

For the emissions of each repeat-tested vehicle, the variance of each repeat pair was
calculated, and then the variances for all vehicles getting repeat tests were pooled to
arrive at the overal variance for the test. 1M 240 measurement errors for HC, CO, and
NO, were calculated using 127, 127, and 125 repeat pairs, respectively. In asomewhat
similar manner, the TSI measurement error variances were calculated for the TSI HC and
CO vaues using the repeat TSI data. High-speed idle HC and CO and low-speed idle HC
and CO had 146, 101, 159, and 111 repest pairs, respectively.

The pooling of measurement variances for the repeat-tested vehicles must be performed
in atransformed space where measurement error is homogeneous, that is, where the
scatter from measurement error is constant across the range of emissions levels. We
searched for the optimum transformation using the following procedure. Each set of
repeat pairs was divided into low-valued pairs and high-valued pairs. Pairs were assigned
to low if their transformed-space average was below the transformed-space value
corresponding to 100 ppm for HC or 1.0% for CO; otherwise, they were assigned to high.

Then, we considered different power transformations from A= 0.1 to 0.9 until the pooled
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standard deviations of the within-pair differences were the same for the low set and the
high set.

The same approach was used to estimate the measurement variance of the IM240 HC,
CO, and NO,. Table A-1 shows the measurement variances for TSI and IM240 tests.

Table A-1. Measurement Variances for IM240 and TSI Measurements

Space Variance

IM240 HC (g/mile) natural log 0.0798
IM240 CO (g/mile) natural log 0.284
IM240 NO, (g/mile) natural log 0.126
High-Speed Idle HC (ppm) 0.38 power 1.30

High-Speed Idle CO (%) 0.60 power 0.042
L ow-Speed Idle HC (ppm) 0.32 power 0.92

L ow-Speed Idle CO (%) 0.75 power 0.037

To put the measurement error variances in perspective, the variances given in Table A-1
have been converted to the 95% confidence limits in linear space shown in Table A-2.
The confidence limits can be interpreted as follows.  The exact value of avehicle's
emission rate is unknown; the measured valueis just an estimate of the emission rate.
The probability that the exact value falls within the confidence limitsin the table is 95%.
For example, if ameasured IM240 CO valuewere 10 g/mile, we would be 95% confident
that the exact IM240 CO would be between 3.5 and 28 g/mile.
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Table A-2. Measurement Error 95% Confidence Limits for IM240 and TSI
in Linear Space

Measur | IM240 |[IM240CO| IM240 High- L ow- High- L ow-
ed HC (g/mile) NOx Speed | Speed |Speed CO| Speed
Emissio | (g/mile) (g/mile) HC HC (%) CO (%)
n Value (ppm) | (ppm)
v |lo |o ) ) v |0 o |0 |lo |o o o |o
- . - . - . 1 o | o - . | .
0.01 0.00| 0.28 |0.0 | 0.30
0
0.1 1|0.06/0.17|0.04| 0.28 |0.05| 0.20 0.00| 0.49 |0.0 | 0.46
0
1 0.57|1.72|0.35| 2.84 |0.50({200| O | 22 |0 | 27 |0.42|1.76 |05 | 153
3
10 |5.75(17.2|3.52|28.40/5.00{20.00} 0 57 |“0 | 74'/8.38|11.74(/9.1 |{10.90
0 2
100 35.21284.0 27 1237 | 17| 306
1 0
1000 628/1485|486|1796

An examination of the resulting measurement error magnitudes might lead the reader to
guestion the ability of the TSI (especially at low TSI values) to be useful to predict the
average IM240 emission rate of afleet. In fact, the evaluation of sources of error when
applying these models to a fleet revealsthat the TSI measurement error is one of the
smaller sources of error.

In any case, the non-negligible error variances for the TSI values, which were used as
predictor variables, provide a motivation for using measurement error models. Thistopic
is discussed in the following subsection.

Measurement Error Method for Final M odels

In conventional regression analysis, it is assumed that the dependent variable (the IM240
HC, CO, or NO, value in this study) has error, but the independent variables have no
error. The TSI variables included as predictor variables in the models have, as we have
shown above, non-negligible measurement errors. Since the assumptions of conventional
regression analysis are not satisfied for this problem, if this method had been used to
develop the fina models, there would have been biases in the regression coefficients. To
avoid this problem, statistical methods designed to handle situations with errorsin both
the dependent and independent models were used. The type of model in which there are
errorsin both the dependent variable and one or more of the independent variables are
called “measurement error models.” Measurement error models were developed using
EV CARP software. Thisprogram isaproduct of the Statistical Laboratory at lowa State
University.
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Aswith conventional regression, EV CARP requires the value of the dependent variable
and the values of the independent variables for each observation to be used in the model
development. Other inputs are required also, depending on the option of EV CARP that
isselected. The option used by ERG iscalled EV1. We elected to supply the variance of
the measurement error in the dependent variable, which is an optional input with EV 1.
Additionally, the variances of the measurement errorsin the predictor variables were
input. Covariances quantify the relationships between measurement errors for different
variables. Error covariances were aso calculated from the repeat emissions tests and
supplied to the software.

The EV1 option is especially suited for this application because it accounts for several
separate sources of variability. Disagreement between individual measured IM240
values and the IM 240 values predicted by the model occurs for three reasons. First,
measurement errors in the dependent variable (the IM 240 value) cause data scatter.
Second, the TSI values measured with error are used in the model, so TSI measurement
error also causes differences between measured-and-predicted 1M 240 values.

Thereisathird reason for data scatter. Even if the TSI values and IM240 values were
measured with no error, there would still_be some disagreement between the measured
and predicted IM240 values. Thisis because of idiosyncrasies of individual vehicles that
cannot reasonably be captured perfectly by the model.

EV CARP s especially appropriate for this application, since it provides an option that
accounts for all three sources of data scatter mentioned above.

Ideally, the measurement variances and covariances of the predictor variables would be
calculated for input into EV CARP in the transform space where the variances were
homogeneous. These spaces were determined in the analysis described in the previous
subsection. However, we found that when the measurement error models were built
using these transformations for the input variables, the regression results for the
measurement error models were unstable. This instability was characterized by large
changesin the regression coefficients compared to the values obtained with the
conventional regression analysis. 1n some cases, the regression coefficients changed
sign. We found that to achieve a stable measurement error model it was necessary to
change the transformations used for the two-speed idle measurements. We found that the
natural log of the two-speed idle measurements produced measurement error models
which were stable. Unfortunately, this means that the two-speed idle variances and co-
variances used to devel op the models were the average variances for the dataset when we
know that the variances are not homogeneous in log space. By using these average
variance values, the model “believes’ that low TSI values carry more information and
high TSI values carry lessinformation then they actually do. Nevertheless, the use of
these average variance values will provide models that should be superior to models built
without considering measurement error at all.

A.3 Limitations of the Models in Applications

The models developed for TNRCC relate emissions from TSI concentrations to 1M 240
emission rates as they were determined: 1) in two specific Texas I/M stations for TSI
measurements and in a portable IM 240 dynamometer environment for IM240
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measurements; and 2) on a specific set of vehicles. Therefore, as with any models,
application of these models to other situations may result in the introduction of biasesin
the results. Biases can be introduced through the application of the model in situations
with different TS| test conditions and/or different vehicle characteristics from those used
in the dataset used to develop the models. Nevertheless, the variety of model years,
technologies, vehicle types, and vehicle ages used in the model building data set should
be sufficiently diverse to allow the model to be used successfully in many real situations.

In the discussion in this section, we present a summary of the test conditions and vehicle
characteristics under which these models were built. The model user should consider
how the model application dataset differs with respect to test conditions and vehicle
characteristics when he uses the models reported in this study.

The following test conditions were used to acquire the model training dataset:

. TSIs were measured with-Texas |/M station grade BAR90 equipment and
procedures;

. TSIswere measured at ambient temperature and relative humidity;

. TSls and IM240s were determined on vehicles with as-received fuel; and

. IM240s were measured on a portable dynamometer system.

If TSIsare collected for an application dataset with equipment and procedures other than
those at the Texas I/M stations used to develop the model training dataset, then thereisa
possibility of abias or adifferent variance for the TSI measurements between the training
dataset and the application dataset.

The effects of ambient temperature and relative humidity on TSI HC and CO resultsto
our knowledge, are not known. Therefore, TSI results at conditions other than the
ambient temperature and relative humidity used for the training dataset could produce
TSI values which are systematically different.

There are severa vehicle characteristics of the training dataset which could affect the
applicability of the models devel oped:

. Model year and vehicle age;

. Vehicletype;

. I/M program in place at the time of the training dataset collection; and
. Small, specific fractions of the fleet.

Application of the models to datasets which differ significantly from the training dataset
in model year could be a step outside prudent application limits. Thiswould also include
application to datasets where vehicle ages were significantly different from those in the
training dataset even though the model year distribution was similar. The model user
should also be aware of the emission control technologies used on the vehiclesin the
application dataset although attention to the model year distribution should be adequate
given the high correlation between emission control technology and model year.
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Consequently, we expect that it will be beneficial to update the models as newer TSI and
M 240 measurements on a set of vehicles become available.

The Texas models were built on vehicles with models years from 1981 to 1997. Smaller
numbers of vehicles in the oldest model years mean that the uncertainty in the predicted
IM240 values for vehicles in those model yearsisrelatively larger than for the IM240
emissionsin the later years. Asfar as predicting fleet emissionsis concerned, for the
middle 1990’ s model year vehicles, the very low IM240 and TSI emissions of these
vehicles make the measurement and prediction of IM240 emissions with small relative
errors difficult.

Perhaps a more subtle limitation on the application of the models developed in this study
isthe effect of the I/M program in force at the time of data collection. For the training
dataset, the I/M program at the time was based on two-speed idle testing. Therefore, the
vehicles which were tested for TSI and IM 240 emissions were subject to atwo-speed idle
[/M program. Aslong as the models developed-in this study-are applied to vehicles
subject to the same two-speed idle I/M program and cutpoints, there should be no
guestion that the model application is appropriate from this perspective. However, if a
different I/M program isinstituted, then it is possible that the relationship between TS|
and IM 240 could be different. Under anew 1/M program, vehicles would be tested and
repaired based on other emissions results. There is no guarantee that the resulting
changes in the emissions characteristics of the vehicle population would preserve the TS|
to IM 240 relationships discovered in this study.

The correlation models are intended to be used to estimate the average IM240 emissions
of alargefleet of vehicles such as the Texas fleet.” The estimates can be made for
different cities and for different model years. The uncertainty of the average will

increase for small fractions of afleet since small fractions could not have been well
represented in the model training dataset. For example, we would expect larger
uncertainties for predicted IM 240 emissions for 1985 light-duty carbureted trucks. Thus,
as an investigator further sub-divides the application dataset when applying these models,
the uncertainty of the mean predicted IM240 emission rates increases. In the extreme, the
largest uncertainties are those for a single vehicle based on its TSI measurement.

A.4 Accuracy of the Modelsin Their Application

This section discusses application of the models and the roles of various sources of
variability. Issues pertaining to model precision and bias and the effect on the estimation
of the fleet average by using the models are also covered.

Therole of several types of variance in using the model to estimate afleet averageis
discussed below. The estimation of the fleet average involves first estimating the average
IM240 emission rate in model year strata. These stratum-specific averages are weighted
by their travel fractions and summed to obtain the estimated fleet average. Model
refinement is necessary to achieve zero or insignificant biasesin the strata. Thisin turn
produces a zero or insignificant bias in the estimate of the fleet average.

Refinements in the model precision may not change the estimated precision in the fleet
average. Refinements improve the estimate of the emissions of a specific vehicle. Thus,
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the unexplained part of the variance in the IM240 values decreases. However, the
explained part of the variance of the IM240 values increases by an equal amount. The
uncertainty in the estimate of an average emission level is afunction of both types of
variance. The details of these relationships are discussed further below.

Even if an enhancement to the model does not change the estimated precision in the fleet
average, improving the model is still beneficial. Asis mentioned above, enhancementsin
the model reduce the possibility of biasin the strata and therefore reduce the possibility
of biasin the estimate of the fleet average. A detailed set of plots may be used to
determineif any biasremainsin the models and if it is small compared to the random
scatter.

What is meant by biasin this context is lack of fit between the model and the data that
could be eliminated by modifying the termsin the model in some manner (including
additional terms or changing the functional forms of the existing terms). The issue here
does not pertain to biases in the data or to biases resulting from inappropriate use of the
models.

Variability asit Influences Precision and Bias

We will briefly review the different sources of variability and indicate the role of each
source. The primary emphasis of this section pertains to the application of the models.
However, this cannot be adequately discussed without some reference to the model
devel opment.

IM240 measurement errors, TSI measurement errors, and vehicle-to-vehicle
idiosyncrasies that are not captured by the modelsall affect the model development. All
of these sources of variability contribute to scatter of data pointsin the model-
development dataset about the 1M 240 values predicted by the model.

Of these sources of variability, the |M 240 measurement errors do not affect the
application of the models. Thisis because the models are applied in situationsin which
TSI measurements are used to predict the IM240 values. The IM240 measurements are
not actually made, so IM 240 measurement error is not afactor at all in situationsin
which the models are applied.

The IM240 values predicted by the models are direct functions of the TSI measurements.
Thus, the measurement errorsin the TSI values in the application dataset affect the
results obtained by using the models.

Vehicle-to-vehicle idiosyncrasies introduce another source of variability. Thisvariability
isred; that is, it represents variability among true IM240 emission rates that is not
explained by the model and is not caused by measurement error.

Theseideas areillustrated by the following conceptua equation:

Estimate of the Measured IM240
=TSl Terms + Terms without Error + Vehicle-to-Vehicle Term
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Thetermsinvolving TSI values are self-explanatory. The terms without error include
predictor variables such as vehicle age, vehicle type, fuel metering type, and
displacement that are considered to be known essentially without error. The vehicle-to-
vehicle term represents the effect of the vehicle's specific characteristics that are not
captured by the model.

If one were interested in predicting the IM240 value for an individual vehicle, the
predominant errors of concern would include (1) the effect of measurement errorsin the
TSI values used in the prediction and (2) the unexplainabl e vehicle-to-vehicle term.
Since the IM240 value for a specific vehicle is needed, variability among true IM240
values in the fleet does not contribute to the relevant error in the estimate.

Alternatively, suppose we want to estimate the average emissions for afleet or stratum
within afleet. Even if there were no TSI measurement error and no unexplainable
vehicle-to-vehicle term, the average 1M 240 value based on a sample of size n would still
have an error. The sample will net perfectly represent the population from which it is
drawn. The imperfect representation of the population by the sample occurs because of
random variability of the true IM 240 valuesiamong vehicles in the fleet and because of
the random sampling process.

To summarize, the following three sources of variation affect the estimation of IM240
average emissions on the basis of predictions made using one of the models:

(1)  Theeffect of TSI measurement errors on the predictions,
(2)  Truevariability of the IM240 values that is captured by the model; and
(3)  Truevariahility of the IM240 valuesthat is not captured by the model.

Thefirst two errors listed above are represented in the predicted IM240 values. If we
compute the variance of the predicted IM240 va ues for our sample of size n, this
variance will represent the effect of these two sources of variability. We call the variance

of the n predicted values ijp,au.ned . Thisisthe"explained" variance in the sense that it can
be computed directly on the basis of the predicted values.

But, asis discussed above, the emission rate of a given vehicle deviates from the
predicted value because of the vehicle-to-vehicle idiosyncrasy effect. Since the vehicle-
to-vehicle effect is not "explained" in terms of the predicted IM240 values, we denote its

Variance S;pane - 1hetotal variance of asingle IM240 prediction is as follows:

2 —_ 2 2
Sota] ~ explained +Sm@<plajned

If we average the predicted IM 240 values for n vehicles, the result will differ from the
true average for the population sampled because of both the unexplained and the
explained errors discussed above. The variance of the error in the mean associated with

the explained part of the varianceis ijplajned In. The variance of the error in the mean
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associated with the unexplained part of the variance is s oqanea/N- Thus, the total

variance of the error in the mean is as follows:

S;(plaj ned + anexplained
n

2

Strean =

Now, suppose we make some improvements to the model that allow the model to
"explain”" some of the variance that was previously unexplained and therefore included in

the vehicle-to-vehicleterm. The improvement, therefore, reduces anexpmned to some
extent.

The total variance among the true IM 240 values in the sampled population does not
change as aresult of the change to our model. That is, changing the model does not

change s, . The s, isthe same (except for the small effects of TSI measurement
error and IM240 measurement error) asif IM240s had actually been measured. Thus,
Sepiaines 1S iNCreased by the amount that S, anes 1S decreased. Thus, the error variance

€x

s?...,» Which is an estimate of the precision in the mean, is not changed by improvements

in the model (one can contrive exceptions to this statement on the basis of trivia models).

This does not, however, imply that improvements in the model lead to no improvement in
the estimation of the fleet average IM 240 emission rate; model improvements lead to
reduced biases. The process of making this estimation will be briefly summarized here.
The average and error variance of the average is computed within each stratum, where a
stratum consists of all datafor a specific model year. The estimated average emission
rate for the fleet equals the sum of stratum-specific averages, each weighted by its travel
fraction.

Now, suppose we omitted a variable, such as model year, from the model. The mean
residual (observed minus predicted value) in the model development dataset would still
be zero, since thisis a property of regression analysis. However, there would be biasesin
the strata. Similar comments would apply if model year were included in the model, but
the functional form of the term involving model year did not fit the data. Avoiding
prediction bias is much more complicated than simply being sure that all the necessary
variables are included in the model in their ssmplest forms.

In this exercise, the sample size of the model development datasets HC, CO, NO, were
897, 921, and 918 observations, respectively. Despite thislarge sample size, the counts
in the strata can be small. For example, the largest number of vehicles for any model
year is 66 for 1988 and 1993. Much smaller counts exist for some years. For example,
1981 has only 8 counts.

Even if the model development dataset were selected randomly from the fleet, because of
sampling variability, one would not expect the travel fractionsin the fleet to be exactly
matched by the fractions of vehiclesin the stratain the model development dataset.

Thus, even if the biasesin the different stratain the model devel opment dataset produce

DRAFT August 2001 -86-



an average residual value of zero, the biases will in al likelihood not balance when the
fleet average is computed on the basis of the application dataset.

The solution isto develop the models so that the biasesin the strata are zero or
insignificant. If thisis achieved, the biasin the fleet averageislikely also to be zero or
insignificant. There will be no necessity for the biases in the different strata to "balance"
each other for the biasin the fleet average to be unbiased.

Evaluation of Biasin the Models

The importance of avoiding model biasis stressed in the discussion above. The
considerable steps taken to avoid significant prediction biases are discussed in this
subsection. Again, biasin this context refers to a systematic difference between the
observed and predicted 1M 240 values, such that this systematic difference could be
eliminating by including more or different termsin the models. Biasesin the data or
prediction biases resulting from improper use of the models are addressed in Section A.3.

Evaluation of the models to ensurethat no significant biases exist is an important
additional step and was performed by examining alarge number of plots. Table A-3
presents alist of plots that was prepared for this purpose for the Texas models. Recall
that aresidual is the observed minus predicted value, The variables are in natural-log
space unless otherwise noted. In addition to the scatter plots listed in Table A-3, severa
histograms were also prepared.
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Table A-3. List of Modedl Validation Scatter Plots Examined for All Three Pollutants, for
All Vehicles Combined, for Trucks and Cars Separately, and for Carbureted and Fuel-

Injected Vehicles Separately
Y-Variablein the Plot X-Variablein the Plot
Residua Model Y ear
Residual Natural Log of Displacement
Residual Natural Log of High-Speed Idle HC Value
Residual Natural Log of High-Speed Idle CO Value
Residual Natural Log of Low-Speed Idle HC Vaue
Residua Natural Log of Low-Speed Idle CO Vaue
Residual Natural Log of Predicted Value of the Pollutant
Measured Value of the Pollutant Estimated Vaue of the Pollutant
Ratio of Average Predicted to Average Model Year
Measured Vaue by Model.Y ear
Ratio of Average Predicted to Average Model Y ear Group
Measured Value by Model Y ear Group
Mean Residual by Model Y ear Model Year
Measured Vauein Linear Space Predicted Valuein Linear Space
Measured versus Predicted Valuein Linear | Expansion around Smaller Predicted Vauesin
Space, Expansion Showing Smaller Values Linear Space

Table A-3 lists 13 types of plots. These were al produced for al three pollutants (HC,
CO, and NO), resulting in 39 separate plotsin aset. A complete set of plots was
produced for five cases: All vehicles combined, trucks and cars separately, and
carbureted vehicles and fuel-injected vehicles separately. Five setstimes 39 plots per set
resultsin 195 separate plots. The ERG staff examined all of these plots and reasonable
sampling of the plots, which present the major results. /A major objective in plotting
residualsis to determine whether any remaining trend existsin the data. If so, itis
possible that further improvement in the models can be made.

Further Discussion of the Role of Model Y ear

The performance of the models as a function of model year isimportant and warrants
some discussion. One way to address this issue is to examine the average residual for
each model year, asin the figures described above. However, the number of vehicles
varies as afunction of model year. The mean residuals for years with small numbers of
data points are highly variable. One way to address thisissue isto account for the
different sample sizes for different years by using the t-statistic.

To address this problem, the t-statistic was computed for each model year. Thet-statistic
for aparticular model year is as follows:
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where

t = t-statistic;
I = mean log-space residual for thismodel year;

n = number of vehicles for thismodel year; and
s = pooled standard deviation.

The pooled standard deviation sis an estimate of the variability within amodel year.
However, the separate estimates from all model years were combined to obtain the most
reliable common estimate. Pooling was necessary, since otherwise the standard
deviations for some years with small numbers of vehicles were unreliable.

The t-statistic accounts explicitly for-the different sample sizesin the different years. The
residuals are expressed in units that are much.more comparable for different years with
different numbers of data points.

We have shown that the means of the log space residuals versus model year appear to be
unbiased. However, when the predicted values of 1M 240 are considered in linear space,
it ispossible that biases with respect to model year can be present.

To evaluate the potential for biasin the linear space predictions as a function of model
year, we calculated the average predicted and measured |M 240 value for each model year
in the dataset. Then we took the ratio of the average predicted 1M 240 value and the
average measured IM240 value. Theseratios were plotted as a function of model year,
with a horizontal reference line at 1.0 on each graph. If thereisan insignificant bias with
respect to model year, the data points that apply should be scattered more or less
randomly about thisline. These plots showed data points that were scattered randomly
about the 1.0 reference line.

Histogramsfor Residuals Revealing the Roles of Additional Variables

Additional plots were produced to reveal the role of other variables. These include the
vehicle type (car or truck), the presence of a carburetor or fuel-injection, and the presence
of exhaust gas recirculation. Asis indicated in Section A.2, variables to account for the
vehicle type, the carburetor versus fuel-injection dichotomy, and the exhaust gas
recirculation dichotomy are included in the models. In view of this, a remaining bias
with respect to these variables was not expected.
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