

Review of the National Ambient Air Quality Standards for Ozone:

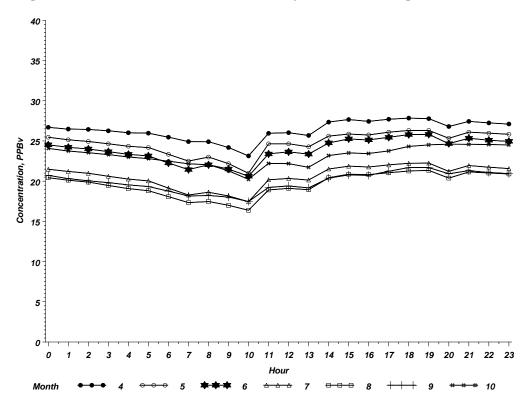
Policy Assessment of Scientific and Technical Information

Appendices to OAQPS Staff Paper – Second Draft

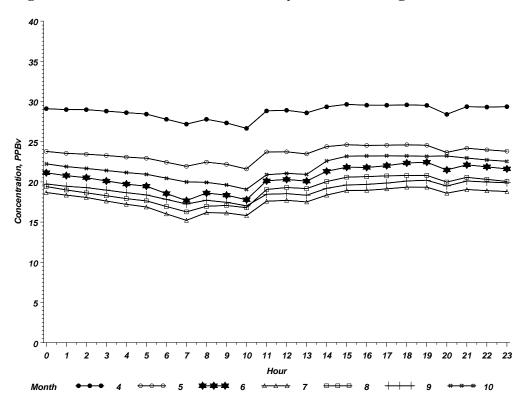
Review of the National Ambient Air Quality Standards for Ozone:

Policy Assessment of Scientific and Technical Information

Appendices to OAQPS Staff Paper – Second Draft

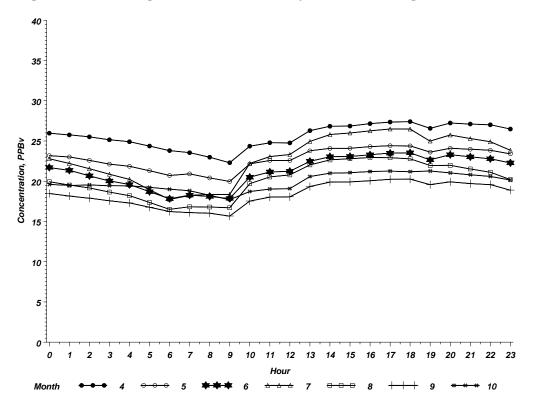

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, North Carolina

DISCLAIMER

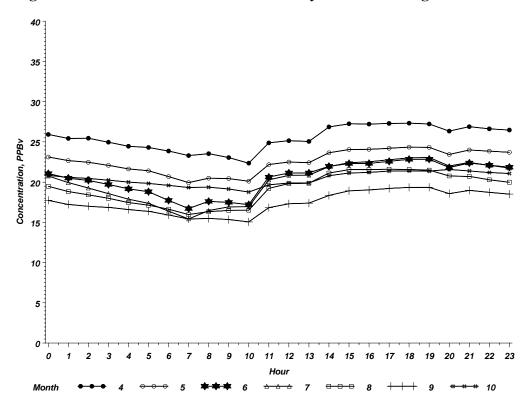

This document has been reviewed by the Office of Air Quality Planning and Standards (OAQPS), U.S. Environmental Protection Agency (EPA), and approved for publication. This second draft OAQPS Staff Paper contains the initial conclusions of the staff of the OAQPS and does not necessarily represent those of the EPA. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use.

1	APPENDIX 2A. PLOTS OF DIURNAL POLICY RELEVANT
2	BACKGROUND OZONE PATTERNS FOR 12 URBAN AREAS
3	BASED ON RUNS OF THE GEOS-CHEM MODEL FOR APRIL-
4	OCTOBER 2001

Figure 2A-1. Atlanta CSA: Diurnal Policy Relevant Background Ozone Patterns.

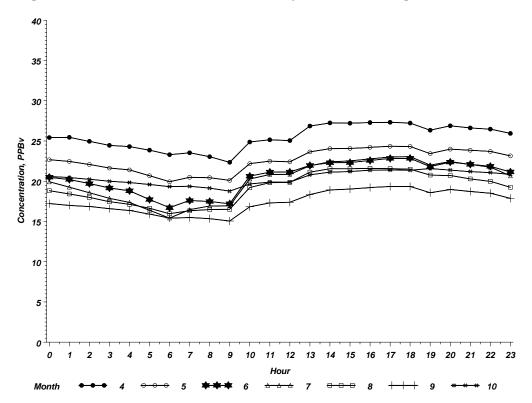


3 Figure 2A-2. Boston CSA: Diurnal Policy Relevant Background Ozone Patterns.

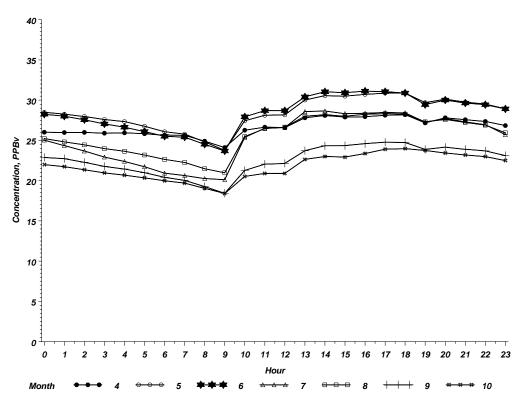


4

Figure 2A-3. Chicago CSA: Diurnal Policy Relevant Background Ozone Patterns.

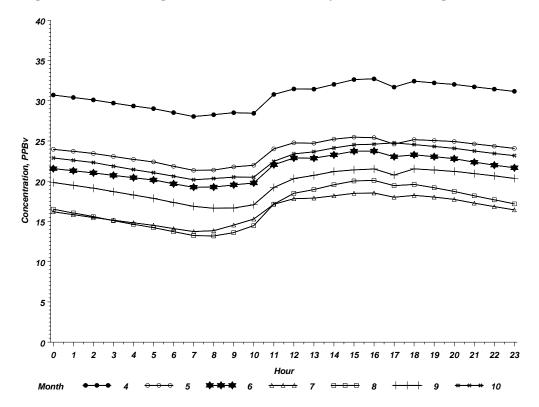


3 Figure 2A-4. Cleveland CSA: Diurnal Policy Relevant Background Ozone Patterns.

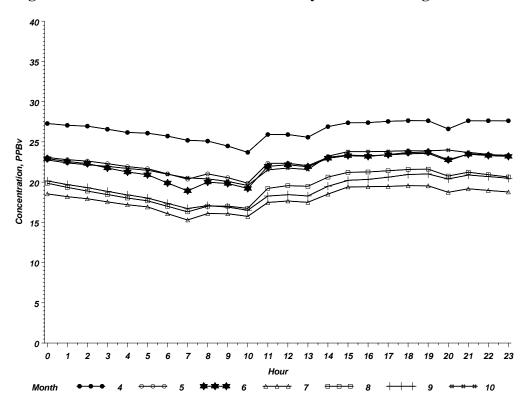


4

Figure 2A-5. Detroit CSA: Diurnal Policy Relevant Background Ozone Patterns.

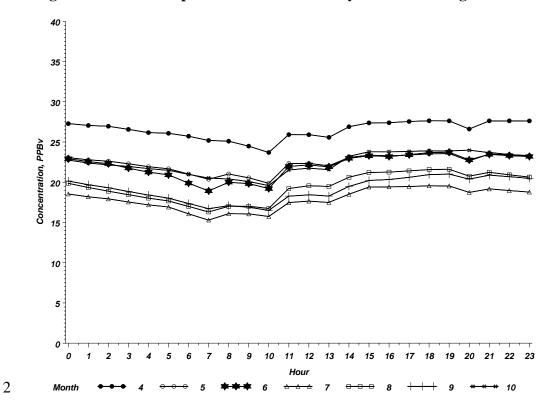


3 Figure 2A-6. Houston CSA: Diurnal Policy Relevant Background Ozone Patterns.

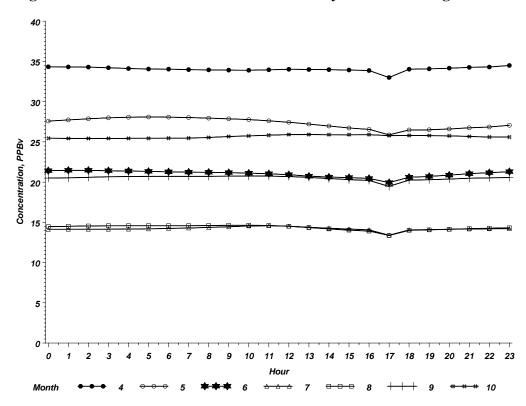


4 5

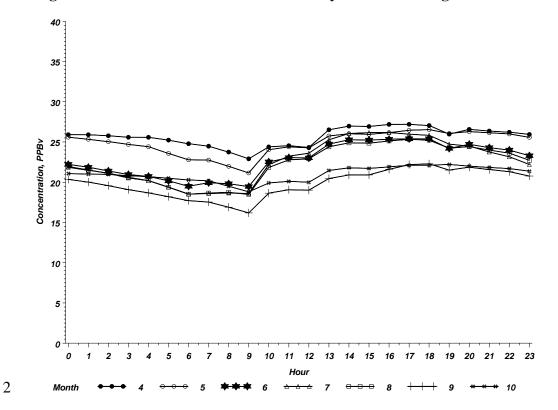
Figure 2A-7. Los Angeles CSA: Diurnal Policy Relevant Background Ozone Patterns.

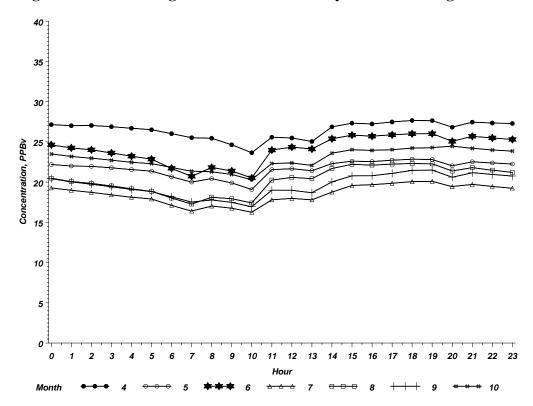


3 Figure 2A-8. New York CSA: Diurnal Policy Relevant Background Ozone Patterns.



4


1 Figure 2A-9. Philadelphia CSA: Diurnal Policy Relevant Background Ozone Patterns.


3 Figure 2A-10. Sacramento CSA: Diurnal Policy Relevant Background Ozone Patterns.

1 Figure 2A-11. St. Louis CSA: Diurnal Policy Relevant Background Ozone Patterns.

3 Figure 2A-12. Washington CSA: Diurnal Policy Relevant Background Ozone Patterns.

APPENDIX 3A: MECHANISMS OF TOXICITY

This Appendix provides an overview of evidence covered in Chapters 5 and 6 of the CD on possible mechanisms by which exposure to O₃ may result in acute and chronic health effects.

Pulmonary Function Responses

The direct pulmonary effects of O₃ include changes in breathing pattern, symptoms of breathing discomfort, lung function changes, and airway hyperreactivity. Subjects who engage in physical activity for several hours while exposed to O₃ may experience respiratory tract symptoms and acute physiological changes. Airway irritation is consistently the most typical symptomatic response reported in studies and can be accompanied by several physiological changes. These physiological changes include alteration in breathing pattern, airway hyperresponsiveness, airway inflammation, immune system activation, and epithelial injury. Severity of symptoms and magnitude of response depend on dose of inhaled O₃, individual sensitivity to O₃, and the extent of tolerance resulting from previous O₃ exposures. Development of effects is time-dependent with a substantial degree of overlap of increasing and receding effects. Time sequences, magnitudes, and types of responses of this series of events, in terms of development and recovery, indicate that several mechanisms, activated at different times, must contribute to the overall lung function response. (CD, pp. 6-11) For the full discussion of the mechanisms of pulmonary function responses, see section 6.2.5 of the CD.

Breathing Pattern Changes

Human controlled-exposure studies have consistently found that inhalation of O₃ alters the breathing pattern without significantly affecting minute ventilation (CD, pp. 6-12). A progressive decrease in tidal volume and an increase in frequency of breathing to maintain steady ventilation during exposure of human subjects indicates a direct impact on ventilation. These changes are similar to responses in many animal species exposed to O₃ and other respiratory irritants. Bronchial C-fibers and rapidly adapting receptors appear to be the primary modulators of O₃-induced changes in ventilatory rate and O₃ penetration in both humans and animals (CD, section 6.2.5.1).

Symptoms and Lung Function Changes

In addition to changes in ventilatory control, O₃ inhalation by humans induces a variety of symptoms (e.g., cough, pain on deep inspiration), reduces inspiratory capacity (IC) and vital capacity (VC) and related functional measures, and increases airway resistance (CD, pp. 6-13).

1 The reduction in VC caused by exposure to O₃ is a reflex action and not a voluntary early

termination of inspiration resulting from discomfort. An inhaled topical anesthetic substantially

3 reduces O₃-induced symptom responses (mediated in part by bronchial C-fibers) while having

only minor and irregular effect on pulmonary function decrements and rapid, shallow breathing.

5 Since respiratory symptom responses were largely abolished by anesthetic, these findings

6 support reflex inhibition of VC due to stimulation by both bronchial and pulmonary C-fibers.

Intersubject variability in FEV₁ responses is not explained by differences in O₃ doses between

similarly exposed individuals (CD, section 6.2.5.1).

8 9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

7

2

4

Airway Hyperresponsiveness

Bronchial or airway hyperresponsiveness (AHR) refers to a condition in which the propensity for the airways to bronchoconstrict, due to a variety of specific (e.g., allergens and antigens) or nonspecific (e.g., histamine and cold air) stimuli, becomes increased (CD, p. 6-30). Despite a common mechanism (CD, pp. 6-13 and 6-14), post- O₃ exposure pulmonary function changes and AHR (either early or late phase) are poorly correlated either in time or magnitude. Neither does post- O₃ exposure AHR seem to be related to baseline airway responsiveness. These findings imply that the mechanisms are either not related or are activated independently in time. Animal studies (with limited support from human studies) have suggested that stimulation of C-fibers can lead to increased responsiveness of bronchial smooth muscle independently of systemic and inflammatory changes which may be absent. A characteristic of O₃-induced inflammatory airway neutrophilia, which at one time was considered a leading AHR mechanism, has been found to be only coincidentally associated with AHR, i.e., there was no cause and effect relationship. This observation does not rule out involvement of other cells in AHR modulation. However, there is some evidence that release of inflammatory mediators can sustain AHR and bronchoconstriction. Late AHR observed in some studies is plausibly due to sustained damage of the airway epithelium and continual release of inflammatory mediators. In conclusion, O₃induced AHR appears to be a product of many mechanisms acting at different time periods and levels of the bronchial smooth muscle signa ling pathways (CD, section 6.2.5.1).

282930

31

32

33

34

35

36

Extrapulmonary Effects

Ozone reacts rapidly on contact with lipids and antioxidants in the epithelial lining fluid (ELF) and the epithelial cell layer and is not absorbed or transported to extrapulmonary sites to any significant degree (CD, p. 6-42). Laboratory animal studies suggest that reaction products formed by the interaction of O₃ with respiratory system fluids or tissues may produce effects measured outside the respiratory tract. Studies of the effects on hematological parameters and blood chemistry in rats have shown that erythrocytes are a target of O₃. Exposures to 1.0 ppm O₃

for 3 hr have been found to decrease heart rate (HR), mean arterial pressure (MAP), and core temperature (Tco) and to induce arrhythmias with some exposures in rats. These effects are more pronounced in adult and awake rats than in younger or sleeping animals. Exposures of 0.2 ppm for 48 hr have been shown to cause bradycardia, while exposures of 0.1 ppm O₃ for 3 days have been shown to cause bradyarrhythmia in these animals (CD, Section 5.3.3).

More recent studies of rats have consistently demonstrated effects on heart rate, Tco and activity levels. One study exposed rats to FA for 6 hr, followed 2 days later by a 5 hr exposure to 0.1 ppm O₃, 5 days later by a 5 hr exposure to 0.3 ppm O₃, and 10 days later by a 5 hr exposure to 0.5 ppm O₃ (Arito et al., 1997). Each of the O₃ exposures was preceded by a 1 hr exposure to FA. Transient rapid, shallow breathing with slightly increased HR appeared 1 to 2 min after the start of O₃ exposures and was attributed to an olfactory response. Persistent rapid, shallow breathing with a progressive decrease in HR occurred with a latent period of 12 hr. During the last 90-min of exposure, averaged values for relative VO_E tended to decrease with the increase in O₃ concentration for young (4 to 6 months) but not old (20 to 22 months) rats.

Studies by Watkinson et al. (1995, 2001) and Highfill and Watkinson (1996) demonstrated that when HR was reduced during a 5-day, 0.5 ppm O₃ exposure, Tco and activity levels also decreased. The decreases in Tco and BP reported in these studies and by Arito et al. (1997) suggest that the changes in ventilation and HR are mediated through physiological and behavioral defense mechanisms in an attempt to minimize the irritant effects of O₃ inhalation.

Similar cardiovascular and thermoregulatory responses in rats to O₃ were reported by Iwasaki et al. (1998). Repeated exposure to 0.1, 0.3, and 0.5 ppm O₃ 8 hr/day for 4 consecutive days caused disruption of circadian rhythms of HR and Tco on the first and second exposure days that was concentration-dependent. The decreased HR and Tco recovered to control values on the third and fourth days of O₃ exposure.

The thermoregulatory response to O₃ was further characterized by Watkinson et al. (2003). Rats were either exposed to 0.0 ppm for 24 hr/day (air), 0.5 ppm for 6 hr/day (intermittent), or to 0.5 ppm for 23 hr/day (continuous) at 3 temperatures, 10 °C (cold), 22 °C (room), or 34 °C (warm). Another protocol examined the effects of O₃ exposure (0.5 ppm) and exercise (described as rest, moderate, or heavy) or CO₂-stimulated ventilation. Both intermittent and continuous O₃ exposure caused decreases in HR and Tco and increases in BALF inflammatory markers. Exercise in FA caused increases in HR and Tco while exercise in O₃ caused decreases in those parameters. Several factors were suggested that may modulate the hypothermic response, including dose, animal mass, and environmental stress.

One of the major postulated molecular mechanisms of action of O₃ is peroxidation of mono- and polyunsaturated fatty acids and unsaturated neutral lipids in the lung, resulting in lipid ozonation products (see Figure 5-1 in the CD). Ozone can penetrate only a short distance

into the ELF; and, therefore, it reacts with epithelial cell membranes only in regions of distal lung where ELF is very thin or absent. The inflammatory cascade initiated by O₃ generates a mix of secondary reactants which then are likely to oxidize lipids and proteins in cell membranes. (CD Section 5.1.2.4).

Recent in vitro studies of O_3 reactions with cholesterol in lung surfactant found consequent generation of highly reactive products such as oxysterols and β -epoxide in BALF isolated from rats exposed to 2.0 ppm O_3 for 4 hr (Pulfer and Murphy, 2004). Additionally, both 5β ,6 β - epoxycholesterol and its most abundant metabolite, cholestan-6-oxo-3 β ,5 α -diol, were shown to be cytotoxic to human lung epithelial (16-HBE) cells and to inhibit cholesterol synthesis. Studies (Pulfer et al., 2005) of mice exposed to 0.5, 1.0, 2.0, or 3.0 ppm O_3 for 3 hr also demonstrated that these oxysterols were produced in vivo. These results suggest that this may be an additional mechanism of O_3 toxicity, including a pathway by which O_3 may play a possible role in the development of atherosclerosis and other cardiovascular effects.

The presence of oxysterols in human atherosclerotic lesions implicates the oxidation of cholesterol in the pathogenesis of atherosclerosis, a well-known contributor to development of cardiovascular disease. Oxysterols may arise from different cholesterol oxidation mechanisms, (including free radical-mediated oxidations), and their unabated accumulation in macrophages and smooth muscle cells of arterial walls lead to formation of fatty streaks in advanced lesions. The presence of one of the O₃-induced oxysterols, secosterol, in endogenously formed arterial plaques (Wentworth et al., 2003) suggests that the oxysterols produced in the lung either due to direct O₃ interaction with surfactant cholesterol or with oxidant radicals at the O₃-induced inflammation site may have potential involvement in the development of cardiovascular and myocardial diseases. In addition, the recent in vitro observation (Sathishkumar et al. 2005) of increased apoptosis (programmed cell death) induced by secosterol in H9c2 cardiomyocytes (heart cells) supports possible involvement of such biologically active oxysterols in O₃-induced cardiovascular effects observed in the epidemiologic studies. Also, the detection of oxysterols in the BALF of rats exposed to O₃ suggests their potential to be used as biomarkers of O₃ exposure. Demonstration of relationships between oxysterols of the type generated in lung surfactant with O₃ exposure and cardiovascular disease outcomes in clinical settings or epidemiologic studies would add considerable value to the experimental observations thus for reported in the animal toxicology studies.

Other potential mechanisms by which O_3 exposure may be associated with cardiovascular disease outcomes have been described. Laboratory animals exposed to relatively high O_3 concentrations (≥ 0.5 ppm) demonstrate tissue edema in the heart and lungs. This may be due to increased circulating levels of atrial natriuretic factor (ANF), which is known to mediate capillary permeability, vasodilation, and BP (Daly et al., 2002). Ozone-induced changes in heart

rate, edema of heart tissue, and increased tissue and serum levels of ANF found with 8-hr 0.5 ppm O₃ exposure in animal toxicology studies (Vesely et al., 1994a,b,c) raise the possibility of potential cardiovascular effects of acute O₃ exposures.

Earlier work demonstrated O₃-induced release of functionally active platelet activating factor (PAF) from rodent epithelial cells and the presence of PAF receptors on AMs. New work examining lipid metabolism (CD, Section 5.2.1.4) and mediators of inflammatory response and injury (CD, Section 5.2.3.4) confirm earlier findings indicating that PAF (Kafoury et al., 1999) and PAF receptors (Longphre et al., 1999) are involved in responses to O₃. In addition to the role of PAF in pulmonary inflammation and hyperpermeability, this potent inflammatory mediator may have clotting and thrombolytic effects, though this has not been demonstrated experimentally. This cardiovascular effect may help explain, in part, some limited epidemiologic findings suggestive of possible association of heart attack and stroke with ambient O₃ exposure described in section 3.3.1.4, below. As indicated by the studies described above, an emerging body of animal toxicology evidence is beginning to suggest mechanisms by which O₃ can affect the cardiovascular system.

In a controlled human exposure study described in the CD in Chapter 6, Gong et al. (1998) exposed 10 hypertensive and 6 healthy adult males, 41 to 78 years of age, to 0.3 ppm O₃ for 3 hr while at intermittent exercise, at 30 L/min. For all subjects combined (no significant group differences), there was an O₃-induced decrement of 7% in FEV₁ and a statistically significant increase (70%) in the alveolar-arterial oxygen tension gradient. The overall results did not indicate any major acute cardiovascular effects of O₃ in either the hypertensive or normal subjects. Foster et al. (1993) demonstrated that even in relatively young healthy adults (26.7 ± 7 yrs old), O₃ exposure can cause ventilation to shift away from the well perfused basal lung. This effect of O₃ on ventilation distribution (and, by association, the small airways) may persist beyond 24-hr postexposure (Foster et al., 1997). Gong et al. (1998) suggested that by impairing alveolar-arterial oxygen transfer, the O₃ exposure could potentially lead to adverse cardiac events by decreasing oxygen supply to the myocardium. However, the subjects in their study apparently had sufficient functional reserve so as to not experience significant ECG changes or myocardial ischemia and/or injury. Information about the impact of O₃ exposure on the cardiovascular system from epidemiologic studies is discussed in section 3.3.1.4.

Appendix 3B. Ozone Epidemiological Study Results: Summary of effect estimates and air quality data reported in studies, distribution statistics for 8-hr daily maximum ozone concentrations for the study period and location, and information about monitoring data used in study.

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da Iality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Respiratory Symptoms	:						
Mortimer et al., 2002 8 U.S. cities morning symptoms	1.35 (1.06, 1.71)	8h	48	64.3	66	28.8-66	6/1/93 - 8/31/93 AQS, all monitors in corresponding county, averaged for 10am to 6pm
Gent et al., 2003 New England cities chest tightness	1.19 (1.05, 1.34)	8h 1d	51.3	95.2	91.8	27.1-99.6	4/1/01 - 9/30/01 10 sites in CT and 4 in Springfield MA
Gent et al., 2003 New England cities shortness of breath	1.17 (1.03, 1.33)	8h 1d	51.3	95.2	91.8	27.1-99.6	4/1/01 - 9/30/01 10 sites in CT and 4 in Springfield MA
Ostro et al., 2001 2 S Cal counties Asthma med use	1.15 (1.12, 1.19)	1h	59.5/ 95.8 (57.2)	121	122	14-122	Aug-Nov 1993 2 sites - downtown LA and Pasadena, individuals matched to closest site
Ostro et al., 2001 2 S Cal counties shortness of breath	1.01 (0.92, 1.10)	1h 3d	59.5/ 95.8 (57.2)	121	122	14-122	Aug-Nov 1993 2 sites - downtown LA and Pasadena, individuals matched to closest site
Ostro et al., 2001 2 S Cal counties Wheeze	0.94 (0.88, 1.00)	1h 3d	59.5/ 95.8 (57.2)	121	122	14-122	Aug-Nov 1993 2 sites - downtown LA and Pasadena, individuals matched to closest site
Ostro et al., 2001 2 S Cal counties Cough	0.93 (0.87, 0.99)	1h 3d	59.5/ 95.8 (57.2)	121	122	14-122	Aug-Nov 1993 2 sites - downtown LA and Pasadena, individuals matched to closest site

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data	•	Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Neas et al., 1995 Uniontown PA pm cough	1.36 (0.86, 2.14)	12h 0d	37.2 (56.1)	85.3	98	15-98	6/10/90 - 8/23/90 1 site near Laurel Highlands HS
Delfino et al., 2003 San Diego, CA Symptom score>1	0.75 (0.24, 2.33)	8h 0d	17.1	34.8	35.2	5.8-35.2	Nov 99 - Jan 00 Huntington Park central site
Delfino et al., 2003 San Diego, CA Symptom score>1	1.55 (0.52, 4.63)	8h 1d	17.1	34.8	35.2	5.8-35.2	Nov 99 - Jan 00 Huntington Park central site
Delfino et al., 2003 San Diego, CA Symptom score>2	6.67 (1.09, 40.88)	8h 0d	17.1	34.8	35.2	5.8-35.2	Nov 99 - Jan 00 Huntington Park central site
Delfino et al., 2003 San Diego, CA Symptom score>2	1.15 (0.41, 3.17)	8h 1d	17.1	34.8	35.2	5.8-35.2	Nov 99 - Jan 00 Huntington Park central site
Delfino et al., 1998 San Diego, CA Asthma symptoms	1.26 (1.00, 1.58)	8h 0d	73	107	109	43-109	8/1/95 - 10/30/95 SDAPCD site
Schwartz et al., 1994 6 US cities Cough	1.15 (0.99, 1.33)	24h 1d	36.9				Harvard 6 cities sites; school year period for each, from 1985/6 to 1987/8
Schwartz et al., 1994 6 U.S. cities lower respiratory symptoms	1.22 (1.00, 1.50)	24h 1d	36.9				Harvard 6 cities sites; school year period for each, from 1985/6 to 1987/8

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Ross et al., 2002 East Moline, IL morning symptoms	1.12 (1.05, 1.20)	8h 3d ave	41.5	68.8	75	8.9-78.3	Apr-Oct 1994 AQS data - East Moline sites
Ross et al., 2002 East Moline, IL Evening symptoms	1.12 (1.06, 1.19)	8h 3d ave	41.5	68.8	75	8.9-78.3	Apr-Oct 1994 AQS data - East Moline sites
Ross et al., 2002 East Moline, IL Asthma med use	1.08 (0.99, 1.17)	8h 3d ave	41.5	68.8	75	8.9-78.3	Apr-Oct 1994 AQS data - East Moline sites
Thurston et al., 1997 Connecticut chest symptoms	1.21 (1.12, 1.31)	1h 0d	83.6	NA	NA	NA	last wk of June 1991-93 on-site monitor
Thurston 1997 Connecticut Asthma med use	1.19 (1.08, 1.32)	1h 0d	83.6	NA	NA	NA	last wk of June 1991-93 on-site monitor
Lung Function Changes	s:						
Mortimer et al., 2002 8 U.S. cities am PEF (%)	-0.59% (-1.05, -0.13)	8h	48	64.3	66	28.8-66	6/1/93 - 8/31/93 AQS, all monitors in corresponding county, averaged for 10am to 6pm
Linn et al., 1996 Los Angeles FEV1 (ml)	-0.26 (SE 0.25) (am) -0.18 (SE 0.20) (pm)	24h 0d	23	150	164	2.5-192.5	Jan 91-Dec 92 SCAQMD sites in 3 communities: Upland, Rubidoux, Torrance

Study period;	Statistics for 8-hr daily max air quality data **			Air Quality Data from Study *		Effect Estimate	Study;	
Monitoring information	Range	99 th %	98 th %	Mean	Ave time; Lag	(lower CL, upper CL)	Location	
9/1/00 - 10/31/00 OK DEQ site about 1 km from U Tulsa	17.3-104.7	104.7	92.7	30	24h 1d	-0.274 (p<0.05) (mean O ₃) -0.289 (p<0.05) (max O ₃)	Newhouse et al., 2004 Tulsa, OK am PEF (L/min)	
Apr-Oct 1994 AQS data - East Moline sites	8.9-78.3	75	68.8	41.5	8h 0-1d 1d	-2.29 (-4.26, -0.33) (am) -2.58 (-4.26, -0.89) (pm)	Ross et al., 2002 East Moline, IL PEF (L/min)	
6/10/90 - 8/23/90 1 site near Laurel Highlands HS	15-98	98	85.3	37.2 (56.1)	12h 0d	-2.79 (-6.7, -1.1) (pm)	Neas et al., 1995 Uniontown PA PEF (L/min)	
7/8/93 - 9/3/93 2 sites: Airport and Presbyterian Nursing Home (58th and Greenway)	17.7-104.5	104.5	96.9	56	12h 0d 1-5d ave	-1.38 (-2.81, 0.04) (am) -2.58 (-4.91, -0.35) (pm)	Neas et al., 1999 Philadelphia PA PEF (L/min)	
summers 1991, 92 2 sites: Mt. Washington Observatory and mountain base at Auto Rd	24 – 91	89	87	40	1h 0d	-2.6 (-4.1, -0.4)	Korrick et al., 1998 Mt. Washington NH FEV1 (%)	
last wk of June, 1991-1993 on-site monitor	NA	NA	NA	83.6	1h 0d	-0.096 (p<0.05)	Thurston et al., 1997 Connecticut summer camp PEF (L/min)	
summers 1995-1996 1 site in Vinton VA	13-87	79	74	34.87	24h 1-5d ave	-7.65 (-13.0, -2.25) (pm)	Naeher et al., 1999 SW Virginia PEF (L/min)	

Study;	Effect Estimate	Study *		Statistics f	or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Brauer et al., 1996 Fraser Valley, BC FEV1 (mL)	-3.8 (SE 0.4) (end shift) -4.5 (SE 0.6) (next day)	1h Od	40.3	55	55	3-55	June-August 1993 BC Ministry of Environment sites
Emergency Departmen	t Visits: Respiratory Di	seases					
Peel et al., 2005 Atlanta	2.89 (1.03, 4.77)	8h 3d ave	55.6	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Delfino et al., 1997 Montreal (>64yo)	28.93 (11.98, 45.88)	8h 1d	34.7	57.5	64.9	7-64.9	May-Aug 1988 and 1989 AQS data, 5 sites
Delfino et al., 1997 Montreal (>64yo)	31.61 (12.91, 50.31)	1h 1d	34.7 (28.9)	57.5	64.9	7-64.9	May-Aug 1988 and 1989 AQS data, 5 sites
Jones et al., 1995 Baton Rouge, LA (1-17 yo)	-13.00 (-32.82, 12.66)	24h 0d	28.2 (56.4)	111.8	118	21-119	6/1/90 - 8/31/90 DEQ 3 sites
Jones et al., 1995 Baton Rouge, LA (18-60 yo)	20.00 (2.29, 40.78)	24h 0d	28.2 (56.4)	111.8	118	21-119	6/1/90 - 8/31/90 DEQ 3 sites
Jones et al., 1995 Baton Rouge, LA (>60 yo)	27.00 (-3.48, 67.10)	24h 0d	28.2 (56.4)	111.8	118	21-119	6/1/90 - 8/31/90 DEQ 3 sites
Wilson et al., 2005 Portland NH,	-3.00 (-8.49, 2.82)	8h 0d	43.1	108	121	15-142	Apr-Oct 1998-2000 AQS data, single monitor in each city
Wilson et al., 2005 Manchester NH	-3.00 (-8.53, 2.87)	8h 0d		85	93	5-121	Apr-Oct 1998-2000 AQS data, single monitor in each city

Study;	Effect Estimate	Air Quality Data from Study *		Statistics f	or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Stieb et al., 1996 St. John, Canada	9.33 (-0.07, 18.74)	1h 2d	41.6 (36.1)	83	91	5-140.5	May-Sept 1984-1992 EC data averaged across sites
Emergency Departmen	t Visits: Asthma	l				ľ	
Peel et al., 2005 Atlanta, GA	2.65 (-0.50, 5.89)	8h 3d ave	55.6	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Wilson et al., 2005 Manchester NH	-3.00 (-8.91, 3.29)	8h 0d	NA	108	121	15-142	Apr-Oct 1998-2000 AQS data, single monitor in each city
Wilson et al., 2005 Portland NH	9.40 (10.26, 8.55)	8h 0d	NA	85	93	5-121	Apr-Oct 1998-2000 AQS data, single monitor in each city
Friedman et al., 2001 Atlanta GA (1-16 yo)	30.89 (5.34, 62.64)	1h 0-1d	77.2 (60.7)	85.8	85.8	20-85.8	7/19/96 - 8/4/96 3 sites in Atlanta
Tolbert et al., 2000 Atlanta, GA	6.37 (2.53, 10.34)	8h 1d	59.3 (60.7)	92.4	112.6	16.2-135.8	AQS, GA and Fulton Co., SOS, USGS; 7 sites in Atlanta MSA
Zhu et al., 2003 Atlanta, GA (0-16 yo)	2.41 (-2.39, 7.44)	8h 0d					
Jaffe et al., 2003 3 Ohio cities	9.27 (0.13, 19.25)	8h 2-3d	(66.1)	104	108	24-124	7/1/91 to 6/30/96 all data from active monitors
Jaffe et al., 2003 Cincinnati	15.76 (-1.01, 35.38)	8h 2d	60	106	116	24-124	7/1/91 to 6/30/96 all data from active monitors
Jaffe et al., 2003 Cleveland	3.03 (-8.52, 16.04)	8h 2d	50	104	107	27-111	7/1/91 to 6/30/96 all data from active monitors
Jaffe et al., 2003 Columbus	15.76 (-2.49, 37.44)	8h 3d	57	98	106	25-117	7/1/91 to 6/30/96 all data from active monitors

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Cassino et al., 1999 NYC (in heavy smokers)	-5.42 (-8.38, -2.36)	24h 0d	17.5 (32.6)	83.3	88.8	3-114.6	1/1/89 - 12/31/93 data from sites throughout NYC
Cassino et al., 1999 NYC (in heavy smokers)	2.74 (-3.00, 8.83)	24h 1d	17.5 (32.6)	83.3	88.8	3-114.6	1/1/89 - 12/31/93 data from sites throughout NYC
Cassino et al., 1999 NYC (in heavy smokers)	9.69 (3.93, 15.76)	24h 2d	17.5 (32.6)	83.3	88.8	3-114.6	1/1/89 - 12/31/93 data from sites throughout NYCI
Cassino et al., 1999 NYC (in heavy smokers)	-1.62 (-7.01, 4.08)	24h 3d	17.5 (32.6)	83.3	88.8	3-114.6	1/1/89 - 12/31/93 data from sites throughout NYC
Emergency Department	Visits: Other respirate	ory diseases	:				
Peel et al., 2005 Atlanta, GA Pneumonia	1.80 (-2.27, 6.04)	8h 3d ave	55.6	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Peel et al., 2005 Atlanta, GA COPD	3.49 (-2.77,10.15)	8h 3d ave	55.6	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Peel et al., 2005 Atlanta, GA upper respiratory infection	3.25 (1.10, 5.44)	8h 3d ave	55.6	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Cardiovascular outcom	es, biomarkers, and ph	ysiological o	changes:				

Study;	Effect Estimate	Air Quality Stud			or 8-hr da ality data	aily max air	Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Liao et al., 2004 3 US cities HRV (high frequency power)	-0.010 (SE 0.016)	8h 1d	41				1996-1998 AQS data
Liao et al., 2004 3 US cities SD of normal RR intervals	-0.336 (SE 0.290)	8h 1d	41				1996-1998 AQS data
Peters et al., 2000 Boston Defibrillator discharge	OR 0.96 (0.47, 1.98) (patients with 1+ event) OR 1.23 (0.53, 2.87) (patients with 10+ events)	24h 0d	18.6	75.2	78.1	15.7-102.7	Jan 95 - Dec 97 1 site
Peters et al., 2001 Boston Myocardial infarction	OR 1.31 (0.85, 2.03) (2h O ₃) OR 0.94 (0.60, 1.49) (24h O ₃)	24h and 2h 1d and 1h	19.9	75.8	81.5	17.7-102.7	Jan 95 - May 96 1 site (case-crossover)
Park et al., 2004 Boston HRV (low frequency power)	-11.5% (-21.3, -0.4)	4h	23	81.8	92	10-122.6	Nov 2000- Oct 2003 Mass Dept. Environ. Protection sites
Gold et al., 2000 Boston HRV (r-MSSD) (ms)	-3.0 (SE 1.9) (first rest period) -5.8 (SE 2.4) (slow breathing period)	1h	34	77.3	92.5	21.8-100	June-Sept 1997 1 site, MA Dept. Environ. Protection

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ıality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Dockery et al., 2005 Boston Ventricular arrhythmia	OR 1.09 (0.93, 1.29) (all events)	48h	22.9	75	82.1	2–102.7	7/11/95 - 7/11/02 6 sites, Mass Dept. Envir. Protection
Rich et al., 2005 Boston Ventricular arrhythmia	OR 1.21 (1.00, 1.45) (all events)	24h	22.6	74	81.5	2-102.7	Aug 1995 - June 2002 6 sites, Mass Dept. Envir. Protection
Emergency Department	t Visits: Cardiovascula	r Diseases					
Metzger et al., 2004 Atlanta, GA all CV	0.96 (-1.59, 3.58)	8h 3dave	53.9	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Metzger et al., 2004 Atlanta, GA Dysrrhythmia	0.96 (-3.96, 6.13)	8h 3dave	53.9	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Metzger et al., 2004 Atlanta, GA CHF	-4.19 (-9.74, 1.71)	8h 3dave	53.9	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Metzger et al., 2004 Atlanta, GA IHD	2.28 (-2.30, 7.09)	8h 3dave	53.9	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Metzger et al., 2004 Atlanta, GA peripheral vascular	1.68 (-1.57, 5.05)	8h 3dave	53.9	127	140	3-152	1/1/93 to 12/21/02 AQS Confederate Ave monitor
Hospital Admissions: (Cardiovascular Disease	es					

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ıality data	•	Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Linn et al., 2000 Los Angeles CA (summer)	2.02 (-16.14, 24.11)	24h 0d	32.9 (98.7)	175	180	188	Los Angeles basin - averaged from monitors across basin
Fung et al., 2003 Windsor CV <65 yo	-0.14 (-11.79, 13.06)	1h 0d	39.3 (31.6)	78	85	0-106	4/1/95 - 12/31/00 4 sites in Winsdor
Fung et al., 2003 Windsor CV <65 yo	5.84 (-10.50, 25.16)	1h 0-2d ave	39.3 (31.6)	78	85	0-106	4/1/95 - 12/31/00 4 sites in Winsdor
Fung et al., 2003 Windsor CV 65+ yo	-3.57 (-10.35, 3.72)	1h 0d	39.3 (31.6)	78	85	0-106	4/1/95 - 12/31/00 4 sites in Winsdor
Fung et al., 2003 Windsor CV 65+ yo	1.94 (-8.01, 12.95)	1h 0-2d ave	39.3 (31.6)	78	85	0 -106	4/1/95 - 12/31/00 4 sites in Winsdor
Burnett et al., 1997 Toronto CV	20.47 (9.32, 32.76)	1h 2-4d ave	41.2 (31.6)	62	64	0-79	summers 1992, 93, 94 7-9 sites in metro Toronto
Gwynn et al., 2000 Buffalo circulatory	0.23 (-1.27, 1.74)	24h 1d	26.2 (38.7)	92.5	104	4.5-123	1988-1990 AQS data from multiple sites in Buffalo/Rochester area
Hospital Admissions:	Specific Cardiovascular	r Diseases					
Koken et al., 2003 Denver CO myocardial infarction	-32.91 (-47.16, -14.82)	24h 0d	25 (44.2)	64.5	65.5	11-76	July-August 1993-1997 AQS sites in Denver County (2 sites)

Study;	Effect Estimate	Air Quality Stud			or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Koken et al., 2003 Denver Coronary Atheroschlerosis	27.02 (8.30, 48.98)	24h 2d	25 (44.2)	64.5	65.5	11-76	July-August 1993-1997 AQS sites in Denver County (2 sites)
Koken et al., 2003 Denver Pulm Heart Disease	49.16 (8.35, 105.22)	24h 1d	25 (44.2)	64.5	65.5	11-76	July-August 1993-1997 AQS sites in Denver County (2 sites
lto, 2003 Detroit MI ischemic heart disease	0.52 (-2.27, 3.39)	24h 3d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data, 4 ozone sites
lto, 2003 Detroit MI dysrrhythmia	-1.04 (-5.87, 4.04)	24h 3d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data, 4 ozone sites
lto, 2003 Detroit MI heart failure	0.76 (-2.47, 4.09)	24h 3d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data 4 ozone sites
Ito, 2003 Detroit MI stroke	0.50 (-3.03, 4.15)	24h 3d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data 4 ozone sites
Hospital Admissions:	Respiratory Diseases						
Luginaah et al., 2003 Windsor (males)	5.56 (-10.57, 24.59)	1h 0d	39.3 (31.6)	/×	85	0-106	4/1/95 - 12/31/00 4 sites in Winsdor
Luginaah et al., 2003 Windsor (females)	-6.83 (-23.92, 14.09)	1h 0d	39.3 (31.6)	/ X	85	0-106	4/1/95 - 12/31/00 4 sites in Winsdor

Study; Location	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data		Study period;
	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Thurston et al., 1992 Buffalo NY	4.94 (-0.23, 10.12)	1h 2d	60 (58.9)	125.5	133	24-133	June-Aug 1988-1989 NYDEC monitors
Delfino et al., 1994 Montreal	4.05 (1.00, 7.11)	8h 4d	32.1	69	73.8	8.6-82.3	Jul-Aug 1984-1988 7 sites in Montreal; 2 sites near heavy traffic areas not used
Burnett et al., 1994 Toronto	3.95 (2.50, 5.43)	1h 1d	(41.7)	79	81.5	15-104.3	1983-1988 Ont Min Environ 22 sites May-August
Burnett et al., 1997 16 Canadian city	6.72 (3.52, 10.02)	1h 1d	32.9 (25.3)	47.1	51.3	6.2-68.4	4/1/81 - 12/31/91 used Apr-Dec data, all stations in each city
Burnett et al., 1997 Toronto	17.57 (10.44, 25.15)	1h 1-3d ave	41.2 (31.6)	62	64	0-79	summers 1992, 93, 94 7-9 sites in metro Toronto
Yang et al., 2003 Vancouver (<3 yo)	50.43 (32.64, 70.61)	24h 4d	13.41 (21.3)	42.7	47.3	1.1-71.9	1/1/86 - 12/31/98 25 sites, Great Vancouver Regional District
Yang et al., 2003 Vancouver (65+yo)	28.53 (18.47, 39.43)	24h 4d	13.41 (21.3)	42.7	47.3	1.1-71.9	1/1/86 - 12/31/98 25 sites, Great Vancouver Regional District
Schwartz et al., 1996 Cleveland	3.51 (0.88, 6.20)	1h 1-2d ave	56 (55.1)	91	99	5-120.3	1988-1990 Cuyahoga county warm season only
Moolgavkar et al., 1997 Minneapolis/St. Paul	8.08 (4.47, 11.81)	24h 1d	26.2 (45.1)	83.2	87.7	4.6-101.8	1/1/86 - 12/31/91 AQS data from all monitoring stations
Gwynn et al., 2001 NYC (white)	1.08 (-0.44, 2.63)	24h 1d	22.1 (34.2)	90.6	106	6-125	1988-1990 AQS data

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Gwynn et al., 2001 NYC (nonwhite)	4.01 (2.47, 5.57)	24h 1d	22.1 (34.2)	90.6	106	6-125	1988-1990 AQS data
Gwynn et al., 2001 NYC (uninsured)	4.51 (2.80, 6.25)	24h 1d	22.1 (34.2)	90.6	106	6-125	1988-1990 AQS data
Thurston et al., 1992 NYC	0.42 (0.10, 0.74)	1h 3d	29.1				June-Aug 1988-1989 NYDEC monitors
Gwynn et al., 2000 Buffalo	3.94 (1.78, 6.15)	24h 1d	26.2 (38.7)	92.5	104	4.5-123	1988-1990 AQS data from multiple sites in Buffalo/Rochester area
Schwartz et al., 1996 Spokane	19.08 (0.17, 41.57)	1h 2d	79	NA	NA	NA	1988-1990 1 residential site
Thurston et al., 1994 Toronto	15.30 (4.11, 26.50)	1hr 0d	57.47 (45.8)	92	94	8-125	July-Aug, 1986-1988 Breadalbane site
Hospital Admissions: A	Asthma						
Sheppard et al., 2003 Seattle, WA	3.44 (0.58, 6.39)	8h 2d	30.4	65	73	2-100	1987-1994 1 site at Lake Sammamish
Nauenberg et al., 1999 Los Angeles (all insurance)	1.00 (-6.28, 8.84)	24h 0d	19.88 (19.1)	46.5	50.5	2-67	(11/15-3/1)1991-1994 2 SCAQMD sites in zip codes 90025 and 90012
Burnett et al., 2001 Toronto (<2 yo)	30.25 (16.87, 45.15)	1h 5d ave	45.2 (38.6)	77.7	83.7	9-110.8	1/1/80 - 12/31/94 4 sites
Thurston et al., 1992 Buffalo NY	6.59 (1.29, 11.89)	1h 3d	60 (58.9)	125.5	133	24-133	June-Aug 1988-1989 NYDEC monitors

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data		Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Burnett et al., 1999 Toronto	6.47 (3.68, 9.33)	24h 1-3d ave	19.5 (26.7)	68.4	74.8	0.1-110.8	summers 1992, 93, 94 7-9 sites in metro Toronto
Lin et al., 2003 Toronto, 6-12 yo	-7.84 (-22.02, 8.92) (female) -26.04 (-44.53, -1.39) (male)	1h 0d	28.2	68.4	74.8	0.14-110.8	1981-1993 4 sites, Ontario Ministry of Environment and Energy (case-crossover)
Thurston et al., 1992 New York City	0.95 (0.20, 1.69)	1h 1d	29.1				June-Aug 1988-1989 NYDEC monitors
Schwartz et al., 1994 Detroit	10.81 (5.13, 16.80)	24h 1d	21 (37.6)	82.8	88.5	10-122.7	1986-1989 AQS data 9 sites in 86 and 89, 8 sites in 87 and 88
Hospital Admissions: (Other respiratory disea	ses					
Moolgavkar et al., 1997 Minneapolis/St. Paul pneumonia	8.90 (4.62, 13.34)	24h 1d	26.2 (45.1)	83.2	87.7	4.6-101.8	1/1/86 - 12/31/91 AQS data from all monitoring stations
Ito, 2003 Detroit MI pneumonia	3.10 (-1.84, 8.28)	24h 3d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data, 4 ozone sites
Ito, 2003 Detroit MI COPD	1.25 (-3.55, 6.28)	24h 3d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data 4 ozone sites
Burnett et al., 1999 Toronto COPD	7.49 (4.00, 11.10)	24h 2-4d ave	19.5 (26.7)	68.4	74.8	0.1-110.8	summers 1992, 93, 94 7-9 sites in metro Toronto

Study;			Air Quality Data from Study *		or 8-hr da ality data	ily max air **	Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Schwartz et al., 1994 Detroit COPD	11.68 (2.92, 21.19)	24h 1d	21 (37.6)	82.8	88.5	10-122.7	1986-1989 AQS data 9 sites in 86 and 89, 8 sites in 87 and 88
Moolgavkar et al., 1997 Minneapolis/St. Paul COPD	6.04 (1.22, 11.10)	24h 1d	26.2 (45.1)	83.2	87.7	4.6-101.8	1/1/86 - 12/31/91 AQS data from all monitoring stations
Burnett et al., 1999 Toronto Respiratory Infection	4.52 (2.43, 6.64)	24h 1-2d ave	19.5	68.4	74.8	0.1-110.8	summers 1992, 93, 94 7-9 sites in metro Toronto
Mortality: Total nonacc	idental	-					
Bell et al., 2004 95 U.S. cities (warm)	0.44 (0.14, 0.74)	24h 0d	26.84				1987-2000 AQS data, 10% trimmed mean to average across monitors after correction for each monitor
Bell et al., 2004 95 U.S. cities (warm)	0.78 (0.26, 1.30)	24h 0-6d dl	26.84				1987-2000 AQS data, 10% trimmed mean to average across monitors after correction for each monitor
Schwartz et al., 2004 14 U.S. cities (warm)	1.04 (0.30, 1.79)	1h 0d	45.9				1986-1993 AQS data, May-September (case-crossover)
Ostro et al., 2003 Coachella Valley CA	-1 (-4.42, 2.55)	1h	62				1/1/89 – 12/20/98 sites in Palm Springs and Indio

Study period;		or 8-hr da ality data	Statistics for qu	Air Quality Data from Study *		Effect Estimate	Study;
Monitoring information	Range	99 th %	98 th %	Mean	Ave time; Lag	(lower CL, upper CL)	Location
1980-19 4 sites in San Bernardino a Riverside counties: Uplar Rubidoux, Redlands, Per				140	1h Od	0.80 (-0.18, 1.78)	Ostro et al., 1995 2 Southern CA counties
1973-19 AQS da				35.5	24h 1d	2.82 (1.33, 4.33)	Moolgavkar et al., 1995 Philadelphia (summer)
1985-19 AQS data, 4 ozone sit	2-123.5	88.7	81.5	20.9 (34.3)	24h 0d	0.86 (-0.36, 2.09)	Ito, 2003 Detroit MI
1992-19 AQS data, 4 ozone sit	4.3-101.3	85	80	25 (38.7)	24h 0d	1.88 (-1.69, 5.58)	Ito, 2003 Detroit MI
1989-19 San Jose 4th St. s	2-105	74	67	29	8-h 0d	2.81 (-0.27, 5.99)	Fairley, 2003 San Jose CA
1989-19 1 site with daily obs, used only da between 1200 and 2000 hou	2.3-92.5	88.9	80	(35.4)	1h 0d	-1.48 (-5.63, 2.85)	Chock et al., 2000 Pittsburg PA (<75 yo)
1989-19 1 site with daily obs, used only da between 1200 and 2000 hou	2.3-92.5	88.9	80	(35.4)	1h 0d	-1.82 (-6.03, 2.59)	Chock et al., 2000 Pittsburg PA (75+)
1985-19 8 ozone sit	5.4-156.1	130	115.3	70 (53.4)	1h 1d	0.00 (-4.90, 5.15)	Kinney et al., 1995 Los Angeles
1990-19 TNRCC data, 2-3 sites in Dallas C	2-98.7	86.3	81	22 (37.9)	24h 1-2d	3.69 (0.85, 6.62)	Gamble et al., 1998 Dallas TX
Sept 1985-August 19 Harvard site on S side of c				22.5	24h 1d	0.60 (-2.46, 3.750	Dockery et al., 1992 St. Louis

Study;	Effect Estimate	Air Quality Stud		Statistics f	or 8-hr da ality data		Study period;		
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information		
Dockery et al., 1992 E Tennesse	-1.30 (-7.91, 5.78)	24h 1d	23				Sept 1985-August 1986 Harvard site, ~50 km SW of Knoxville		
Ito et al., 1996 Cook County	3.89 (2.21, 5.59)	1h 0-1d	38.1 (31.8)	76	85.6	2.7-124	1985-1990 AQS sites with at least 4 y data, 5 O3 sites		
Klemm et al., 2004 Atlanta quartknot **	2.40 (-3.39, 8.54)	8h 0-1d	47.03			6.63- 124.41	ARIES database, as described in Klemm 2000		
Klemm et al., 2004 Atlanta monthknot **	4.16 (-2.42, 11.19)	8h 0-1d	47.03			6.63- 124.41	ARIES database, as described in Klemm 2000		
Goldberg et al., 2003 Montreal (CHFunderlying)	4.26 (-5.30, 14.78)	24h 0-2d	29				1984-1993 Environment Canada data, 9 sites		
Vedal et al., 2003 Vancouver	16.63 (5.54, 28.88)	1h 0d	27.4 (21.4)	53.3	47.3	1.1-58.7	Jan 94 - Dec 96 19 sites in Greater Vancouver Regional District and EC		
Villeneuve et al., 2003 Vancouver	1.31 (-0.78, 3.45)	24h 0d	13.4 (21.3)	69.3	47.3	3.1-71.9	1/1/86 - 12/31/98 13 census subdivisions		
Mortality: Cardiovascular or Cardiorespiratory diseases									
Bell et al., 2004 95 U.S. cities	1.28 (0.61, 1.96)	24h 0-6d dl	26.84				1987-2000 AQS data, 10% trimmed mean to average across monitors after correction for each monitor		

Study period;		or 8-hr dai ality data	Statistics f	Air Quality Data from Study *		Effect Estimate	Study;
Monitoring information	Range	99 th %	98 th %	Mean	Ave time; Lag	(lower CL, upper CL)	Location
June 1- Sept 30, 1987-199 AQS dat				18-56	24h 0d	1.47 (0.54, 2.40)	Huang et al., 2004 19 U.S. cities
May 92 - Sept 9 1 Camden and 1 Phila si	2.3-116.6	93.6	88.8	44.76 (39.7)	1h 0-1dave	30.19 (p<0.055)	Lipfert, et al., 2000 Philadelphia
May 92 - Sept 9 1 Camden and 1 Phila si	2.3-116.6	93.6	88.8	44.76 (39.7)	1h 0-1dave	-2.00 (p<0.055)	Lipfert, et al., 2000 Philadelphia
1/1/89 – 12/20/9 sites in Palm Springs and Ind				62	1h	-4 (-8.88, 1.14)	Ostro et al., 2003 Coachella Valley
1985-199 AQS data, 4 ozone site	2-123.5	88.7	81.5	20.9 (34.3)	24h 0d	1.45 (-0.29, 3.21)	Ito, 2003 Detroit MI
1992-199 AQS data, 4 ozone site	4.3-101.3	85	80	25 (38.7)	24h 0d	1.79 (-3.38, 7.24)	Ito, 2003 Detroit MI
1989-199 San Jose 4th St. sit	2-105	74	67	29	8h 0d	2.36 (-2.12, 7.04)	Fairley, 2003 San Jose CA
1990-199 TNRCC data, 2-3 sites in Dallas Co	2-98.7	86.3	81	22 (37.9)	24h 1-2d	3.28 (-1.48, 8.27)	Gamble et al., 1998 Dallas TX
1985-1996 AQS sites with at least 4 y data, 5 C site	2.7-124	85.6	76	38.1 (31.8)	1h 0-1d	4.64 (2.07, 7.27)	Ito et al., 1996 Cook County
1987-199 AQS dat				18	24h 0d	0.30 (0.16, 0.44)	Moolgavkar et al., 2003 Cook County
1/1/86 - 12/31/9 13 census subdivision	3.1-71.9	47.3	69.3	13.4 (21.3)	24h 0d	0.66 (-2.57, 3.99)	Villeneuve et al., 2003 Vancouver

Study;	Effect Estimate	Air Quality Data from Study *		Statistics for 8-hr daily max air quality data **			Study period;
Location	(lower CL, upper CL)	Ave time; Lag	Mean	98 th %	99 th %	Range	Monitoring information
Goldberg et al., 2001 Montreal	2.81 (1.35, 4.30)	24h 0-2d	29				1984-1993 Environment Canada data, 9 sites
Vedal et al., 2003 Vancouver	16.19 (-0.67, 35.91)	1h 0d	27.4 (21.4)	53.3	47.3	1.1-58.7	Jan 94 - Dec 96 19 sites in Greater Vancouver Regional District and EC
Mortality: Respiratory I	Diseases						
Ostro et al., 2003 Coachella Valley	3 (-8.77, 16.29)	1h	62				1/1/89 – 12/20/98 sites in Palm Springs and Indio
Ito, 2003 Detroit MI	0.07 (-4.34, 4.68)	24h 0d	20.9 (34.3)	81.5	88.7	2-123.5	1985-1990 AQS data, 4 ozone sites
Ito, 2003 Detroit MI	7.44 (-5.37, 21.99)	24h 0d	25 (38.7)	80	85	4.3-101.3	1992-1994 AQS data, 4 ozone sites
Vedal et al., 2003 Vancouver	6.01 (-22.53, 45.06)	1h 0d	27.4 (21.4)	53.3	47.3	1.1-58.7	Jan 94 - Dec 96 19 sites in Greater Vancouver Regional District and EC
Villeneuve et al., 2003 Vancouver	1.50 (-4.24, 7.58)	24h 0d	13.4 (21.3)	69.3	47.3	3.1-71.9	1/1/86 - 12/31/98 13 census subdivisions
Moolgavkar et al., 2003 Cook County (COPD)	0.30 (-0.10, 0.71)	24h 0d	18				1987-1995 AQS data

^{*} Includes ozone averaging period and lag period for effect estimate calculation; for example, 1h represents 1-hour maximum concentration and 0d represents a 0-day lag period. Mean values taken from study publications, for the ozone averaging period used in the study (e.g., 1h, 8h, 24h). Where 8-hour daily max ozone concentrations were used, the mean 8-hour daily max concentration is presented in parentheses.

^{**} Using ozone data obtained for the study period in the location of the study, 8-hour daily maximum concentrations were derived and statistics calculated. The 98th and 99th percentile values for the full study period distribution are presented here, along with the range (minimum-maximum)

of concentrations. Since the time periods of the studies vary in length, from several weeks to over 10 years, the 98th and 99th percentile values were selected for presentation here as a high study period concentration that roughly approximates a 4th maximum concentration, depending on the study period length. NA= data not available

APPENDICES FOR CHAPTER 5

5A.1. Ozone Air Quality Information for 12 Urban Areas

Table 5A-1. Monitor-Specific O₃ Air Quality Information: Atlanta, GA

AIRS Monitor ID		Fourth Daily Maximum 8-Hour Average (ppm)		
	2002	2003	2004	Year-Specific Values (ppm)
1305700011	0.089			
1306700031	0.100	0.084	0.073	0.085
1307700021	0.099	0.077	0.083	0.086
1308500012	0.088	0.077	0.068	0.077
1308900021	0.095	0.080	0.084	0.086
1308930011	0.090	0.091	0.088	0.089
1309700041	0.098	0.085	0.080	0.087
1311300011	0.088	0.077	0.084	0.083
1312100551	0.100	0.091	0.089	0.093
1313500021	0.089	0.088	0.092	0.089
1315100021	0.099	0.082	0.085	0.088
1322300031	0.099	0.083	0.073	0.085
1324700011	0.099	0.078	0.087	0.088
Average:	0.095	0.083	0.082	
		De	sign Value*:	0.093

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-2. Monitor-Specific O₃ Air Quality Information: Boston, MA

AIRS Monitor ID	Fourth D	Average of the 3 Year-Specific		
	2002	2003	2004	Values (ppm)
2500900051	0.088			
2500920061	0.100	0.079	0.081	0.086
2500940041	0.094	0.080	0.077	0.083
2501711021	0.096	0.073	0.070	0.079
2502130031	0.107	0.088	0.078	0.091
2502500411	0.102	0.078	0.079	0.086
2502500421	0.074	0.074	0.064	0.07
2502700151	0.091	0.080	0.074	0.081
Average:	0.094	0.079	0.075	
		De	sign Value*:	0.091

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-3. Monitor-Specific O₃ Air Quality Information: Chicago, IL

	Fourth D	Average of the 3		
AIRS Monitor ID	Average (ppm)			Year-Specific
	2002	2003	2004	Values (ppm)
1703100011	0.094	0.077	0.065	0.078
1703100321	0.096	0.080	0.067	0.081
1703100422	0.103			
1703100501	0.084	0.069		
1703100641	0.085	0.067	0.054	0.068
1703100721	0.085	0.075	0.060	0.073
1703100761			0.068	
1703110032	0.092	0.071	0.067	0.076
1703116011	0.081	0.075	0.067	0.074
1703140021	0.084	0.070	0.059	0.071
1703140071	0.093	0.073	0.064	0.076
1703142011	0.087	0.080	0.067	0.078
1703142012	0.067		0.051	
1703170021	0.091	0.082	0.071	0.081
1703180031	0.074			
1704360011	0.084	0.066	0.065	0.071
1708900051	0.082	0.076	0.069	0.075
1709710021	0.090	0.074	0.068	0.077
1709710071	0.100	0.078	0.071	0.083
1709730011	0.087			
1711100011	0.090	0.079	0.068	0.079
1719710081	0.086	0.077	0.063	0.075
1719710111	0.087	0.073	0.068	0.076
1808900221	0.094	0.076	0.064	0.078
1808900241	0.086	0.081		
1808900301			0.064	
1808920081	0.101	0.081	0.067	0.083
1809100051	0.107	0.082	0.070	0.086
1809100101	0.100	0.084		
1812700202	0.097	0.079		
1812700241	0.101	0.077	0.069	0.082
1812700261	0.100	0.082	0.072	0.084
5505900021	0.110	0.085		
5505900191	0.116	0.088	0.078	0.094
5505900221	0.096	0.088		
Average:	0.092	0.077	0.066	
		De	esign Value*:	0.094

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-4. Monitor-Specific O₃ Air Quality Information: Cleveland, OH

	Fourth D	Average of the 3		
AIRS Monitor ID		Average (ppm	1)	Year-Specific
	2002	2003	2004	Values (ppm)
3900710011	0.103	0.099	0.081	0.094
3903500341	0.090	0.076	0.057	0.074
3903500641	0.090	0.079	0.063	0.077
3903550021	0.098	0.089	0.077	0.088
3905500041	0.115	0.097	0.075	0.095
3908500031	0.104	0.092	0.079	0.091
3908530021	0.088	0.080	0.076	0.081
3909300171	0.099	0.085	0.074	0.086
3910300031	0.091	0.086	0.077	0.084
3913310011	0.097	0.091	0.081	0.089
3915300201	0.103	0.089	0.077	0.089
Average:	0.098	0.088	0.074	
		De	sign Value*:	0.095

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-5. Monitor-Specific O₃ Air Quality Information: Detroit, MI

	Fourth D	Average of the 3		
AIRS Monitor ID	P	Average (ppm	1)	Year-Specific
	2002	2003	2004	Values (ppm)
2604900211	0.088	0.087	0.075	0.083
2604920011	0.089	0.091	0.077	0.085
2609900091	0.095	0.102	0.081	0.092
2609910031	0.092	0.101	0.071	0.088
2612500012	0.093	0.090	0.075	0.086
2614700051	0.100	0.086	0.074	0.086
2616100081	0.091	0.091	0.071	0.084
2616300012	0.088	0.085	0.065	0.079
2616300161	0.092	0.084	0.066	0.08
2616300192	0.083	0.098	0.066	0.082
Average:	0.091	0.092	0.072	
	_	De	sign Value*:	0.092

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-6. Monitor-Specific O₃ Air Quality Information: Houston, TX

	Fourth D	Average of the 3		
AIRS Monitor ID		Average (ppm)		
	2002	2003	2004	Values (ppm)
4803910032	0.095			
4803910041	0.092	0.097	0.103	0.097
4803910161			0.081	
4816700141	0.093	0.092	0.088	0.091
4816710022	0.083	0.082		
4820100242	0.096	0.095	0.096	0.095
4820100263	0.088	0.098	0.085	0.09
4820100292	0.098	0.096	0.090	0.094
4820100461	0.078	0.093	0.084	0.085
4820100472	0.072	0.082	0.083	0.079
4820100512	0.101	0.103	0.095	0.099
4820100551	0.094	0.107	0.104	0.101
4820100621	0.095	0.094	0.097	0.095
4820100661	0.084	0.081	0.097	0.087
4820100701	0.088	0.100	0.078	0.088
4820100751	0.078	0.096	0.093	0.089
4820110151		0.108	0.093	
4820110342	0.093	0.102	0.091	0.095
4820110353	0.092	0.105	0.092	0.096
4820110391	0.095	0.113	0.097	0.101
4820110411	0.090			
4820110501	0.094	0.092	0.097	0.094
4833900781	0.082	0.094	0.080	0.085
Average:	0.090	0.097	0.091	
		De	sign Value*:	0.101

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-7. Monitor-Specific O₃ Air Quality Information: Los Angeles, CA

	Fourth Daily Maximum 8-Hour			Average of the 3 Year-Specific
AIRS Monitor ID		Average (ppm)		
	2002	2003	2004	Values (ppm)
0603700021	0.097	0.104	0.092	0.097
0603700161	0.111	0.123	0.095	0.109
0603701131	0.073	0.083	0.076	0.077
0603710021	0.091	0.096	0.089	0.092
0603711031	0.077	0.082	0.078	0.079
0603712011	0.111	0.119	0.101	0.11
0603713011	0.049	0.057	0.065	0.057
0603716011	0.074	0.082	0.079	0.078
0603717011	0.099	0.109	0.095	0.101
0603720051	0.095	0.101	0.093	0.096
0603740021	0.059	0.063	0.070	0.064
0603750011	0.064	0.070		
0603750051			0.085	
0603760121	0.131	0.137	0.107	0.125
0603790331	0.102	0.103	0.095	0.1
0605900071	0.069	0.080	0.088	0.079
0605910031	0.066	0.079	0.076	0.073
0605920221	0.081	0.095	0.085	0.087
0605950011	0.071	0.080	0.075	0.075
060650011	0.113	0.127	0.112	0.117
0606520021	0.097	0.100	0.094	0.097
0606550011	0.109	0.105	0.099	0.104
0606560011	0.103	0.116	0.095	0.104
0606580011	0.107	0.110	0.093	0.100
0606590011	0.109	0.120	0.111	0.113
0606590011	0.104	0.112	0.100	0.105
0607100011	0.002	0.000		0.007
	0.092	0.088	0.082	0.087
0607100051	0.131	0.130	0.122	0.127
0607100121	0.115	0.103	0.097	0.105
0607100171	0.087	0.084	0.087	0.086
0607103061	0.106	0.104	0.085	0.098
0607110042	0.105	0.114	0.102	0.107
0607112341	0.089	0.087	0.082	0.086
0607120021	0.114	0.132	0.111	0.119
0607140011	0.113	0.110	0.099	0.107
0607140031	0.117	0.137	0.119	0.124
0607190021	0.101	0.111	0.102	0.104
0607190041	0.105	0.123	0.112	0.113
0611100051	0.076			
0611100071	0.080	0.087	0.086	0.084
0611100091	0.087	0.093	0.086	0.088
0611110041	0.097	0.093	0.092	0.094
0611120021	0.092	0.093	0.092	0.092
0611120031	0.064	0.074	0.069	0.069
0611130011	0.064	0.069	0.065	0.066
Average:	0.093	0.099	0.091	
Ŭ			esign Value*:	0.127

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-8. Monitor-Specific O₃ Air Quality Information: New York, NY

	Fourth D	aily Maximui	m 8-Hour	Average of the 3
AIRS Monitor ID	A	Average (ppm)		
	2002	2003	2004	Values (ppm)
3600500831	0.096	0.079	0.074	0.083
3600501101	0.089	0.082	0.069	0.08
3602700071	0.111	0.081	0.076	0.089
3607150011	0.082	0.087	0.078	0.082
3607900051	0.102	0.082	0.082	0.088
3608100981	0.082	0.072	0.064	0.072
3608101241	0.089	0.086	0.075	0.083
3608500671	0.099	0.086	0.083	0.089
3610300021	0.108	0.094	0.081	0.094
3610300041	0.090	0.082		
3610300092	0.103	0.102	0.079	0.094
3611110051	0.084	0.082	0.076	0.08
3611920041	0.102	0.091	0.078	0.09
Average:	0.095	0.085	0.076	_
		De	sign Value*:	0.094

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-9. Monitor-Specific O₃ Air Quality Information: Philadelphia, PA

AIRS Monitor ID	Fourth D	Average of the 3 Year-Specific		
	2002	2003	2004	Values (ppm)
4201700121	0.111	0.087	0.082	0.093
4202900501	0.104	0.085		
4202901001	0.112	0.085	0.085	0.094
4204500021	0.106	0.080	0.081	0.089
4209100131	0.101	0.085	0.083	0.089
4210100041	0.082	0.069	0.054	0.068
4210100141	0.098	0.083	0.077	0.086
4210100241	0.110	0.082	0.091	0.094
4210101361	0.094	0.070	0.073	0.079
Average:	0.102	0.081	0.078	
		De	sign Value*:	0.094

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-10. Monitor-Specific O₃ Air Quality Information: Sacramento, CA

	Fourth D	aily Maximui	m 8-Hour	Average of the 3
AIRS Monitor ID	Į.	verage (ppm	1)	Year-Specific
	2002	2003	2004	Values (ppm)
0601700101	0.098	0.096	0.089	0.094
0601700111	0.067	0.065		
0601700121	0.077	0.075	0.073	0.075
0601700201	0.111	0.106	0.089	0.102
0605700051	0.099	0.098	0.093	0.096
0605700071	0.093	0.090	0.085	0.089
0605710011	0.065			
0606100021	0.101	0.094	0.092	0.095
0606100041	0.101	0.089	0.087	0.092
0606100061	0.095	0.085	0.082	0.087
0606100071		0.068		
0606130011	0.097			
0606700021	0.095	0.086	0.076	0.085
0606700061	0.105	0.097	0.083	0.095
0606700101	0.083	0.076	0.067	0.075
0606700111	0.069	0.087	0.077	0.077
0606700121	0.104	0.098	0.087	0.096
0606700131	0.079	0.075	0.067	0.073
0606750031	0.097	0.097	0.089	0.094
0611300041	0.076	0.077	0.071	0.074
0611310031	0.088	0.082	0.069	0.079
Average:	0.090	0.086	0.081	
		De	sign Value*:	0.102

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-11. Monitor-Specific O₃ Air Quality Information: St. Louis, MO

	Fourth D	Average of the 3		
AIRS Monitor ID	A	Average (ppm)		
	2002	2003	2004	Values (ppm)
1708310011	0.100	0.083	0.073	0.085
1711700021	0.085	0.077	0.068	0.076
1711900081	0.094	0.089	0.074	0.085
1711910091	0.090	0.088	0.078	0.085
1711920072	0.090	0.082	0.068	0.08
1711930071	0.084	0.083	0.073	0.08
1716300102	0.093	0.079	0.073	0.081
2909900121	0.093	0.082	0.070	0.081
2918310021	0.099	0.091	0.077	0.089
2918310041	0.098	0.090	0.076	0.088
2918900041	0.098	0.088	0.070	0.085
2918900061	0.094	0.086	0.067	0.082
2918930011	0.094	0.082	0.067	0.081
2918950011	0.095	0.088	0.068	0.083
2918970031	0.093	0.088	0.069	0.083
2951000071	0.090	0.084		
2951000721	0.081	0.071	0.058	0.07
2951000861	0.098	0.090	0.072	0.086
Average:	0.093	0.085	0.071	
		De	sign Value*:	0.089

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-12. Monitor-Specific O₃ Air Quality Information: Washington, D.C.

AIRS Monitor ID	Fourth D	Average of the 3 Year-Specific		
	2002	Values (ppm)		
1100100251	0.097	0.079	0.080	0.085
1100100411	0.102	0.082	0.070	0.084
1100100431	0.106	0.081	0.081	0.089
Average:	0.102	0.081	0.077	
		De	sign Value*:	0.089

^{*}The design value is the maximum of the monitor-specific averages of the annual fourth daily maximum 8-hour average over the 3 year period.

Table 5A-13. Composite Monitor Statistics: 2004

Urban Area	24-H	our Average (ppm)	1-Ho	ur Maximum	(ppm)	8-Ho	ur Maximum (ppm)
Orban Area	Minimum	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Maximum
Atlanta	0.0091	0.0279	0.0504	0.0170	0.0578	0.1267	0.0146	0.0499	0.1103
Boston 1*	0.0060	0.0276	0.0571	0.0185	0.0433	0.1060	0.0128	0.0379	0.0904
Boston 2*	0.0114	0.0310	0.0603	0.0218	0.0450	0.0956	0.0194	0.0411	0.0842
Chicago	0.0110	0.0270	0.0453	0.0152	0.0432	0.0758	0.0119	0.0389	0.0679
Cleveland	0.0080	0.0257	0.0445	0.0123	0.0404	0.0743	0.0090	0.0360	0.0676
Detroit	0.0074	0.0239	0.0459	0.0140	0.0430	0.0793	0.0094	0.0375	0.0730
Houston	0.0075	0.0262	0.0572	0.0155	0.0510	0.1243	0.0137	0.0443	0.1082
Los Angeles 1**	0.0204	0.0338	0.0491	0.0351	0.0634	0.1005	0.0319	0.0555	0.0867
Los Angeles 2**	0.0249	0.0398	0.0568	0.0410	0.0656	0.0992	0.0387	0.0597	0.0888
New York 1***	0.0055	0.0242	0.0494	0.0128	0.0449	0.0920	0.0085	0.0378	0.0811
New York 2***	0.0052	0.0241	0.0491	0.0115	0.0447	0.0883	0.0076	0.0378	0.0806
Philadelphia	0.0037	0.0272	0.0486	0.0090	0.0492	0.0915	0.0057	0.0426	0.0775
Sacramento	0.0164	0.0323	0.0462	0.0307	0.0593	0.0953	0.0241	0.0520	0.0806
St. Louis	0.0078	0.0248	0.0425	0.0175	0.0468	0.0890	0.0114	0.0409	0.0688
Washington, D.C.	0.0055	0.0283	0.0526	0.0140	0.0521	0.1020	0.0103	0.0450	0.0916

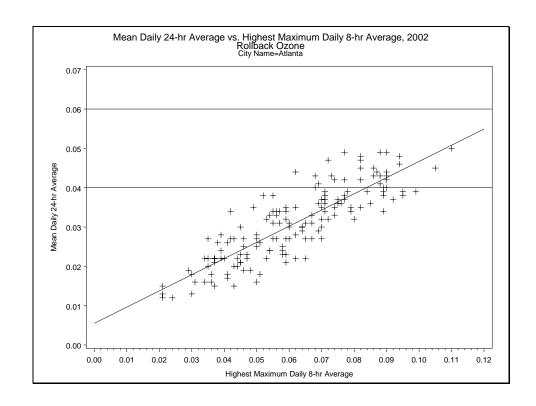
^{*&}quot;Boston 1" denotes Suffolk County; "Boston 2" denotes Essex, Middlesex, Norfolk, Suffolk, and Worcester Counties.

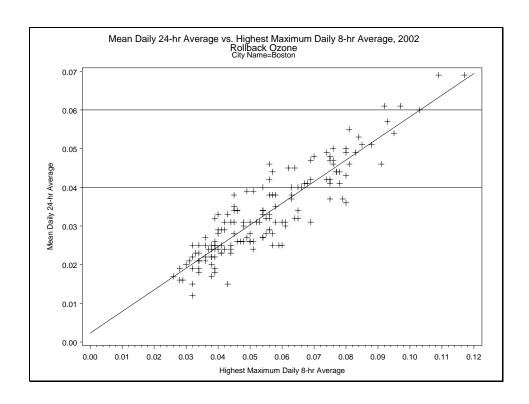
Table 5A-14. Composite Monitor Statistics: 2002

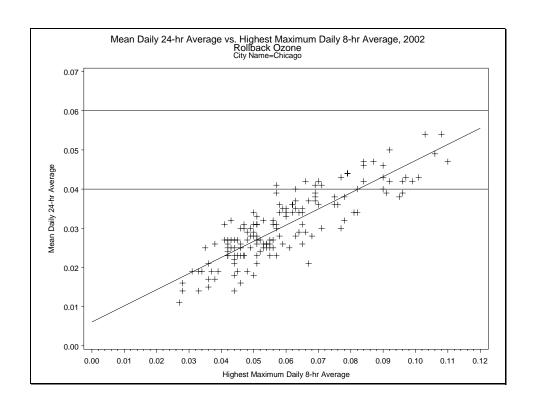
Urban Area	24-Hou	ır Average (pı	om)	1-Hou	ır Maximum (p	pm)	8-Hou	r Maximum (p _l	pm)
Orban Area	Minimum	Mean	Maximum	Minimum	Mean	Maximum	Minimum	Mean	Maximum
Atlanta	0.0102	0.0308	0.0559	0.0193	0.0623	0.1307	0.0157	0.0540	0.1166
Boston 1*	0.0133	0.0314	0.0783	0.0210	0.0503	0.1185	0.0178	0.0434	0.1128
Boston 2*	0.0132	0.0359	0.0852	0.0213	0.0526	0.1213	0.0169	0.0479	0.1162
Chicago	0.0101	0.0295	0.0545	0.0206	0.0488	0.0986	0.0137	0.0437	0.0899
Cleveland	0.0103	0.0338	0.0685	0.0177	0.0548	0.1070	0.0138	0.0488	0.1044
Detroit	0.0085	0.0277	0.0572	0.0170	0.0516	0.0987	0.0151	0.0450	0.0923
Houston	0.0089	0.0258	0.0568	0.0163	0.0492	0.1167	0.0131	0.0427	0.1017
Los Angeles 1**	0.0158	0.0313	0.0492	0.0283	0.0613	0.1009	0.0252	0.0525	0.0842
Los Angeles 2**	0.0192	0.0385	0.0586	0.0292	0.0652	0.0967	0.0247	0.0587	0.0881
New York 1***	0.0062	0.0280	0.0565	0.0130	0.0529	0.1294	0.0088	0.0448	0.0999
New York 2***	0.0075	0.0286	0.0576	0.0133	0.0537	0.1333	0.0088	0.0458	0.1032
Philadelphia	0.0069	0.0322	0.0619	0.0133	0.0573	0.1235	0.0091	0.0501	0.0999
Sacramento	0.0182	0.0353	0.0604	0.0242	0.0647	0.1090	0.0212	0.0564	0.0954
St. Louis	0.0058	0.0289	0.0585	0.0157	0.0556	0.1127	0.0087	0.0484	0.1000
Washington, D.C.	0.0095	0.0357	0.0708	0.0193	0.0627	0.1430	0.0164	0.0548	0.1210

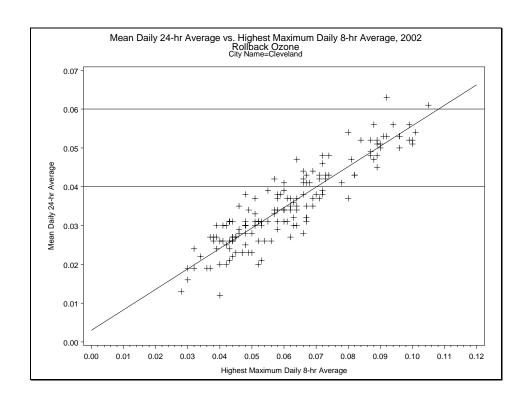
^{*&}quot;Boston 1" denotes Suffolk County; "Boston 2" denotes Essex, Middlesex, Norfolk, Suffolk, and Worcester Counties.

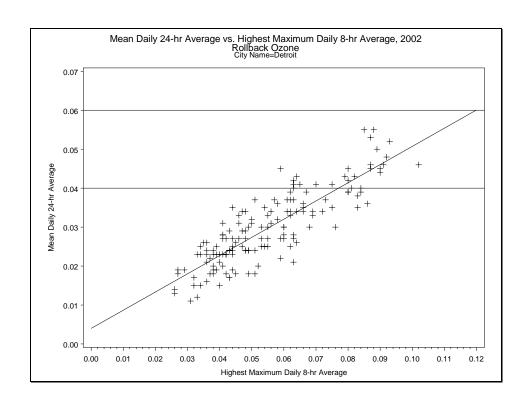
^{**&}quot;Los Angeles 1" denotes Los Angeles County; "Los Angeles 2" denotes Los Angeles, Riverside, San Bernardino, and Orange Counties.

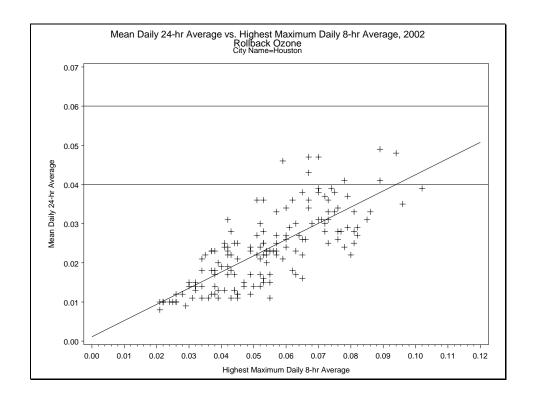

^{****}New York 1" denotes the 5 boroughs of New York City -- Brooklyn, Queens, Manhattan, Bronx, and Staten Island. "New York 2" denotes the 5 boroughs plus Westchester County.

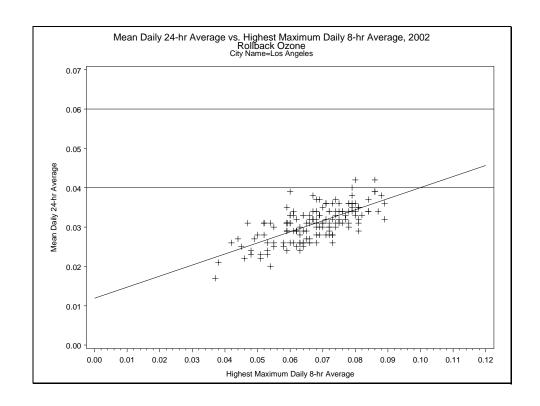

^{**&}quot;Los Angeles 1" denotes Los Angeles County; "Los Angeles 2" denotes Los Angeles, Riverside, San Bernardino, and Orange Counties.

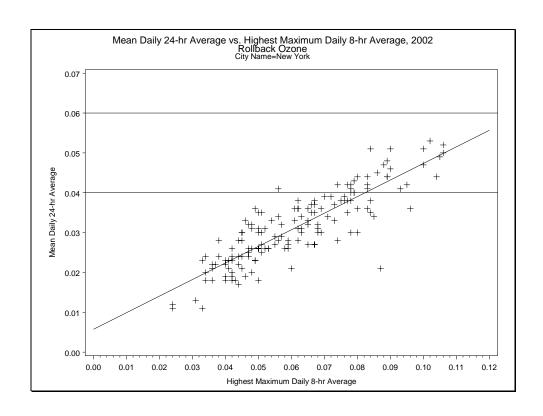

^{***&}quot;New York 1" denotes the 5 boroughs of New York City -- Brooklyn, Queens, Manhattan, Bronx, and Staten Island. "New York 2" denotes the 5 boroughs plus Westchester County.

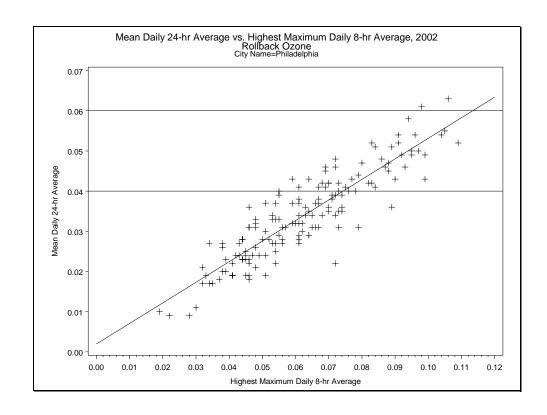

5A.2 Scatter Plots

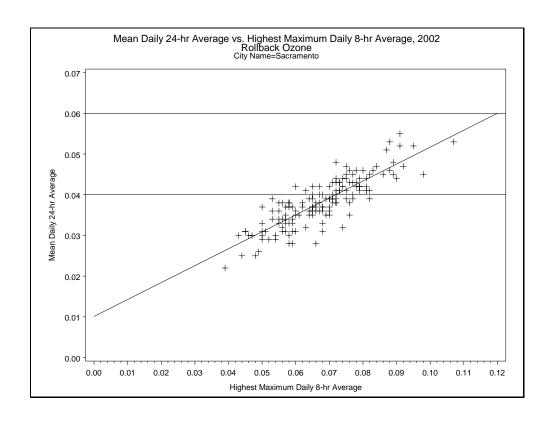

This Appendix provides scatter plots comparing 8-hr daily maximum concentrations at the highest monitor with the average of the 24-hr average over all monitors within each of the 12 urban areas included in the risk assessment.

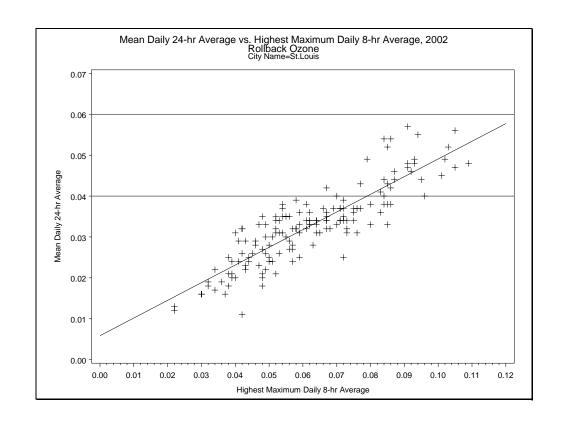


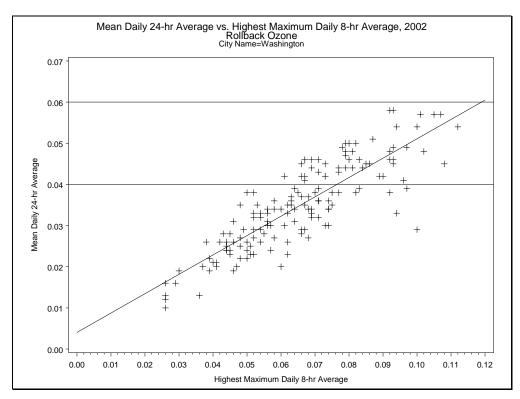


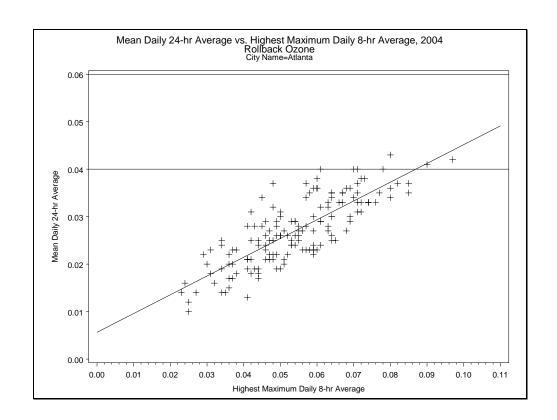


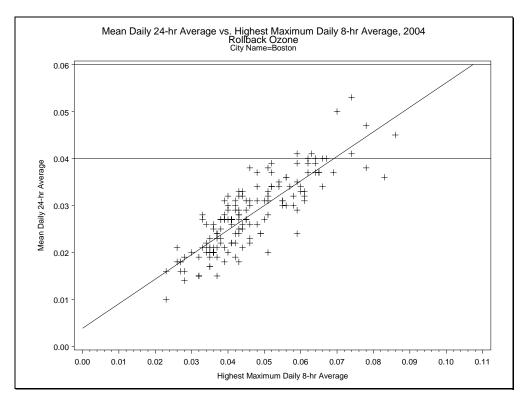


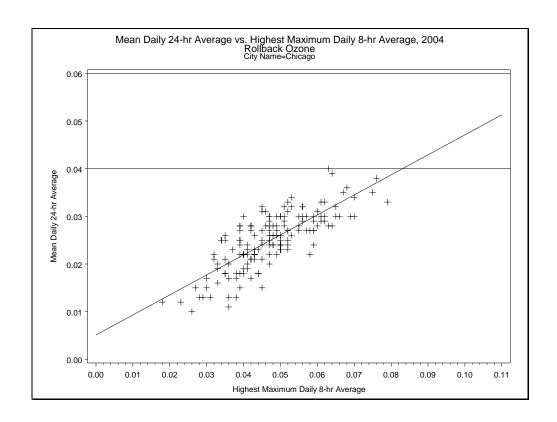


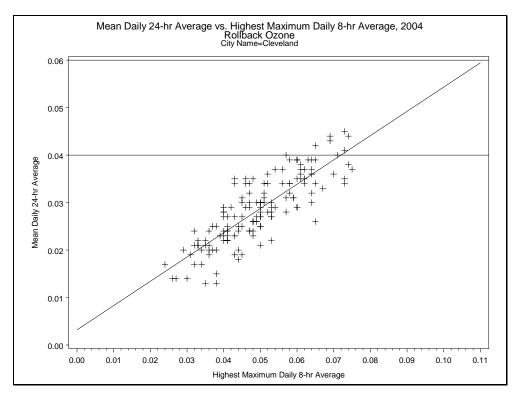


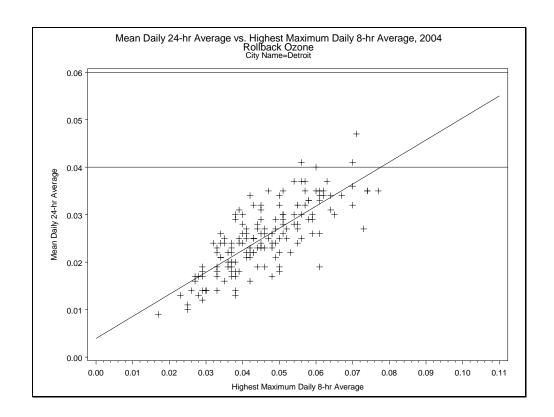


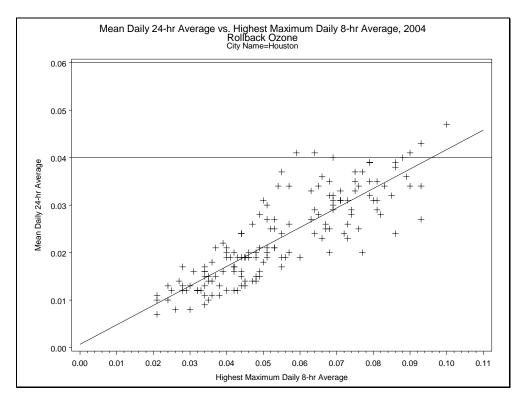


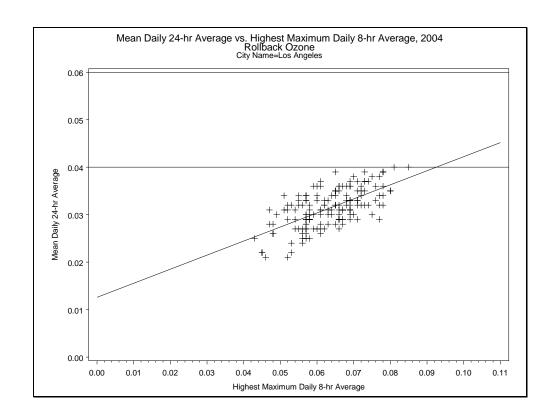


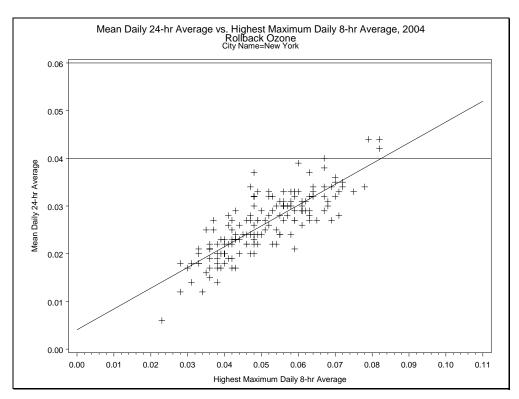


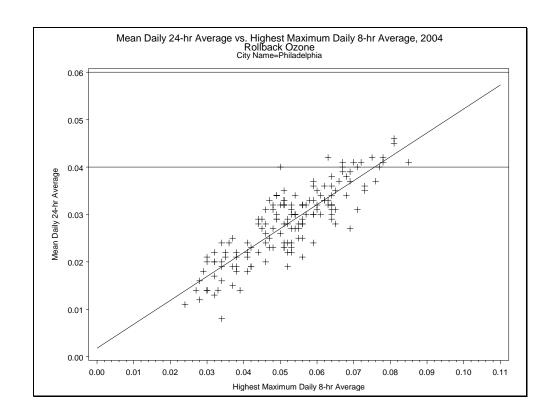


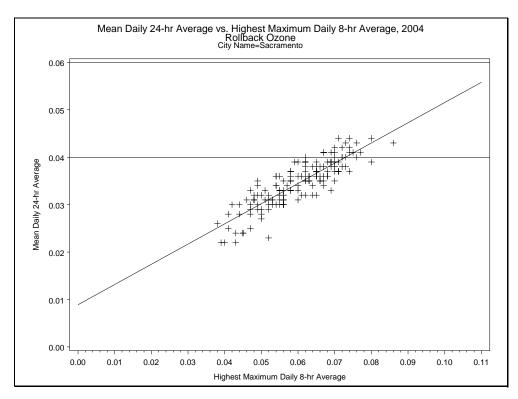


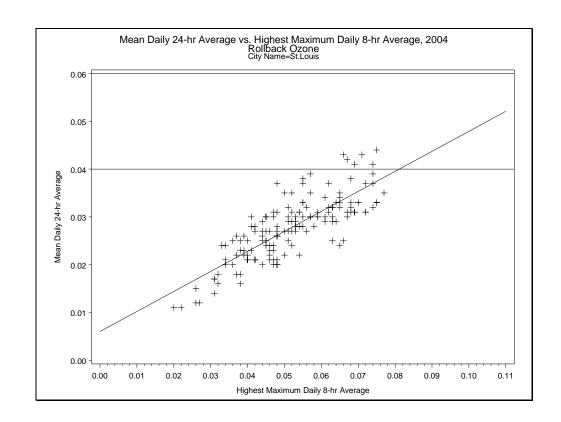


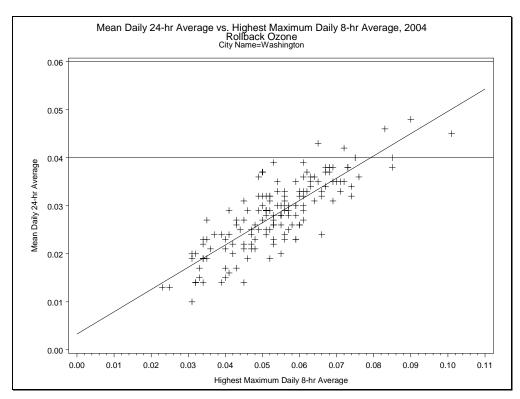












5B.1 Tables of Study-Specific Information

Table 5B-1. Study-Specific Information for O₃ Studies in Atlanta, GA

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
•					Metric		in Model	min.	max.			
Bell et al. (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	0	71	0.00020	-0.00084	0.00123
Bell et al 95 US Cities (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Huang et al. (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	0	71	0.00120	-0.00039	0.00279
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117

^{*}Health effects are associated with short-term exposures to O₃.

Table 5B-2. Study-Specific Information for O₃ Studies in Boston, MA

Street	Health Effects*	ICD-9 Codes		1	Exposure	Model	Other	Obse Concentrat	erved	O ₃ Coefficient	Lauren Barra d	Haman Bassad
Study	Health Effects"	ICD-9 Codes	Ages	Lag	Metric	Model	Pollutants in Model	min.	max.	O ₃ Coefficient	Lower Bound	Upper Bound
Bell et al 95 US Cities (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
	Respiratory symptoms chest tightness		0 - 12	1-day lag	1 hr max.	logistic	none	27	126	0.00462	0.00000	0.00784
Gent et al. (2003)	Respiratory symptoms chest tightness		0 - 12	0-day lag	1 hr max.	logistic	PM2.5	27	126	0.00771	0.00331	0.01220
Gent et al. (2003)	Respiratory symptoms chest tightness		0 - 12	1-day lag	1 hr max.	logistic	PM2.5	27	126	0.00701	0.00262	0.01153
Gent et al. (2003)	Respiratory symptoms chest tightness		0 - 12	1-day lag	8 hr max.	logistic	none	21	100	0.00570	0.00172	0.00965
Gent et al. (2003)	Respiratory symptoms shortness of breath		0 - 12	1-day lag	1 hr max.	logistic	none	27	126	0.00398	0.00040	0.00743
Gent et al. (2003)	Respiratory symptoms shortness of breath		0 - 12	1-day lag	8 hr max.	logistic	none	21	100	0.00525	0.00098	0.00952
Gent et al. (2003)	Respiratory symptoms wheeze		0 - 12	0-day lag	1 hr max.	logistic	PM2.5	21	100	0.00600	0.00209	0.01002

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

^{**}Rounded to the nearest ppb.

Table 5B-3. Study-Specific Information for O₃ Studies in Chicago, IL

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure	Model	Other Pollutants	Obse Concentrati	erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
·			ū		Metric		in Model	min.	max.	Ů		
Bell et al 95 US Cities (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Schwartz (2004)	Mortality, non-accidental	< 800	all	0-day lag	1 hr max.	logistic	none	NA	NA	0.00099	0.00031	0.00166
Schwartz 14 US Cities (2004)	Mortality, non-accidental	< 800	all	0-day lag	1 hr max.	logistic	none	NA	NA	0.00037	0.00012	0.00062
Huang et al. (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	0	65	0.00075	-0.00067	0.00218
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Cities (2004)		487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117

^{*}Health effects are associated with short-term exposures to O₃.

Table 5B-4. Study-Specific Information for O₃ Studies in Cleveland, OH

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure	Model	Other Pollutants	Obse Concentrati	erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
,			J	,	Metric		in Model	min.	max.	Ů		.,,,
Bell et al. (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	2	75	0.00061	-0.00038	0.00161
Bell et al 95 US Cities (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Huang et al. (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	2	75	0.00148	-0.00004	0.00299
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117
` '	Hospital admissions, respiratory illness	460-519	65+	avg of 1-day and 2-day lags	1 hr max.	log-linear	none	NA	NA	0.00169	0.00039	0.00291

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

^{**}Rounded to the nearest ppb.

Table 5B-5. Study-Specific Information for O₃ Studies in Detroit, MI

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure	Model	Other Pollutants		erved ions** (ppb)	O ₃	Lower	Upper
Study	nealth Effects	ICD-9 Codes	Ages	Lay	Metric	Wiodei	in Model	min.	max.	Coefficient	Bound	Bound
Bell et al. (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	2	75	0.00076	-0.00024	0.00177
Bell et al 95 US Cities	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Schwartz (2004)	Mortality, non-accidental	< 800	all	0-day lag	1 hr max.	logistic	none	NA	NA	0.00068	-0.00011	0.00148
Schwartz 14 US Cities (2004)	Mortality, non-accidental	< 800	all	0-day lag	1 hr max.	logistic	none	NA	NA	0.00037	0.00012	0.00062
Ito (2003)	Mortality, non-accidental	< 800	all	0-day lag	24 hr avg.	log-linear (GAM str.	none	NA	55	0.00093	-0.00085	0.00271
Ito (2003)	Mortality, respiratory	460-519	all	0-day lag	24 hr avg.	log-linear	none	NA	55	0.00359	-0.00276	0.00993
Huang et al. (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	2	75	0.00135	-0.00015	0.00286
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117
Ito (2003)	Hospital admissions (unscheduled), pneumonia	480-486	65+	0-day lag	24 hr avg.	log-linear (GAM str. estimation)**	none	NA	55	-0.00218	-0.00621	0.00186
lto (2003)	Hospital admissions (unscheduled), pneumonia	480-486	65+	1-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	-0.00054	-0.00459	0.00352
Ito (2003)	Hospital admissions (unscheduled), pneumonia	480-486	65+	2-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	0.00066	-0.00342	0.00473
Ito (2003)	Hospital admissions (unscheduled), pneumonia	480-486	65+	3-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	0.00190	-0.00216	0.00595
Ito (2003)	Hospital admissions (unscheduled), COPD	490-496	65+	0-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	-0.00191	-0.00667	0.00286
Ito (2003)	Hospital admissions (unscheduled), COPD	490-496	65+	1-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	0.00187	-0.00293	0.00667
Ito (2003)	Hospital admissions (unscheduled), COPD	490-496	65+	2-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	-0.00027	-0.00513	0.00459
Ito (2003)	Hospital admissions (unscheduled), COPD	490-496	65+	3-day lag	24 hr avg.	log-linear (GAM str. estimation)	none	NA	55	0.00011	-0.00475	0.00497

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

^{*****}GAM str. estimation" denotes that estimation of the log-linear C-R function used a generalized additive model with a stringent convergence criterion. This study also estimated log-linear C-R functions using generalized linear models (GLM).

Table 5B-6. Study-Specific Information for O₃ Studies in Houston, TX

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
·)	_	Metric		in Model	min.	max.			
Bell et al. (2004)	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	1	76	0.00079	0.00005	0.00154
Bell et al 95 US Cities	Mortality, non-accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Schwartz (2004)	Mortality, non-accidental	< 800	all	0-day lag	1 hr max.	logistic	none	NA	NA	0.00044	0.00004	0.00084
Schwartz 14 US Cities (2004)	Mortality, non-accidental	< 800	all	0-day lag	1 hr max.	logistic	none	NA	NA	0.00037	0.00012	0.00062
Huang et al. (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	1	76	0.00122	-0.00016	0.00261
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

NA denotes "not available."

Table 5B-7. Study-Specific Information for O₃ Studies in Los Angeles, CA

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure Metric	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
-					Wetric		in Model	min.	max.			
Bell et al. (2004)***	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	0	68	0.00018	-0.00043	0.00079
Bell et al 95 US Cities (2004)***	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Huang et al. (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	0	68	0.00107	0.00001	0.00213
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117
Linn et al. (2000)****	Hospital admissions (unscheduled), pulmonary illness	75-101****	30+	0-day lag	24 hr avg.	log-linear	none	1	70	0.00110	-0.00047	0.00267
Linn et al. (2000)****	Hospital admissions (unscheduled), pulmonary illness	75-101****	30+	0-day lag	24 hr avg.	log-linear	none	1	70	0.00060	-0.00077	0.00197

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

^{***}Los Angeles is defined in this study as Los Angeles County.

^{****}Los Angeles is defined in this study as Los Angeles, Riverside, San Bernardino, and Orange Counties.
****Linn et al. (2000) used DRG codes instead of ICD codes.

Table 5B-8. Study-Specific Information for O₃ Studies in New York, NY

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure Metric	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
					Wellic		in Model	min.	max.			
Bell et al 95 US Cities (2004)***	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Huang et al. (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	-2	81	0.00170	0.00054	0.00286
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)***	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117
Thurston et al. (1992)****	Hospital admissions (unscheduled),	466, 480-486, 490, 491, 492, 493	all	3-day lag	1 hr max.	linear	none	NA	206	1.370E-08	3.312E-09	2.409E-08
Thurston et al. (1992)****	Hospital admissions (unscheduled), asthma	493	all	1-day lag	1 hr max.	linear	none	NA	206	1.170E-08	2.488E-09	2.091E-08

^{*}Health effects are associated with short-term exposures to O₃.

Table 5B-9. Study-Specific Information for O₃ Studies in Philadelphia, PA

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure Metric	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
					Wetric		in Model	min.	max.			
Bell et al 95 US Cities (2004)	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065
Moolgavkar et al. (1995)	Mortality, non- accidental	< 800	all	1-day lag	24 hr avg.	log-linear	none	1	159	0.00140	0.00086	0.00191
Moolgavkar et al. (1995)	Mortality, non- accidental	< 800	all	1-day lag	24 hr avg.	log-linear	TSP, SO2	1	159	0.00139	0.00066	0.00212
Huang et al. (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	-3	84	0.00151	0.00007	0.00296
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00124	0.00047	0.00201
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	PM10	NA	NA	0.00074	-0.00033	0.00171
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	NO2	NA	NA	0.00060	0.00011	0.00109
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	SO2	NA	NA	0.00051	0.00001	0.00102
Huang et al 19 US Cities (2004)	Mortality, cardiorespiratory	390-448; 490-496; 487; 480-486; 507.	all	0-day lag	24 hr avg.	log-linear	СО	NA	NA	0.00069	0.00020	0.00117

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

^{***}New York in this study is defined as the five boroughs of New York City plus Westchester County.

^{****}New York in this study is defined as the five boroughs of New York City.

^{**}Rounded to the nearest ppb.

Table 5B-10. Study-Specific Information for O₃ Studies in Sacramento, CA

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
Study	Health Effects	ICD-9 Codes	Ages	Lay	Metric	Wiodei	in Model	min.	max.	O ₃ Coemcient	Lower Bound	Opper Bound
, ,	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	0	71	0.00026	-0.00079	0.00131
	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065

^{*}Health effects are associated with short-term exposures to O₃.

Table 5B-11. Study-Specific Information for O₃ Studies in St. Louis, MO

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure Metric	Model	Other Pollutants		erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
					Wethe		in Model	min.	max.			
Bell et al. (2004)	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	0	118	0.00044	-0.00072	0.00159
	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065

^{*}Health effects are associated with short-term exposures to O₃.

NA denotes "not available."

Table 5B-12. Study-Specific Information for O₃ Studies in Washington, D.C.

Study	Health Effects*	ICD-9 Codes	Ages	Lag	Exposure Metric	Model	Other Pollutants	Obse Concentrat	erved ions** (ppb)	O ₃ Coefficient	Lower Bound	Upper Bound
							in Model	min.	max.			
	Mortality, non- accidental	< 800	all	distributed lag	24 hr avg.	log-linear	none	NA	NA	0.00039	0.00013	0.00065

^{*}Health effects are associated with short-term exposures to O₃.

^{**}Rounded to the nearest ppb.

^{**}Rounded to the nearest ppb.

^{**}Rounded to the nearest ppb.

5B.2 Concentration-Response Functions and Health Impact Functions

Notation:

 y_0 = Incidence under baseline conditions

 y_c = Incidence under control conditions

$$\Delta y = y_0 - y_c$$

 $x_0 = O_3$ levels under baseline conditions

 $x_c = O_3$ levels under control conditions

$$\Delta x = x_0 - x_c$$

5B.2.1 Log-linear

The log-linear concentration-response function is: $y = Be^{\beta x}$

The derivation of the corresponding health impact function is as follows:

$$y = Be^{\beta x}$$

$$y_0 = Be^{\beta x_0}$$

$$y_c = Be^{\beta x_c}$$

$$\Delta y = Be^{\beta x_0} - Be^{\beta x_c}$$

$$\Delta y = Be^{\beta x_0} \cdot \left(1 - \frac{Be^{\beta x_c}}{Be^{\beta x_0}}\right)$$

$$\Delta y = Be^{\beta x_0} \cdot \left(1 - e^{\beta \cdot \left(x_c - x_0\right)}\right)$$

$$\Delta y = Be^{\beta x_0} \cdot \left(1 - e^{-\beta \Delta x}\right)$$

$$\Delta y = y_0 \cdot \left(1 - e^{-\beta \Delta x}\right)$$

5B.2.2 Linear

The linear concentration-response function is: $y = \alpha + \beta x$

The derivation of the corresponding health impact function is as follows:

$$y = \alpha + \beta x$$

$$y_0 = \alpha + \beta x_0$$

$$y_c = \alpha + \beta x_c$$

$$\Delta y = y_0 - y_c = \beta x_0 - \beta x_c$$

$$\Delta y = \beta (x_0 - x_c) = \beta \Delta x$$

5B.2.3 Logistic

The logistic concentration-response function is: $y = \left(\frac{e^{\beta x}}{1 + e^{\beta x}}\right) = \frac{1}{1 + e^{-\beta x}}$

The derivation of the corresponding health impact function is as follows:

$$y = \frac{1}{1 + e^{-\beta x}}$$

$$odds = \frac{y}{1 - y} = \frac{\left(\frac{1}{1 + e^{-\beta x}}\right)}{1 - \left(\frac{1}{1 + e^{-\beta x}}\right)}$$

$$odds = \frac{\left(\frac{1}{1 + e^{-\beta x}}\right)}{\left(\frac{e^{-\beta x}}{1 + e^{-\beta x}}\right)} = \frac{1}{e^{-\beta x}} = e^{\beta x}$$

$$odds \ ratio = \frac{e^{\beta x_0}}{e^{\beta x_c}} = e^{\beta \Delta x}$$

$$\left(\frac{y_c}{1 - y_c}\right)$$

$$\left(\frac{y_0}{1 - y_0}\right)$$

$$\frac{y_c}{1 - y_c} = \left(\frac{y_0}{1 - y_0}\right) \cdot e^{-\beta \Delta x}$$

$$y_c = (1 - y_c) \cdot \left(\frac{y_0}{1 - y_0}\right) \cdot e^{-\beta \Delta x}$$

$$y_{c} + y_{c} \cdot \left(\frac{y_{0}}{1 - y_{0}}\right) \cdot e^{-\beta \Delta x} = \left(\frac{y_{0}}{1 - y_{0}}\right) \cdot e^{-\beta \Delta x}$$

$$y_{c} \cdot \left[1 + \left(\frac{y_{0}}{1 - y_{0}}\right) \cdot e^{-\beta \Delta x}\right] = \left(\frac{y_{0}}{1 - y_{0}}\right) \cdot e^{-\beta \Delta x}$$

$$y_{c} = \frac{\left(\frac{y_{0}}{1 - y_{0}}\right) \cdot e^{-\beta \Delta x}}{1 + \left(\frac{y_{0}}{1 - y_{0}}\right) \cdot e^{-\beta \Delta x}}$$

$$y_{c} = \frac{y_{0} \cdot e^{-\beta \Delta x}}{1 - y_{0} + y_{0} \cdot e^{-\beta \Delta x}}$$

$$y_{c} = \frac{y_{0}}{(1 - y_{0}) \cdot e^{\beta \Delta x} + y_{0}}$$

$$y_{0} - y_{c} = y_{0} - \frac{y_{0}}{(1 - y_{0}) \cdot e^{\beta \Delta x} + y_{0}}$$

$$\Delta y = y_{0} \cdot \left(1 - \frac{1}{(1 - y_{0}) \cdot e^{\beta \Delta x} + y_{0}}\right)$$

5B.3 The Calculation of "Shrinkage" Estimates from the Location-Specific Estimates Reported in Huang et al. (2004)

"Shrinkage" estimates were calculated from the location-specific estimates reported in Table 1 of Huang et al. (2004), using the method described in DuMouchel (1994). Both Huang et al. (2004) and DuMouchel (1994) consider a Bayesian hierarchical model. Although they use different notation, the models are the same. The notation comparison is given in Table B-13 below.

Given a posterior distribution for τ , $\pi(\tau \mid y)$, a shrinkage estimate for the ith location is calculated as:

$$\theta_i^* \equiv E[\theta_i \mid y] = \int \theta_i^*(\tau) \pi(\tau \mid y) d\tau$$
 where
$$\theta_i^*(\tau) \equiv E[\theta_i \mid y, \tau] = \mu^*(\tau) + [y_i - \mu^*(\tau)] \tau^2 / (\tau^2 + s_i^2),$$
 where
$$\mu^*(\tau) \equiv E[\mu \mid y, \tau] = \sum_i w_i(\tau) y_i,$$
 where
$$w_i(\tau) = (\tau^2 + s_i^2)^{-1} / \sum_j (\tau^2 + s_j^2)^{-1}.$$

A shrinkage estimate for the ith location is thus defined to be the expected value of the ith location-specific parameter, given all the location-specific estimates (see Table 1 for notation explanations). The posterior variance of the true ith location-specific parameter, given all the location-specific estimates, is given by:

$$\theta_i^{**} \equiv V[\theta_i | y] = \int \{V[\theta_i | y, \tau] + [\theta_i^*(\tau) - \theta_i^*]^2 \} \pi(\tau | y) d\tau,$$

where
$$V[\theta_i | y, \tau] = [s_i^2 / (\tau^2 + s_i^2)]^2 / \sum_j (\tau^2 + s_j^2)^{-1} + \tau^2 s_i^2 / (\tau^2 + s_i^2)$$
.

A 95 percent credible interval around the ith shrinkage estimate was calculated as $\theta_i^* \pm 1.96*(\sqrt{\theta_i^{**}})$.

Table 5B-13. Notation

	Huang et al. (2004)	DuMouchel (1994)			
Location indicator	c	i			
parameter being estimated for location c (or i)	$ heta^{ m c}$	$\Theta_{ m i}$			
Estimate of parameter for location c (or i)*	$\hat{\theta}^{c}$	y_i			
variance in the overall distribution of true θ s.	$ au^2$	$ au^2$			
variance of the estimate of θ^c or $(\theta_i)^{**}$	\mathbf{v}^{c}	s_i^2			
The mean of the overall distribution of true θ s	μ	μ			
The model:	$\hat{\theta}^{c} \sim N(\theta^{c}, v^{c}) \tag{1}$ $\theta^{c} \sim N(\mu, \tau^{2}) \tag{2}$ $(1) & (2) \Rightarrow \hat{\theta}^{c} \sim N(\mu, v^{c} + \tau^{2})$	$y_{i} = \mu + \delta_{i} + \varepsilon_{i} $ (1) $\theta_{i} = \mu + \delta_{i} $ (2) $\delta_{i} \sim N(0, \tau^{2}) $ (3) $\varepsilon_{i} \sim N(0, s_{i}^{2}) $ (4) (2) and (3) $\Rightarrow \theta_{i} \sim N(\mu, \tau^{2})$ (1),(2),(3) &(4) $\Rightarrow y_{i} \sim N(\mu, \tau^{2} + s_{i}^{2})$			

^{*}Given in Table 1 of Huang et al. (2004)
**Estimated by taking the square of the location-specific standard error, reported in Huang et al. (2004) for each location.

APPENDIX 5C. ADDITIONAL HEALTH RISK ASSESSMENT ESTIMATES

Table 5C-1. Number of Active Children (Ages 5-18) Engaged in Moderate Exercise Estimated to Experience At Least One Lung Function Response Associated with Exposure to O₃ Concentrations That Just Meet the Current and Alternative Daily Maximum 8-Hour Standards: Based on 2004 O₃ Concentrations*

Location	Number of Active Children (in 1000s) Estimated to Experience at Least One Lung Function Response Associated with O ₃ Concentrations that Just Meet the Current and Alternative O ₃ Standards**							
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
		Re	sponse = Dec	rease in FEV ₁	Greater Than	or Equal to 1	10%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	32	32	28	24	23	22	19	15
Atlanta-Sandy_Springs-GamesvineGA-AL	(9 - 57)	(9 - 56)	(7 - 51)	(5 - 45)	(5 - 43)	(5 - 42)	(4 - 37)	(2 - 31)
Pastan Waranatar Manahastar MA NU	24	21	21	20	17	15	14	11
Boston-Worcester-ManchesterMA-NH	(5 - 46)	(4 - 42)	(4 - 41)	(4 - 39)	(3 - 34)	(2 - 32)	(2 - 30)	(1 - 24)
Chicago-Naperville-Michigan_CityIL-IN-WI	33	30	28	25	23	21	19	14
onicago-wapervine-wichigan_ony_ne-in-wi	(5 - 65)	(5 - 61)	(4 - 58)	(3 - 53)	(3 - 48)	(2 - 46)	(2 - 42)	(1 - 32)
Cleveland-Akron-ElyriaOH	11	10	10	8	8	7	7	5
oleveland-Akton-Liyna_on	(2 - 22)	(2 - 20)	(2 - 20)	(1 - 17)	(1 - 16)	(1 - 15)	(1 - 15)	(1 - 12)
Detroit-Warren-Flint MI	24	22	21	20	17	15	14	11
etion-waiten-i iiit_iwi	(5 - 46)	(4 - 43)	(4 - 41)	(4 - 40)	(3 - 34)	(2 - 32)	(2 - 30)	(1 - 24)
louston-Baytown-HuntsvilleTX	34	31	29	25	24	22	20	15
	(10 - 58)	(8 - 54)	(8 - 52)	(6 - 45)	(5 - 43)	(5 - 40)	(4 - 38)	(2 - 30)
_os_Angeles-Long_Beach-RiversideCA	62	58	51	38	37	34	29	14
E03_Angele3 Eong_Beach AiversideOA	(15 - 110)	(14 - 104)	(11 - 93)	(7 - 71)	(7 - 69)	(6 - 65)	(5 - 55)	(2 - 28)
New_York-Newark-BridgeportNY-NJ-CT-PA	82	76	71	55	56	53	49	37
new_ronk newark bridgeponNT No OTTA	(16 - 160)	(14 - 151)	(12 - 142)	(7 - 116)	(8 - 119)	(7 - 113)	(6 - 105)	(3 - 84)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	32	29	28	23	22	20	19	15
i illiadelpilla Gallidell Villelalla_i A No DE IIID	(8 - 58)	(6 - 54)	(6 - 52)	(4 - 45)	(4 - 44)	(3 - 41)	(3 - 38)	(2 - 32)
Sacramento-Arden-Arcade-Truckee CA-NV	6	6	5	4	4	4	3	2
odoramonto /itadii /itadao Tradicoo/i iii	(2 - 10)	(1 - 10)	(1 - 9)	(1 - 7)	(1 - 7)	(1 - 7)	(1 - 6)	(0 - 4)
StLouis-StCharles-FarmingtonMO-IL	15	14	13	11	10	10	9	7
	(3 - 28)	(3 - 26)	(3 - 25)	(2 - 22)	(2 - 21)	(1 - 19)	(1 - 18)	(1 - 15)
Washington-Baltimore-Northern_VirginiaDC-	44	39	39	33	31	28	26	20
MD-VA-WV	(12 - 79)	(9 - 72)	(9 - 71)	(7 - 62)	(6 - 59)	(5 - 55)	(5 - 53)	(3 - 42)
		Re	sponse = Dec	rease in FEV₁	Greater Than	or Equal to 1	15%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	9	9	7	5	5	4	3	2
Atlanta-Ganuy_Springs-GamesvilleGA-AL	(1 - 35)	(1 - 35)	(0 - 31)	(0 - 27)	(0 - 26)	(0 - 25)	(0 - 22)	(0 - 18)
Boston-Worcester-ManchesterMA-NH	5	4	4	4	2	2	2	1

Location			` '		•		ung Function	•
							ative O ₃ Stand	
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	(0 - 28)	(0 - 25)	(0 - 25)	(0 - 24)	(0 - 20)	(0 - 19)	(0 - 18)	(0 - 14)
Chicago-Naperville-Michigan_CityIL-IN-WI	5	4	4	3	2	2	2	1
omougo naporvino inioriigan_ony_nz ni vii	(0 - 39)	(0 - 36)	(0 - 34)	(0 - 31)	(0 - 28)	(0 - 27)	(0 - 24)	(0 - 19)
Cleveland-Akron-Elyria_OH	2	2	2	1	1	1	1	0
olovolalia / iii oli Elyma_om	(0 - 13)	(0 - 12)	(0 - 12)	(0 - 10)	(0 - 10)	(0 - 9)	(0 - 9)	(0 - 7)
Detroit-Warren-FlintMI	5	4	4	3	2	2	2	1
betroit warren i iint_iiii	(0 - 28)	(0 - 25)	(0 - 25)	(0 - 24)	(0 - 20)	(0 - 19)	(0 - 18)	(0 - 14)
Houston-Baytown-HuntsvilleTX	10	8	8	5	5	4	4	2
Floudion Baytown Hamovino_TX	(1 - 37)	(1 - 33)	(1 - 32)	(0 - 27)	(0 - 26)	(0 - 24)	(0 - 23)	(0 - 18)
Los_Angeles-Long_Beach-RiversideCA	14	13	10	6	6	6	4	2
203_Angeles Long_Beach RiversideOA	(0 - 67)	(0 - 63)	(0 - 56)	(0 - 42)	(0 - 41)	(0 - 39)	(0 - 32)	(0 - 17)
New_York-Newark-BridgeportNY-NJ-CT-PA	15	13	11	6	7	6	5	3
New_rork Newark BridgeportNT No OT 1 A	(0 - 96)	(0 - 90)	(0 - 85)	(0 - 68)	(0 - 70)	(0 - 67)	(0 - 62)	(0 - 49)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	7	6	6	4	4	3	3	2
madelphia-Gamden-Vineland_i A-NO-DE-IIID	(0 - 35)	(0 - 33)	(0 - 32)	(0 - 27)	(0 - 26)	(0 - 24)	(0 - 23)	(0 - 19)
Sacramento-Arden-Arcade-TruckeeCA-NV	1	1	1	1	1	1	0	0
	(0 - 6)	(0 - 6)	(0 - 5)	(0 - 4)	(0 - 4)	(0 - 4)	(0 - 3)	(0 - 2)
StLouis-StCharles-FarmingtonMO-IL	3	3	2	2	2	1	1	1
01	(0 - 17)	(0 - 16)	(0 - 15)	(0 - 13)	(0 - 12)	(0 - 11)	(0 - 11)	(0 - 9)
Washington-Baltimore-Northern_VirginiaDC-	11	9	9	6	6	5	4	2
MD-VA-WV	(1 - 49)	(1 - 44)	(1 - 43)	(0 - 38)	(0 - 35)	(0 - 33)	(0 - 31)	(0 - 25)
		Re	sponse = Dec	rease in FEV₁	Greater Than	or Equal to 2	20%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	2	2	1	1	0	0	0	0
Attanta danay_opinigs daniesvineOA AL	(0 - 23)	(0 - 22)	(0 - 20)	(0 - 18)	(0 - 16)	(0 - 16)	(0 - 14)	(0 - 12)
Poston Worsestor Manchester MA NH	1	0	0	0	0	0	0	0
Boston-Worcester-Manchester_MA-NH	(0 - 17)	(0 - 16)	(0 - 15)	(0 - 15)	(0 - 13)	(0 - 12)	(0 - 11)	(0 - 9)
Chicago Nanarvilla Michigan City II IN WI	0	0	0	0	0	0	0	0
Chicago-Naperville-Michigan_CityIL-IN-WI	(0 - 24)	(0 - 23)	(0 - 22)	(0 - 19)	(0 - 18)	(0 - 17)	(0 - 15)	(0 - 11)
Cleveland-Akron-ElyriaOH	0	0	0	0	0	0	0	0
Olevelatiu-Akton-Etyria_Off	(0 - 8)	(0 - 8)	(0 - 7)	(0 - 6)	(0 - 6)	(0 - 6)	(0 - 5)	(0 - 4)
Detroit-Warren-FlintMI	1	0	0	0	0	0	0	0
Derroit-44aileil-i iiiit_ivii	(0 - 18)	(0 - 16)	(0 - 16)	(0 - 15)	(0 - 13)	(0 - 12)	(0 - 11)	(0 - 9)
Houston-Baytown-HuntsvilleTX	2	1	1	1	1	0	0	0

July 2006

Location	Number of	Active Child	ren (in 1000s)	Estimated to	Experience a	t Least One L	ung Function	Response
Location	Assoc	iated with O ₃	Concentration	ns that Just M	leet the Curre	nt and Alterna	ative O₃ Stand	ards**
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	(0 - 24)	(0 - 22)	(0 - 21)	(0 - 18)	(0 - 17)	(0 - 16)	(0 - 15)	(0 - 11)
Los_Angeles-Long_Beach-RiversideCA	1	1	1	0	0	0	0	0
LOS_ATIGETES-LOTIG_BEACTI-RIVETSIDECA	(0 - 44)	(0 - 42)	(0 - 37)	(0 - 28)	(0 - 27)	(0 - 26)	(0 - 21)	(0 - 11)
New_York-Newark-BridgeportNY-NJ-CT-PA	1	1	1	0	0	0	0	0
New_Tork-Newark-BridgeportNT-N3-CT-FA	(0 - 60)	(0 - 57)	(0 - 53)	(0 - 42)	(0 - 43)	(0 - 41)	(0 - 38)	(0 - 29)
Philadelphia-Camden-Vineland PA-NJ-DE-MD	1	1	1	0	0	0	0	0
Filliadelphia-Camden-vinelandFA-N3-DE-NiD	(0 - 23)	(0 - 21)	(0 - 20)	(0 - 17)	(0 - 16)	(0 - 15)	(0 - 14)	(0 - 11)
Sacramento-Arden-Arcade-TruckeeCA-NV	0	0	0	0	0	0	0	0
Gacramento-Arden-Arcade-TruckeeCA-NV	(0 - 4)	(0 - 4)	(0 - 4)	(0 - 3)	(0 - 3)	(0 - 3)	(0 - 2)	(0 - 2)
St. Louis-St. Charles-Farmington MO-IL	0	0	0	0	0	0	0	0
otcouis-otchanes-i armingtonwo-ic	(0 - 11)	(0 - 10)	(0 - 10)	(0 - 8)	(8 - 0)	(0 - 7)	(0 - 7)	(0 - 5)
Washington-Baltimore-Northern_VirginiaDC-	2	1	1	1	1	0	0	0
MD-VA-WV	(0 - 31)	(0 - 28)	(0 - 28)	(0 - 24)	(0 - 22)	(0 - 21)	(0 - 20)	(0 - 15)

^{*}Numbers are median (0.5 fractile) numbers of children. Numbers in parentheses below the median are 95% confidence intervals based on statistical uncertainty surrounding the O3 coefficient.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest 1000.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-2. Percent of Active Children (Ages 5-18) Engaged in Moderate Exercise Estimated to Experience At Least One Lung Function Response Associated with Exposure to O₃ Concentrations That Just Meet the Current and Alternative Daily Maximum 8-Hour Standards: Based on 2004 O₃ Concentrations*

Location	Percent of		n Estimated to	-	-	•	-	ted with O ₃
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
			Response = De	crease in FEV ₁	Greater Than o	or Equal to 10%	, D	
Atlanta-Sandy_Springs-GainesvilleGA-	7.2%	7.1%	6.3%	5.4%	5%	5%	4.3%	3.4%
AL	(2% - 12.7%)	(1.9% - 12.5%)	(1.6% - 11.3%)	(1.2% - 10.1%)	(1.1% - 9.5%)	(1% - 9.4%)	(0.8% - 8.3%)	(0.5% - 6.9%)
Poston Warasster Manchester MANII	5%	4.5%	4.4%	4.2%	3.5%	3.2%	3%	2.3%
Boston-Worcester-ManchesterMA-NH	(1.1% - 9.5%)	(0.9% - 8.7%)	(0.9% - 8.6%)	(0.8% - 8.2%)	(0.6% - 7.1%)	(0.5% - 6.6%)	(0.4% - 6.3%)	(0.2% - 5.1%)
Chicago-Naperville-Michigan_CityIL-IN-	3.7%	3.4%	3.2%	2.8%	2.6%	2.4%	2.1%	1.6%
wı	(0.6% - 7.4%)	(0.5% - 7%)	(0.5% - 6.6%)	(0.4% - 6%)	(0.3% - 5.5%)	(0.3% - 5.2%)	(0.2% - 4.7%)	(0.1% - 3.7%)
Claveland Alman Flyria OH	4.5%	4.1%	3.9%	3.2%	3.1%	2.8%	2.7%	2.1%
Cleveland-Akron-ElyriaOH	(0.9% - 8.7%)	(0.7% - 8%)	(0.7% - 7.8%)	(0.5% - 6.7%)	(0.4% - 6.4%)	(0.4% - 6%)	(0.3% - 5.7%)	(0.2% - 4.6%)
Detroit-Warren-FlintMI	4.9%	4.4%	4.2%	4%	3.3%	3%	2.9%	2.2%
Detroit-warren-Fillitmi	(1% - 9.3%)	(0.8% - 8.5%)	(0.8% - 8.3%)	(0.7% - 8%)	(0.5% - 6.8%)	(0.4% - 6.3%)	(0.4% - 6.1%)	(0.2% - 4.8%)
Houston-Baytown-HuntsvilleTX	6.9%	6.3%	6%	5%	4.8%	4.4%	4.1%	3.1%
	(2% - 11.9%)	(1.7% - 11%)	(1.6% - 10.6%)	(1.2% - 9.2%)	(1.1% - 8.9%)	(0.9% - 8.3%)	(0.8% - 7.7%)	(0.5% - 6.1%)
Los_Angeles-Long_Beach-RiversideCA	3.8%	3.6%	3.2%	2.4%	2.3%	2.1%	1.8%	0.9%
LOS_Alligeles-Lolly_Beach-RiversideCA	(0.9% - 6.8%)	(0.8% - 6.4%)	(0.7% - 5.7%)	(0.4% - 4.4%)	(0.4% - 4.3%)	(0.4% - 4%)	(0.3% - 3.4%)	(0.1% - 1.7%)
New_York-Newark-BridgeportNY-NJ-CT-	4.5%	4.2%	3.9%	3%	3.1%	2.9%	2.6%	2%
PA	(0.9% - 8.7%)	(0.8% - 8.2%)	(0.7% - 7.8%)	(0.4% - 6.3%)	(0.4% - 6.5%)	(0.4% - 6.2%)	(0.3% - 5.7%)	(0.2% - 4.6%)
Philadelphia-Camden-VinelandPA-NJ-	5.9%	5.4%	5.2%	4.3%	4.2%	3.8%	3.5%	2.8%
DE-MD	(1.4% - 10.9%)	(1.2% - 10.1%)	(1.1% - 9.8%)	(0.8% - 8.4%)	(0.7% - 8.2%)	(0.6% - 7.7%)	(0.5% - 7.1%)	(0.3% - 5.9%)
Sacramento-Arden-Arcade-TruckeeCA-	4%	3.7%	3.4%	2.7%	2.5%	2.3%	2%	1.4%
NV	(1% - 6.9%)	(0.9% - 6.5%)	(0.8% - 6%)	(0.6% - 4.9%)	(0.5% - 4.6%)	(0.5% - 4.3%)	(0.4% - 3.7%)	(0.2% - 2.7%)
StLouis-StCharles-FarmingtonMO-IL	5.4%	4.9%	4.7%	3.9%	3.7%	3.4%	3.1%	2.5%
otcours-otonaries-r armingtonmo-ic	(1.2% - 10%)	(1% - 9.4%)	(0.9% - 9%)	(0.7% - 7.7%)	(0.6% - 7.4%)	(0.5% - 6.9%)	(0.4% - 6.5%)	(0.3% - 5.3%)
Washington-Baltimore-	6.4%	5.7%	5.6%	4.8%	4.5%	4%	3.9%	2.9%
Northern_VirginiaDC-MD-VA-WV	(1.7% - 11.5%)	(1.4% - 10.5%)	(1.3% - 10.4%)	(1% - 9.1%)	(0.9% - 8.7%)	(0.7% - 8%)	(0.7% - 7.7%)	(0.4% - 6.2%)
	Response = Decrease in FEV ₁ Greater Than or Equal to 15%							
Atlanta-Sandy_Springs-GainesvilleGA-	2%	1.9%	1.5%	1.2%	1%	1%	0.7%	0.4%
AL	(0.2% - 7.9%)	(0.2% - 7.7%)	(0.1% - 7%)	(0.1% - 6.1%)	(0% - 5.7%)	(0% - 5.7%)	(0% - 5%)	(0% - 4.1%)

Location	Percent of			-	Least One Lung	=	-	ted with O ₃
		Concer		ust Meet the Cu	urrent and Alter	rnative O₃ Stan	1	
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Boston-Worcester-Manchester MA-NH	1.1%	0.8%	0.8%	0.7%	0.5%	0.4%	0.4%	0.2%
	(0.1% - 5.8%)	(0% - 5.2%)	(0% - 5.1%)	(0% - 4.9%)	(0% - 4.2%)	(0% - 3.9%)	(0% - 3.7%)	(0% - 3%)
Chicago-Naperville-Michigan_CityIL-IN-	0.6%	0.5%	0.4%	0.3%	0.3%	0.2%	0.2%	0.1%
WI	(0% - 4.4%)	(0% - 4.1%)	(0% - 3.9%)	(0% - 3.5%)	(0% - 3.2%)	(0% - 3.1%)	(0% - 2.8%)	(0% - 2.1%)
Cleveland-Akron-ElyriaOH	0.8%	0.7%	0.6%	0.4%	0.4%	0.3%	0.3%	0.2%
Cieveland-Aki On-Liyna_On	(0% - 5.2%)	(0% - 4.8%)	(0% - 4.6%)	(0% - 3.9%)	(0% - 3.8%)	(0% - 3.6%)	(0% - 3.4%)	(0% - 2.7%)
Detroit-Warren-Flint MI	1%	0.8%	0.7%	0.7%	0.4%	0.4%	0.3%	0.2%
Detroit-warren-riintiwi	(0% - 5.6%)	(0% - 5.1%)	(0% - 4.9%)	(0% - 4.8%)	(0% - 4%)	(0% - 3.7%)	(0% - 3.6%)	(0% - 2.8%)
Houston-Baytown-HuntsvilleTX	2%	1.7%	1.6%	1.1%	1%	0.9%	0.7%	0.4%
nousion-baytown-nuntsvine1X	(0.2% - 7.5%)	(0.2% - 6.8%)	(0.1% - 6.6%)	(0.1% - 5.6%)	(0.1% - 5.4%)	(0% - 5%)	(0% - 4.6%)	(0% - 3.6%)
Los_Angeles-Long_Beach-RiversideCA	0.9%	0.8%	0.6%	0.4%	0.4%	0.3%	0.3%	0.1%
LOS_Angeles-Long_beach-KiversideCA	(0% - 4.1%)	(0% - 3.9%)	(0% - 3.5%)	(0% - 2.6%)	(0% - 2.5%)	(0% - 2.4%)	(0% - 2%)	(0% - 1%)
New_York-Newark-BridgeportNY-NJ-CT-	0.8%	0.7%	0.6%	0.3%	0.4%	0.3%	0.3%	0.1%
PA	(0% - 5.2%)	(0% - 4.9%)	(0% - 4.6%)	(0% - 3.7%)	(0% - 3.8%)	(0% - 3.6%)	(0% - 3.4%)	(0% - 2.7%)
Philadelphia-Camden-VinelandPA-NJ-	1.4%	1.2%	1.1%	0.7%	0.7%	0.6%	0.5%	0.3%
DE-MD	(0.1% - 6.6%)	(0% - 6.1%)	(0% - 5.9%)	(0% - 5%)	(0% - 4.9%)	(0% - 4.5%)	(0% - 4.2%)	(0% - 3.5%)
Sacramento-Arden-Arcade-TruckeeCA-	1%	0.9%	0.8%	0.5%	0.5%	0.4%	0.3%	0.2%
NV	(0% - 4.2%)	(0% - 3.9%)	(0% - 3.6%)	(0% - 2.9%)	(0% - 2.8%)	(0% - 2.6%)	(0% - 2.2%)	(0% - 1.6%)
StLouis-StCharles-FarmingtonMO-IL	1.1%	1%	0.9%	0.6%	0.5%	0.5%	0.4%	0.2%
ottouis otondites i diminigionmo it	(0% - 6.1%)	(0% - 5.6%)	(0% - 5.4%)	(0% - 4.6%)	(0% - 4.4%)	(0% - 4.1%)	(0% - 3.8%)	(0% - 3.1%)
Washington-Baltimore-	1.7%	1.3%	1.3%	0.9%	0.8%	0.7%	0.6%	0.3%
Northern_VirginiaDC-MD-VA-WV	(0.1% - 7.1%)	(0.1% - 6.4%)	(0.1% - 6.3%)	(0% - 5.5%)	(0% - 5.2%)	(0% - 4.8%)	(0% - 4.6%)	(0% - 3.6%)
			Response = De	crease in FEV ₁	Greater Than o	or Equal to 20%	,	•
Atlanta-Sandy_Springs-GainesvilleGA-	0.4%	0.3%	0.2%	0.1%	0.1%	0.1%	0.1%	0%
AL	(0% - 5.1%)	(0% - 5%)	(0% - 4.5%)	(0% - 3.9%)	(0% - 3.7%)	(0% - 3.6%)	(0% - 3.2%)	(0% - 2.6%)
	0.1%	0.1%	0.1%	0.1%	0%	0%	0%	0%
Boston-Worcester-ManchesterMA-NH	(0% - 3.6%)	(0% - 3.3%)	(0% - 3.2%)	(0% - 3.1%)	(0% - 2.6%)	(0% - 2.4%)	(0% - 2.3%)	(0% - 1.8%)
Chicago-Naperville-Michigan_CityIL-IN-	0%	0%	0%	0%	0%	0%	0%	0%
wi	(0% - 2.8%)	(0% - 2.6%)	(0% - 2.4%)	(0% - 2.2%)	(0% - 2%)	(0% - 1.9%)	(0% - 1.7%)	(0% - 1.3%)
Olevelend Almen Florin Cit	0.1%	0.1%	0%	0%	0%	0%	0%	0%
Cleveland-Akron-ElyriaOH	(0% - 3.3%)	(0% - 3%)	(0% - 2.9%)	(0% - 2.4%)	(0% - 2.4%)	(0% - 2.2%)	(0% - 2.1%)	(0% - 1.6%)
Detroit Worren Flint MI	0.1%	0.1%	0.1%	0.1%	0%	0%	0%	0%
Detroit-Warren-FlintMI	(0% - 3.5%)	(0% - 3.2%)	(0% - 3.1%)	(0% - 3%)	(0% - 2.5%)	(0% - 2.3%)	(0% - 2.2%)	(0% - 1.7%)

Location	Percent of	Active Children	n Estimated to	Experience at I	Least One Lung	Function Res	oonse Associat	ted with O ₃
Location		Concer	ntrations that J	ust Meet the Cu	urrent and Alter	native O ₃ Stan	dards**	
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
Houston-Baytown-HuntsvilleTX	0.4%	0.3%	0.3%	0.1%	0.1%	0.1%	0.1%	0%
incuston Daytonn namering_ix	(0% - 4.8%)	(0% - 4.4%)	(0% - 4.3%)	(0% - 3.6%)	(0% - 3.5%)	(0% - 3.2%)	(0% - 3%)	(0% - 2.3%)
Los Angeles-Long Beach-Riverside CA	0.1%	0.1%	0.1%	0%	0%	0%	0%	0%
LOS_Allgeles-Lollg_beach-KiversideCA	(0% - 2.7%)	(0% - 2.6%)	(0% - 2.3%)	(0% - 1.7%)	(0% - 1.7%)	(0% - 1.6%)	(0% - 1.3%)	(0% - 0.7%)
New_York-Newark-BridgeportNY-NJ-CT-	0.1%	0.1%	0%	0%	0%	0%	0%	0%
PA	(0% - 3.3%)	(0% - 3.1%)	(0% - 2.9%)	(0% - 2.3%)	(0% - 2.4%)	(0% - 2.2%)	(0% - 2.1%)	(0% - 1.6%)
Philadelphia-Camden-VinelandPA-NJ-	0.2%	0.1%	0.1%	0.1%	0%	0%	0%	0%
DE-MD	(0% - 4.2%)	(0% - 3.9%)	(0% - 3.7%)	(0% - 3.2%)	(0% - 3.1%)	(0% - 2.9%)	(0% - 2.6%)	(0% - 2.1%)
Sacramento-Arden-Arcade-TruckeeCA-	0.1%	0.1%	0.1%	0%	0%	0%	0%	0%
NV	(0% - 2.8%)	(0% - 2.6%)	(0% - 2.4%)	(0% - 1.9%)	(0% - 1.8%)	(0% - 1.7%)	(0% - 1.5%)	(0% - 1%)
StLouis-StCharles-FarmingtonMO-IL	0.1%	0.1%	0.1%	0%	0%	0%	0%	0%
stLouis-StCharles-FarmingtonMO-IL	(0% - 3.9%)	(0% - 3.6%)	(0% - 3.4%)	(0% - 2.9%)	(0% - 2.8%)	(0% - 2.6%)	(0% - 2.4%)	(0% - 1.9%)
Washington-Baltimore-	0.3%	0.2%	0.2%	0.1%	0.1%	0.1%	0%	0%
Northern_VirginiaDC-MD-VA-WV	(0% - 4.5%)	(0% - 4.1%)	(0% - 4%)	(0% - 3.5%)	(0% - 3.3%)	(0% - 3%)	(0% - 2.9%)	(0% - 2.3%)

^{*}Numbers are median (0.5 fractile) percents of children. Numbers in parentheses below the median are 95% confidence intervals based on statistical uncertainty surrounding the O3 coefficient.

^{**}Incidence was quantified down to estimated policy relevant background levels. Percents are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-3. Number of Active Children (Ages 5-18) Engaged in Moderate Exercise Estimated to Experience At Least One Lung Function Response Associated with Exposure to O₃ Concentrations That Just Meet the Current and Alternative Daily Maximum 8-Hour Standards: April - September, Based on 2002 O₃ Concentrations*

Location					-		ung Function ative O₃ Stand	-
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
		Re	sponse = Dec	rease in FEV ₁	Greater Than	or Equal to 1	0%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	45	45	40	35	33	32	28	22
Additional Control of the Control of	(16 - 74)	(15 - 73)	(13 - 67)	(10 - 60)	(9 - 57)	(9 - 57)	(7 - 50)	(5 - 42)
Boston-Worcester-Manchester MA-NH	53	47	46	43	36	33	31	24
Boston-worcester-manchestermA-NH	(20 - 84)	(17 - 76)	(16 - 76)	(15 - 72)	(11 - 63)	(9 - 58)	(9 - 56)	(5 - 46)
Chicago-Naperville-Michigan_CityIL-IN-WI	89	83	77	69	63	58	53	41
Chicago-Napervine-Michigan_CityiL-IN-Wi	(32 - 145)	(28 - 137)	(25 - 129)	(21 - 118)	(18 - 109)	(16 - 104)	(13 - 97)	(8 - 78)
Cleveland-Akron-Elyria OH	30	27	26	22	21	19	18	14
Cievelaliu-Aki Oli-ElyfiaOn	(12 - 48)	(10 - 44)	(9 - 43)	(7 - 38)	(7 - 36)	(5 - 33)	(5 - 32)	(3 - 27)
Detroit-Warren-FlintMI	55	50	48	47	39	35	33	26
	(21 - 89)	(17 - 81)	(17 - 80)	(16 - 78)	(11 - 67)	(10 - 62)	(9 - 59)	(6 - 48)
louston-Baytown-HuntsvilleTX	34	30	29	24	23	22	20	14
	(10 - 57)	(8 - 53)	(8 - 51)	(6 - 44)	(5 - 42)	(5 - 40)	(4 - 37)	(2 - 28)
Los Angeles-Long Beach-Riverside CA	63	61	53	38	37	36	29	15
LOS_Alligeles-Lotig_Beach-KiversideCA	(16 - 110)	(15 - 107)	(12 - 95)	(7 - 70)	(7 - 69)	(7 - 67)	(5 - 55)	(2 - 29)
New_York-Newark-BridgeportNY-NJ-CT-PA	178	167	156	123	127	120	110	85
New_Tork-Newark-BridgeportNT-N3-CT-FA	(60 - 296)	(54 - 280)	(48 - 267)	(32 - 221)	(34 - 227)	(31 - 216)	(26 - 202)	(17 - 165)
Philadelphia-Camden-Vineland PA-NJ-DE-MD	70	63	61	51	49	45	43	33
i illiadelpilia-dallidell-villelalidi A-No-DE-NiD	(28 - 108)	(24 - 101)	(23 - 98)	(17 - 85)	(16 - 82)	(14 - 77)	(12 - 74)	(8 - 61)
Sacramento-Arden-Arcade-TruckeeCA-NV	11	10	9	8	7	7	6	4
Sacramento Arden Ardade Truckee_SA NV	(4 - 17)	(3 - 16)	(3 - 15)	(2 - 13)	(2 - 12)	(2 - 12)	(2 - 11)	(1 - 8)
StLouis-StCharles-FarmingtonMO-IL	36	33	31	27	25	23	21	17
on_cond on_ondries i diffinigionMo-ic	(15 - 55)	(13 - 52)	(12 - 50)	(9 - 44)	(8 - 42)	(7 - 39)	(6 - 37)	(4 - 30)
Washington-Baltimore-Northern_VirginiaDC-	82	72	72	63	58	52	50	40
MD-VA-WV	(31 - 130)	(25 - 118)	(25 - 117)	(20 - 106)	(18 - 100)	(15 - 91)	(14 - 88)	(9 - 73)
	Response = Decrease in FEV₁ Greater Than or Equal to 15%							
Atlanta-Sandy_Springs-GainesvilleGA-AL	16	16	13	10	9	9	7	4

Location			•		-		ung Function ative O₃ Stand	-
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	(3 - 49)	(3 - 48)	(2 - 43)	(1 - 38)	(1 - 35)	(1 - 35)	(0 - 31)	(0 - 25)
Boston-Worcester-Manchester MA-NH	21	17	17	15	11	9	9	5
BOSTON-WOI CESTEI-MANCHESTEIMA-WII	(5 - 57)	(4 - 51)	(3 - 50)	(3 - 47)	(2 - 40)	(1 - 37)	(1 - 35)	(0 - 28)
Chicago-Naperville-Michigan_CityIL-IN-WI	33	29	25	21	17	15	13	8
onicago-ivapervine-inicingan_onyiL-iiv-vvi	(6 - 95)	(5 - 89)	(3 - 83)	(2 - 75)	(2 - 68)	(1 - 64)	(1 - 59)	(0 - 47)
Cleveland-Akron-ElyriaOH	12	10	10	7	7	5	5	3
olevelatid-Akton-Liyna_on	(3 - 32)	(2 - 29)	(2 - 28)	(1 - 24)	(1 - 23)	(0 - 21)	(0 - 20)	(0 - 16)
Detroit-Warren-Flint MI	21	18	17	16	11	9	9	5
Detroit-waiten-i iiit_iiii	(4 - 59)	(3 - 53)	(3 - 52)	(2 - 50)	(1 - 42)	(1 - 38)	(1 - 36)	(0 - 29)
Houston-Baytown-HuntsvilleTX	10	8	8	6	5	5	4	2
Tousion-baytown-riumsvineTX	(1 - 36)	(1 - 33)	(1 - 32)	(0 - 27)	(0 - 26)	(0 - 24)	(0 - 22)	(0 - 17)
Los_Angeles-Long_Beach-RiversideCA	15	15	12	7	7	6	5	2
.us_Angeles-Long_beach-RiversideCA	(1 - 67)	(1 - 65)	(0 - 57)	(0 - 42)	(0 - 41)	(0 - 40)	(0 - 32)	(0 - 17)
lew_York-Newark-BridgeportNY-NJ-CT-PA	62	55	49	32	34	30	25	15
New_Tork-Newark-BridgeportNT-No-OT-FA	(10 - 192)	(8 - 180)	(6 - 169)	(2 - 136)	(3 - 141)	(2 - 133)	(1 - 123)	(0 - 99)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	29	25	23	17	16	14	12	8
madelphia damaen vinciana_i A No DE MD	(7 - 74)	(5 - 68)	(4 - 65)	(2 - 55)	(2 - 53)	(2 - 49)	(1 - 46)	(0 - 37)
Sacramento-Arden-Arcade-TruckeeCA-NV	4	3	3	2	2	2	1	1
odoraniemo Arden Arodde Truckee_OA IV	(0 - 11)	(0 - 10)	(0 - 10)	(8 - 0)	(8 - 0)	(0 - 7)	(0 - 6)	(0 - 5)
StLouis-StCharles-FarmingtonMO-IL	15	13	12	9	8	7	6	4
otcould otonuned runningtonmo ic	(4 - 38)	(3 - 35)	(2 - 33)	(1 - 29)	(1 - 27)	(1 - 25)	(1 - 23)	(0 - 18)
Washington-Baltimore-Northern_VirginiaDC-	33	26	26	21	18	15	14	9
MD-VA-WV	(7 - 88)	(5 - 77)	(4 - 77)	(3 - 68)	(2 - 63)	(1 - 57)	(1 - 55)	(0 - 44)
		Re	sponse = Dec	rease in FEV ₁	Greater Than	or Equal to 2	20%	
Atlanta Can la Carina a Caina avilla CA At	4	4	3	2	2	2	1	0
Atlanta-Sandy_Springs-GainesvilleGA-AL	(0 - 31)	(0 - 31)	(0 - 27)	(0 - 24)	(0 - 23)	(0 - 23)	(0 - 20)	(0 - 16)
Doctor Moreloctor MA NUL	7	5	5	4	3	2	2	1
Boston-Worcester-Manchester_MA-NH	(1 - 36)	(1 - 32)	(1 - 32)	(0 - 30)	(0 - 25)	(0 - 23)	(0 - 22)	(0 - 17)
Obiecas Newswills Michigan Circ. III IN 1997	9	8	6	4	3	3	2	1
cago-Naperville-Michigan_CityIL-IN-WI	(1 - 61)	(0 - 57)	(0 - 53)	(0 - 48)	(0 - 44)	(0 - 41)	(0 - 38)	(0 - 30)
Cleveland-Akron-ElyriaOH	4	3	3	2	2	1	1	0

Location					=		ung Function ative O ₃ Stand	-
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	(0 - 21)	(0 - 18)	(0 - 18)	(0 - 15)	(0 - 15)	(0 - 13)	(0 - 12)	(0 - 10)
Detroit-Warren-FlintMI	6	5	4	4	2	2	1	1
Detroit-warren-Fillit_wii	(0 - 38)	(0 - 34)	(0 - 33)	(0 - 32)	(0 - 27)	(0 - 24)	(0 - 23)	(0 - 18)
Houston-Baytown-HuntsvilleTX	2	2	1	1	1	1	0	0
Houston-Baytown-Huntsvine_TX	(0 - 23)	(0 - 21)	(0 - 20)	(0 - 17)	(0 - 17)	(0 - 16)	(0 - 14)	(0 - 11)
Los_Angeles-Long_Beach-RiversideCA	2	2	1	0	0	0	0	0
LOS_Aligeles-Lollg_Death-NiversideOA	(0 - 45)	(0 - 43)	(0 - 38)	(0 - 28)	(0 - 27)	(0 - 26)	(0 - 21)	(0 - 11)
New_York-Newark-BridgeportNY-NJ-CT-PA	16	13	11	5	6	5	4	1
rew_rork newark BridgeportNT No OT 1 A	(1 - 122)	(1 - 115)	(0 - 108)	(0 - 87)	(0 - 89)	(0 - 85)	(0 - 78)	(0 - 62)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	10	8	7	4	4	3	2	1
i madeipina damaen vinciana_i A No DE mb	(1 - 47)	(1 - 43)	(1 - 42)	(0 - 35)	(0 - 34)	(0 - 31)	(0 - 30)	(0 - 24)
Sacramento-Arden-Arcade-TruckeeCA-NV	1	1	1	0	0	0	0	0
ouoramento Araen Araeus Trackes_SATIV	(0 - 7)	(0 - 7)	(0 - 6)	(0 - 5)	(0 - 5)	(0 - 5)	(0 - 4)	(0 - 3)
StLouis-StCharles-FarmingtonMO-IL	5	4	4	2	2	2	1	1
ou_Eodio ou_onanos i animigionMO-IE	(1 - 24)	(0 - 22)	(0 - 21)	(0 - 18)	(0 - 17)	(0 - 16)	(0 - 15)	(0 - 12)
Washington-Baltimore-Northern_VirginiaDC-	10	7	7	5	4	3	2	1
MD-VA-WV	(1 - 56)	(0 - 49)	(0 - 49)	(0 - 43)	(0 - 40)	(0 - 36)	(0 - 35)	(0 - 28)

^{*}Numbers are median (0.5 fractile) numbers of children. Numbers in parentheses below the median are 95% confidence intervals based on statistical uncertainty surrounding the O3 coefficient.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest 1000.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-4. Percent of Active Children (Ages 5-18) Engaged in Moderate Exercise Estimated to Experience At Least One Lung Function Response Associated with Exposure to O₃ Concentrations That Just Meet the Current and Alternative Daily Maximum 8-Hour Standards: Based on 2002 O₃ Concentrations*

Location	Percent			•	Least One Lung urrent and Alteri	-	onse Associated ards**	with O ₃		
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4		
			Response = D	ecrease in FEV ₁	Greater Than o	r Equal to 10%				
Atlanta-Sandy_Springs-	10.2%	10%	8.9%	7.8%	7.3%	7.3%	6.2%	5%		
GainesvilleGA-AL	(3.5% - 16.6%)	(3.4% - 16.4%)	(2.8% - 14.9%)	(2.3% - 13.5%)	(2% - 12.8%)	(2% - 12.7%)	(1.5% - 11.3%)	(1% - 9.4%)		
Boston-Worcester-ManchesterMA-	11.1%	9.8%	9.7%	9.1%	7.7%	7%	6.6%	5.1%		
NH	(4.3% - 17.7%)	(3.5% - 16.1%)	(3.4% - 16%)	(3.1% - 15.2%)	(2.3% - 13.3%)	(2% - 12.3%)	(1.8% - 11.8%)	(1.1% - 9.6%)		
Chicago-Naperville-	10.5%	9.7%	9.1%	8.1%	7.4%	6.9%	6.3%	4.8%		
Michigan_CityIL-IN-WI	(3.7% - 17%)	(3.3% - 16.1%)	(2.9% - 15.2%)	(2.4% - 13.9%)	(2.1% - 12.9%)	(1.8% - 12.2%)	(1.6% - 11.4%)	(1% - 9.2%)		
Cleveland-Akron-ElyriaOH	12.4%	11.1%	10.7%	9.2%	8.8%	7.8%	7.4%	5.9%		
Cleveland-Akton-Liyna_On	(4.8% - 19.6%)	(4% - 17.9%)	(3.8% - 17.5%)	(3% - 15.5%)	(2.8% - 14.9%)	(2.2% - 13.6%)	(2% - 13%)	(1.4% - 10.9%)		
Detroit-Warren-Flint MI	11.6%	10.4%	10.1%	9.8%	8%	7.3%	6.9%	5.3%		
betroit warren i int_im	(4.3% - 18.5%)	(3.6% - 17%)	(3.5% - 16.6%)	(3.3% - 16.2%)	(2.4% - 13.9%)	(2% - 12.8%)	(1.8% - 12.4%)	(1.2% - 10.1%)		
Houston-Baytown-HuntsvilleTX	7.1%	6.4%	6.1%	5.1%	4.9%	4.5%	4.1%	3%		
Troublem Baytown Hambonno_1x	(2.1% - 12%)	(1.8% - 11%)	(1.6% - 10.7%)	(1.2% - 9.2%)	(1.1% - 8.9%)	(1% - 8.4%)	(0.9% - 7.8%)	(0.5% - 6%)		
Los_Angeles-Long_Beach-	3.9%	3.8%	3.3%	2.3%	2.3%	2.2%	1.8%	0.9%		
RiversideCA	(1% - 6.8%)	(0.9% - 6.6%)	(0.8% - 5.8%)	(0.5% - 4.3%)	(0.5% - 4.2%)	(0.4% - 4.1%)	(0.3% - 3.3%)	(0.2% - 1.8%)		
New_York-Newark-BridgeportNY-	9.9%	9.2%	8.6%	6.8%	7%	6.6%	6.1%	4.7%		
NJ-CT-PA	(3.3% - 16.3%)	(3% - 15.5%)	(2.7% - 14.7%)	(1.8% - 12.2%)	(1.9% - 12.5%)	(1.7% - 12%)	(1.5% - 11.2%)	(0.9% - 9.1%)		
Philadelphia-Camden-VinelandPA-	13.1%	11.9%	11.5%	9.6%	9.2%	8.5%	8%	6.3%		
NJ-DE-MD	(5.2% - 20.4%)	(4.5% - 18.9%)	(4.2% - 18.4%)	(3.2% - 16%)	(3% - 15.5%)	(2.6% - 14.5%)	(2.3% - 13.9%)	(1.5% - 11.4%)		
Sacramento-Arden-Arcade-	7.2%	6.6%	6.1%	5%	4.8%	4.5%	4%	2.9%		
TruckeeCA-NV	(2.4% - 11.5%)	(2.1% - 10.7%)	(1.9% - 10.1%)	(1.4% - 8.5%)	(1.3% - 8.2%)	(1.2% - 7.7%)	(1% - 7%)	(0.6% - 5.3%)		
StLouis-StCharles-	13.4%	12.3%	11.6%	10%	9.4%	8.6%	8%	6.2%		
FarmingtonMO-IL	(5.4% - 20.7%)	(4.8% - 19.4%)	(4.4% - 18.5%)	(3.4% - 16.4%)	(3.1% - 15.6%)	(2.7% - 14.6%)	(2.4% - 13.7%)	(1.5% - 11.2%)		
Washington-Baltimore-	12.1%	10.6%	10.5%	9.2%	8.6%	7.7%	7.4%	5.8%		
Northern_VirginiaDC-MD-VA-WV	(4.6% - 19.1%)	(3.7% - 17.3%)	(3.7% - 17.2%)	(3% - 15.5%)	(2.6% - 14.6%)	(2.2% - 13.4%)	(2% - 13%)	(1.3% - 10.7%)		
	Response = Decrease in FEV ₁ Greater Than or Equal to 15%									
Atlanta-Sandy_Springs-	3.6%	3.5%	2.8%	2.3%	2%	2%	1.5%	1%		
GainesvilleGA-AL	(0.6% - 10.9%)	(0.6% - 10.7%)	(0.4% - 9.5%)	(0.2% - 8.5%)	(0.2% - 7.9%)	(0.2% - 7.9%)	(0.1% - 6.9%)	(0% - 5.6%)		

Location	Percent		ren Estimated to	•	_	=		with O ₃
	0.084/4***	0.084/3	entrations that 0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Boston-Worcester-Manchester MA-								
NH	4.5%	3.6%	3.6%	3.2%	2.4%	2%	1.8%	1.1%
	(1.1% - 12%)	(0.8% - 10.6%)	(0.7% - 10.5%)	(0.6% - 9.9%)	(0.3% - 8.4%)	(0.2% - 7.7%)	(0.2% - 7.4%)	(0.1% - 5.8%)
Chicago-Naperville-	3.9%	3.4%	3%	2.4%	2.1%	1.8%	1.5%	0.9%
Michigan_CityIL-IN-WI	(0.7% - 11.2%)	(0.5% - 10.4%)	(0.4% - 9.8%)	(0.3% - 8.8%)	(0.2% - 8%)	(0.1% - 7.5%)	(0.1% - 7%)	(0% - 5.5%)
Cleveland-Akron-ElyriaOH	5.1%	4.2%	3.9%	3%	2.8%	2.2%	2%	1.3%
_	(1.1% - 13.3%)	(0.7% - 11.8%)	(0.7% - 11.5%)	(0.4% - 9.9%)	(0.3% - 9.5%)	(0.2% - 8.5%)	(0.2% - 8.1%)	(0.1% - 6.6%)
Detroit-Warren-Flint MI	4.5%	3.7%	3.5%	3.4%	2.4%	2%	1.8%	1.1%
	(0.8% - 12.3%)	(0.6% - 11.1%)	(0.5% - 10.8%)	(0.5% - 10.5%)	(0.2% - 8.7%)	(0.1% - 8%)	(0.1% - 7.6%)	(0% - 6.1%)
Houston-Baytown-HuntsvilleTX	2.1%	1.8%	1.6%	1.2%	1.1%	0.9%	0.8%	0.4%
	(0.3% - 7.6%)	(0.2% - 6.9%)	(0.1% - 6.6%)	(0.1% - 5.6%)	(0.1% - 5.4%)	(0% - 5.1%)	(0% - 4.7%)	(0% - 3.5%)
Los_Angeles-Long_Beach-	0.9%	0.9%	0.7%	0.4%	0.4%	0.4%	0.3%	0.1%
RiversideCA	(0% - 4.1%)	(0% - 4%)	(0% - 3.5%)	(0% - 2.6%)	(0% - 2.5%)	(0% - 2.4%)	(0% - 2%)	(0% - 1.1%)
New_York-Newark-BridgeportNY-	3.4%	3%	2.7%	1.8%	1.9%	1.7%	1.4%	0.9%
NJ-CT-PA	(0.6% - 10.6%)	(0.4% - 10%)	(0.3% - 9.4%)	(0.1% - 7.5%)	(0.2% - 7.8%)	(0.1% - 7.4%)	(0.1% - 6.8%)	(0% - 5.5%)
Philadelphia-Camden-VinelandPA-	5.5%	4.7%	4.4%	3.3%	3%	2.6%	2.3%	1.5%
NJ-DE-MD	(1.3% - 13.9%)	(0.9% - 12.7%)	(0.8% - 12.2%)	(0.5% - 10.3%)	(0.4% - 9.9%)	(0.3% - 9.2%)	(0.2% - 8.7%)	(0.1% - 7%)
Sacramento-Arden-Arcade-	2.5%	2.1%	1.9%	1.4%	1.3%	1.2%	1%	0.6%
TruckeeCA-NV	(0.3% - 7.4%)	(0.2% - 6.8%)	(0.2% - 6.4%)	(0.1% - 5.3%)	(0.1% - 5%)	(0.1% - 4.7%)	(0% - 4.3%)	(0% - 3.2%)
StLouis-StCharles-	5.8%	5%	4.6%	3.5%	3.1%	2.7%	2.4%	1.5%
FarmingtonMO-IL	(1.4% - 14.2%)	(1.1% - 13.1%)	(0.9% - 12.4%)	(0.5% - 10.7%)	(0.4% - 10%)	(0.3% - 9.3%)	(0.2% - 8.6%)	(0.1% - 6.8%)
Washington-Baltimore-	4.8%	3.8%	3.8%	3%	2.6%	2.2%	2%	1.3%
Northern_VirginiaDC-MD-VA-WV	(1% - 12.8%)	(0.7% - 11.3%)	(0.6% - 11.3%)	(0.4% - 10%)	(0.3% - 9.3%)	(0.2% - 8.4%)	(0.2% - 8.1%)	(0.1% - 6.5%)
			Response = D	ecrease in FEV ₁	Greater Than o	r Equal to 20%		
Atlanta-Sandy_Springs-	1%	0.9%	0.7%	0.5%	0.4%	0.4%	0.2%	0.1%
GainesvilleGA-AL	(0.1% - 7%)	(0.1% - 6.8%)	(0% - 6.1%)	(0% - 5.4%)	(0% - 5.1%)	(0% - 5.1%)	(0% - 4.4%)	(0% - 3.6%)
Boston-Worcester-ManchesterMA-	1.5%	1.1%	1.1%	0.9%	0.6%	0.4%	0.4%	0.1%
NH	(0.2% - 7.6%)	(0.1% - 6.8%)	(0.1% - 6.7%)	(0.1% - 6.3%)	(0% - 5.3%)	(0% - 4.9%)	(0% - 4.6%)	(0% - 3.6%)
Chicago-Naperville-	1.1%	0.9%	0.7%	0.5%	0.4%	0.3%	0.2%	0.1%
Michigan_CityIL-IN-WI	(0.1% - 7.2%)	(0% - 6.7%)	(0% - 6.2%)	(0% - 5.6%)	(0% - 5.1%)	(0% - 4.8%)	(0% - 4.4%)	(0% - 3.5%)
Clausiand Alman Floria CII	1.6%	1.2%	1.1%	0.7%	0.6%	0.4%	0.4%	0.2%
Cleveland-Akron-ElyriaOH	(0.1% - 8.4%)	(0.1% - 7.5%)	(0.1% - 7.3%)	(0% - 6.3%)	(0% - 6%)	(0% - 5.4%)	(0% - 5.1%)	(0% - 4.2%)
Detroit Warren Flint MI	1.3%	1%	0.9%	0.8%	0.5%	0.3%	0.3%	0.1%
Detroit-Warren-FlintMI	(0.1% - 7.8%)	(0% - 7.1%)	(0% - 6.9%)	(0% - 6.7%)	(0% - 5.6%)	(0% - 5.1%)	(0% - 4.8%)	(0% - 3.8%)

Location	Percent	of Active Childr	en Estimated to	Experience at I	east One Lung	Function Respo	nse Associated	with O ₃
Location		Conc	entrations that .	lust Meet the Cเ	irrent and Alterr	native O₃ Standa	ırds**	
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Houston-Baytown-HuntsvilleTX	0.5%	0.3%	0.3%	0.2%	0.1%	0.1%	0.1%	0%
nousion Baytown namevine_1x	(0% - 4.9%)	(0% - 4.5%)	(0% - 4.3%)	(0% - 3.6%)	(0% - 3.5%)	(0% - 3.3%)	(0% - 3%)	(0% - 2.3%)
Los_Angeles-Long_Beach-	0.1%	0.1%	0.1%	0%	0%	0%	0%	0%
RiversideCA	(0% - 2.7%)	(0% - 2.7%)	(0% - 2.3%)	(0% - 1.7%)	(0% - 1.7%)	(0% - 1.6%)	(0% - 1.3%)	(0% - 0.7%)
New_York-Newark-BridgeportNY-	0.9%	0.7%	0.6%	0.3%	0.3%	0.3%	0.2%	0.1%
NJ-CT-PA	(0.1% - 6.8%)	(0% - 6.3%)	(0% - 6%)	(0% - 4.8%)	(0% - 4.9%)	(0% - 4.7%)	(0% - 4.3%)	(0% - 3.5%)
Philadelphia-Camden-VinelandPA-	1.8%	1.4%	1.3%	0.8%	0.7%	0.6%	0.5%	0.2%
NJ-DE-MD	(0.2% - 8.9%)	(0.1% - 8.1%)	(0.1% - 7.8%)	(0% - 6.6%)	(0% - 6.3%)	(0% - 5.8%)	(0% - 5.6%)	(0% - 4.5%)
Sacramento-Arden-Arcade-	0.5%	0.4%	0.4%	0.2%	0.2%	0.1%	0.1%	0%
TruckeeCA-NV	(0% - 4.8%)	(0% - 4.4%)	(0% - 4.2%)	(0% - 3.5%)	(0% - 3.3%)	(0% - 3.1%)	(0% - 2.8%)	(0% - 2.1%)
StLouis-StCharles-	1.9%	1.6%	1.4%	0.9%	0.8%	0.6%	0.5%	0.2%
FarmingtonMO-IL	(0.2% - 9.1%)	(0.1% - 8.4%)	(0.1% - 7.9%)	(0% - 6.8%)	(0% - 6.4%)	(0% - 5.9%)	(0% - 5.5%)	(0% - 4.4%)
Washington-Baltimore-	1.5%	1.1%	1%	0.7%	0.6%	0.4%	0.4%	0.2%
Northern_VirginiaDC-MD-VA-WV	(0.1% - 8.2%)	(0.1% - 7.2%)	(0.1% - 7.2%)	(0% - 6.3%)	(0% - 5.9%)	(0% - 5.3%)	(0% - 5.1%)	(0% - 4.1%)

^{*}Numbers are median (0.5 fractile) percents of children. Numbers in parentheses below the median are 95% confidence intervals based on statistical uncertainty surrounding the O_3 coefficient.

^{**}Incidence was quantified down to estimated policy relevant background levels. Percents are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-5. Estimated Number of Occurrences of Lung Function Response Associated with Exposure to O₃ Concentrations That Just Meet the Current and Alternative Daily Maximum 8-Hour Standards Among Active Children (Ages 5-18) Engaged in Moderate Exercise: April - September, Based on 2004 O₃ Concentrations*

Location			-	•	_	-	ssociated w	-
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
		Respo	nse = Decre	ase in FEV₁	Greater Tha	n or Equal i	to 10%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	333	327	298	264	248	245	219	179
Additional States of the State	(31 - 1143)	(29 - 1129)	(24 - 1058)	(18 - 974)	(16 - 932)	(16 - 925)	(12 - 852)	(8 - 737)
Boston-Worcester-ManchesterMA-NH	205	186	184	176	154	142	135	110
Boston-worcester-manchester_ma-nn	(15 - 767)	(12 - 716)	(11 - 711)	(10 - 691)	(8 - 629)	(6 - 594)	(6 - 576)	(3 - 497)
Chicago-Naperville-Michigan_CityIL-IN-WI	319	297	281	252	229	214	195	151
onicago-wapervine-micrigan_ortyiz-m-vvi	(16 - 1181)	(14 - 1120)	(12 - 1072)	(10 - 988)	(8 - 916)	(7 - 869)	(6 - 808)	(3 - 654)
Cleveland-Akron-Elyria_OH	115	106	103	88	85	79	74	60
oleveland Action Llyna_on	(7 - 420)	(6 - 396)	(6 - 386)	(4 - 346)	(4 - 336)	(3 - 319)	(3 - 304)	(2 - 256)
Detroit-Warren-Flint_MI	219	201	195	189	162	150	142	113
Solion manon mini_min	(14 - 805)	(12 - 756)	(11 - 742)	(10 - 724)	(7 - 650)	(6 - 613)	(5 - 589)	(3 - 497)
Houston-Baytown-HuntsvilleTX	266	242	233	194	187	170	155	99
	(31 - 602)	(26 - 542)	(24 - 519)	(18 - 413)	(17 - 395)	(14 - 346)	(12 - 297)	(7 - 85)
Los_Angeles-Long_Beach-RiversideCA	1106	1058	966	729	700	646	521	279
	(73 - 3598)	(67 - 3472)	(56 - 3213)	(35 - 2455)	,	(29 - 2168)	, ,	(9 - 731)
New_York-Newark-BridgeportNY-NJ-CT-PA	795	754	710	582	596	570	526	412
	(48 - 2939)	(42 - 2833)	(36 - 2717)	(22 - 2363)	(24 - 2405)	(21 - 2326)	(18 - 2195)	(10 - 1813)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	331	307	296	254	248	232	218	178
	(27 - 1085)	(23 - 1028)	, ,	(15 - 899)	(14 - 881)	(12 - 841)	(10 - 802)	(6 - 687)
Sacramento-Arden-Arcade-TruckeeCA-NV	94	88	82	69	66	62	56	41
	(7 - 315)	(6 - 300)	(5 - 283)	(4 - 248)	(3 - 238)	(3 - 228)	(2 - 208)	(1 - 160)
StLouis-StCharles-FarmingtonMO-IL	150	139	132	113	108	100	92	72
~	(12 - 507)	(10 - 478)	(9 - 461)	(6 - 409)	(6 - 395)	(5 - 373)	(4 - 351)	(3 - 288)
Washington-Baltimore-Northern_VirginiaDC-MD-VA-WV	394	356	353	313	295	269	260	210
3	(34 - 1374)	(27 - 1281)	(27 - 1274)	(20 - 1173)	(18 - 1124)	(15 - 1054)	(13 - 1028)	(8 - 881)
		Respo	nse = Decre	ase in FEV ₁	Greater Tha	an or Equal t	to 15%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	27	26	20	15	13	13	9	6

Location			-	-	_	-	ssociated w Standards*	
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	(1 - 592)	(1 - 584)	(1 - 544)	(0 - 497)	(0 - 473)	(0 - 469)	(0 - 430)	(0 - 368)
Boston-Worcester-ManchesterMA-NH	12	10	9	8	6	5	4	2
Boston-Wordester-Manufester_MA-NT	(0 - 391)	(0 - 363)	(0 - 360)	(0 - 349)	(0 - 315)	(0 - 297)	(0 - 286)	(0 - 244)
Chicago-Naperville-Michigan_CityIL-IN-WI	13	11	9	7	5	5	4	2
omougo Napervine informgun_oxyiz in vvi	(0 - 615)	(0 - 581)	(0 - 555)	(0 - 510)	(0 - 471)	(0 - 446)	(0 - 413)	(0 - 333)
Cleveland-Akron-ElyriaOH	6	5	4	3	3	2	2	1
olovolatia Aktori Elyria_ori	(0 - 218)	(0 - 205)	(0 - 200)	(0 - 178)	(0 - 172)	(0 - 163)	(0 - 155)	(0 - 130)
Detroit-Warren-Flint MI	12	10	9	8	5	4	4	2
botton warren i iiniiini	(0 - 416)	(0 - 389)	(0 - 381)	(0 - 371)	(0 - 330)	(0 - 310)	(0 - 297)	(0 - 249)
Houston-Baytown-HuntsvilleTX	27	22	21	15	14	11	10	5
Todoton Baytown Hamovino_17	(1 - 374)	(1 - 341)	(1 - 328)	(0 - 271)	(0 - 260)	(0 - 235)	(0 - 210)	(0 - 106)
Los_Angeles-Long_Beach-RiversideCA	58	53	43	26	24	21	15	5
E03_Angoles E011g_Beach Niverside_OA	(1 - 1948)	(1 - 1878)	(0 - 1738)	(0 - 1340)	(0 - 1290)	(0 - 1192)	(0 - 962)	(0 - 479)
New_York-Newark-BridgeportNY-NJ-CT-PA	38	33	28	16	17	15	12	6
Non_Tolk Nowalk Bridgopolt_KT No OT TX	(1 - 1521)	(0 - 1461)	(0 - 1397)	(0 - 1202)	(0 - 1225)	(0 - 1183)	(0 - 1112)	(0 - 910)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	23	19	17	12	11	9	8	4
i madolpina camacii vinolana_i A No 52 m5	(1 - 581)	(0 - 548)	(0 - 533)	(0 - 475)	(0 - 465)	(0 - 443)	(0 - 422)	(0 - 359)
Sacramento-Arden-Arcade-TruckeeCA-NV	5	5	4	3	3	2	2	1
	(0 - 166)	(0 - 158)	(0 - 149)	(0 - 130)	(0 - 124)	(0 - 119)	(0 - 108)	(0 - 83)
StLouis-StCharles-FarmingtonMO-IL	10	8	7	5	4	4	3	2
on_zoulo on_onanos ranning.ono nz	(0 - 267)	(0 - 251)	(0 - 241)	(0 - 212)	(0 - 205)	(0 - 193)	(0 - 181)	(0 - 148)
Washington-Baltimore-Northern_VirginiaDC-MD-VA-WV	29	23	23	17	14	11	10	6
	(1 - 711)	(1 - 659)	(1 - 654)	(0 - 598)	(0 - 571)	(0 - 533)	(0 - 519)	(0 - 440)
		Respo	nse = Decre	ase in FEV ₁	Greater Tha	an or Equal	to 20%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	2	2	2	1	1	1	0	0
Attanta-Sandy_Springs-GamesvineGA-AL	(0 - 244)	(0 - 240)	(0 - 218)	(0 - 194)	(0 - 182)	(0 - 180)	(0 - 160)	(0 - 131)
Danta Wassacta Marakasta MA NII	1	1	1	0	0	0	0	0
Boston-Worcester-Manchester_MA-NH	(0 - 149)	(0 - 135)	(0 - 134)	(0 - 128)	(0 - 111)	(0 - 103)	(0 - 98)	(0 - 79)
Chicago Nanomillo Michigan City II IN 141	0	0	0	0	0	0	0	0
Chicago-Naperville-Michigan_CityIL-IN-WI	(0 - 235)	(0 - 219)	(0 - 206)	(0 - 185)	(0 - 167)	(0 - 156)	(0 - 142)	(0 - 109)
Claveland Alman Floria Oll	0	0	0	0	0	0	0	0
Cleveland-Akron-ElyriaOH	(0 - 84)	(0 - 78)	(0 - 75)	(0 - 65)	(0 - 62)	(0 - 58)	(0 - 54)	(0 - 43)

Location				-	_	-	ssociated w	
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
Detroit-Warren-Flint MI	1	0	0	0	0	0	0	0
	(0 - 160)	(0 - 147)	(0 - 143)	(0 - 138)	(0 - 118)	(0 - 109)	(0 - 103)	(0 - 81)
Houston-Baytown-Huntsville TX	3	2	2	1	1	1	0	0
i louston-baytown-riuntsvinerx	(0 - 202)	(0 - 185)	(0 - 178)	(0 - 150)	(0 - 145)	(0 - 133)	(0 - 122)	(0 - 80)
Los_Angeles-Long_Beach-RiversideCA	2	2	1	0	0	0	0	0
LOS_ATIGETES-LOTIG_BEACTI-TAIVETSIDE_OA	(0 - 826)	(0 - 791)	(0 - 723)	(0 - 545)	(0 - 524)	(0 - 483)	(0 - 390)	(0 - 213)
New_York-Newark-BridgeportNY-NJ-CT-PA	2	1	1	0	0	0	0	0
New_Tork-Newark-BridgeportNT-No-OT-LA	(0 - 583)	(0 - 553)	(0 - 520)	(0 - 424)	(0 - 435)	(0 - 415)	(0 - 382)	(0 - 296)
Philadelphia-Camden-Vineland PA-NJ-DE-MD	2	1	1	0	0	0	0	0
- madelpma-camden-vmeland_n A-No-DE-MD	(0 - 244)	(0 - 227)	(0 - 219)	(0 - 188)	(0 - 183)	(0 - 172)	(0 - 161)	(0 - 130)
Sacramento-Arden-Arcade-Truckee CA-NV	0	0	0	0	0	0	0	0
oaciamento-Aiden-Aidade-TidokeeOA-NV	(0 - 70)	(0 - 66)	(0 - 61)	(0 - 51)	(0 - 49)	(0 - 46)	(0 - 41)	(0 - 30)
St. Louis-St. Charles-Farmington MO-IL	1	0	0	0	0	0	0	0
ottouis otondries i diffinigionmo-it	(0 - 111)	(0 - 103)	(0 - 98)	(0 - 83)	(0 - 80)	(0 - 74)	(0 - 68)	(0 - 53)
Washington-Baltimore-Northern_VirginiaDC-MD-VA-WV	3	2	2	1	1	0	0	0
**************************************	(0 - 288)	(0 - 261)	(0 - 258)	(0 - 229)	(0 - 215)	(0 - 196)	(0 - 190)	(0 - 152)

^{*}Numbers are median (0.5 fractile) numbers of occurrences. Numbers in parentheses below the median are 95% confidence intervals based on statistical uncertainty surrounding the O₃ coefficient.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest 1000.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-6. Estimated Number of Occurrences of Lung Function Response Associated with Exposure to O₃ Concentrations That Just Meet the Current and Alternative Daily Maximum 8-Hour Standards Among Active Children (Ages 5-18) Engaged in Moderate Exercise: April - September, Based on 2002 O₃ Concentrations*

Location	II		•	,	•	Response As		-
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	ternative O ₃	0.070/4****	0.064/4
	0.00 ., 1					n or Equal to		0.00 ., .
Atlanta Sandu Saninga Cainaavilla CA Al	404	399	362	327	306	305	271	224
Atlanta-Sandy_Springs-GainesvilleGA-AL	(55 - 1203)	(53 - 1192)	(44 - 1116)	(35 - 1037)	(31 - 992)	(31 - 989)	(24 - 909)	(16 - 792)
Boston-Worcester-ManchesterMA-NH	378	344	340	326	289	268	258	215
Boston-wordester-manichester_mix-mi	(57 - 1146)	(47 - 1079)	(46 - 1072)	(42 - 1044)	(32 - 966)	(27 - 921)	(24 - 899)	(16 - 798)
Chicago-Naperville-Michigan_CityIL-IN-WI	662	623	592	542	498	474	441	361
emeage raper time initingan_only in thi	(97 - 1881)	(85 - 1802)	(77 - 1742)	(64 - 1638)	(53 - 1545)	(48 - 1493)	(41 - 1418)	(26 - 1234)
Cleveland-Akron-ElyriaOH	254	233	228	200	193	178	171	142
	(42 - 712)	(35 - 673)	(33 - 664)	(25 - 609)	(24 - 595)	(20 - 565)	(18 - 550)	(12 - 486)
Detroit-Warren-FlintMI	433	396	387	378	325	298	287	235
Solicit Walter Film.	(69 - 1227)	(57 - 1155)	(55 - 1140)	(52 - 1121)	(38 - 1014)	(31 - 959)	(29 - 934)	(18 - 819)
Houston-Baytown-HuntsvilleTX	227	207	199	165	158	145	130	79
Troublem Baytemin Transcring_TX	(28 - 475)	(23 - 423)	(22 - 402)	(16 - 310)	(15 - 291)	(13 - 252)	(11 - 201)	(6 - 3)
Los_Angeles-Long_Beach-RiversideCA	997	966	856	609	601	571	436	218
Los_Angoles Long_beach MversideOA	(70 - 3105)	(67 - 3020)	(54 - 2685)	(32 - 1862)	(31 - 1830)	(29 - 1721)	(20 - 1207)	(9 - 281)
New_York-Newark-BridgeportNY-NJ-CT-PA	1587	1506	1435	1197	1228	1173	1099	894
New Tork Newark Bridgeport_NT No 01 1 A	(212 - 4682)	(189 - 4524)	(170 - 4384)	(114 - 3888)	(120 - 3957)	(108 - 3839)	(93 - 3677)	(59 - 3183)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	641	596	580	511	494	463	443	371
i madeipina danden vinciana_i A No DE IIID	(108 - 1710)	(93 - 1627)	(87 - 1598)	(67 - 1469)	(62 - 1437)	(54 - 1376)	(49 - 1334)	(32 - 1184)
Sacramento-Arden-Arcade-Truckee CA-NV	140	132	125	108	104	99	91	73
basianismo Arach Aroade Trackes_OA NV	(15 - 436)	(13 - 418)	(12 - 401)	(9 - 361)	(8 - 351)	(8 - 338)	(6 - 318)	(4 - 268)
StLouis-StCharles-FarmingtonMO-IL	282	263	252	222	210	198	185	151
	(50 - 744)	(44 - 709)	(40 - 688)	(31 - 630)	(28 - 607)	(25 - 581)	(22 - 555)	(14 - 480)
Washington-Baltimore-Northern_VirginiaDC-MD-VA-WV	712	646	641	578	546	501	487	406
vasimigion-baltimore-Northern_virgimabo-wb-vA-vv	(110 - 2044)	(90 - 1917)	(89 - 1909)	(72 - 1781)	(63 - 1715)	(53 - 1621)	(49 - 1592)	(33 - 1409)
		Resp	onse = Decr	ease in FEV ₁	Greater Tha	n or Equal to	15%	
Atlanta-Sandy_Springs-GainesvilleGA-AL	51	49	40	32	27	27	20	13
Addita-candy_opinigo-camesvineoA-AL	(4 - 647)	(4 - 641)	(2 - 596)	(1 - 550)	(1 - 524)	(1 - 522)	(0 - 477)	(0 - 411)

Location	Nun	nber of Occu Concentration	rrences (in 1	•	•	•		h O ₃
	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
Boston-Worcester-ManchesterMA-NH	55	44	43	39	29	24	21	13
BOSTOTI-WOTCESTET-MATICITESTETWA-WIT	(7 - 614)	(5 - 572)	(5 - 569)	(4 - 551)	(2 - 505)	(1 - 478)	(1 - 465)	(0 - 407)
Chicago Nanorvillo Michigan City II IN WI	92	80	71	58	48	42	35	21
Chicago-Naperville-Michigan_CityIL-IN-WI	(8 - 1033)	(6 - 985)	(5 - 949)	(3 - 887)	(2 - 832)	(2 - 801)	(1 - 758)	(0 - 652)
Cleveland-Akron-ElyriaOH	40	33	32	23	22	18	16	10
Cleveland-Akton-Elyna_On	(5 - 391)	(3 - 366)	(3 - 360)	(2 - 327)	(1 - 318)	(1 - 300)	(1 - 291)	(0 - 254)
Detroit-Warren-FlintMI	66	54	52	49	34	28	25	15
Delion-waiten-i iiit_iwii	(6 - 670)	(4 - 626)	(4 - 616)	(3 - 605)	(2 - 540)	(1 - 508)	(1 - 493)	(0 - 427)
Houston-Baytown-HuntsvilleTX	25	21	19	14	13	11	9	5
Touston-Baytown-TuntsvineTX	(1 - 307)	(1 - 278)	(1 - 267)	(0 - 217)	(0 - 207)	(0 - 187)	(0 - 161)	(0 - 65)
Los_Angeles-Long_Beach-RiversideCA	57	54	43	24	24	22	15	6
LOS_Aligeles-Lolly_Deach-KiversideCA	(1 - 1718)	(1 - 1671)	(1 - 1494)	(0 - 1068)	(0 - 1052)	(0 - 997)	(0 - 741)	(0 - 292)
New_York-Newark-BridgeportNY-NJ-CT-PA	197	174	155	99	106	94	79	47
rew_rork-newark-bridgeportnr-no-cr-rA	(15 - 2539)	(11 - 2442)	(9 - 2357)	(3 - 2063)	(4 - 2103)	(3 - 2034)	(2 - 1940)	(1 - 1661)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	104	88	83	61	57	49	44	28
Timadelpina-damden-vinerand_1 A-No-DE-MD	(12 - 957)	(8 - 905)	(7 - 887)	(4 - 807)	(3 - 787)	(2 - 750)	(2 - 725)	(1 - 636)
Sacramento-Arden-Arcade-Truckee CA-NV	14	12	10	8	7	6	5	3
oaciamento-Aiden-Aidade-TruckeeOA-NV	(1 - 232)	(0 - 221)	(0 - 212)	(0 - 189)	(0 - 184)	(0 - 176)	(0 - 166)	(0 - 138)
StLouis-StCharles-FarmingtonMO-IL	49	42	39	29	26	23	20	12
otLouis-otonanes-i armingtonmo-iL	(6 - 416)	(5 - 394)	(4 - 380)	(2 - 345)	(2 - 331)	(1 - 316)	(1 - 300)	(0 - 256)
Washington-Baltimore-Northern_VirginiaDC-MD-VA-WV	105	84	83	66	57	47	43	28
washington-baltimore-Northern_virginiabc-mb-vA-wv	(11 - 1109)	(7 - 1030)	(7 - 1025)	(4 - 949)	(3 - 909)	(2 - 854)	(2 - 836)	(1 - 731)
		Resp	onse = Decre	ease in FEV ₁	Greater Tha	n or Equal to	20%	
Atlanta Canda Coninna Cainasaille CA Al	8	7	5	3	3	3	1	1
Atlanta-Sandy_Springs-GainesvilleGA-AL	(0 - 293)	(0 - 290)	(0 - 264)	(0 - 239)	(0 - 225)	(0 - 224)	(0 - 199)	(0 - 165)
	11	8	8	7	4	3	2	1
Boston-Worcester-Manchester_MA-NH	(1 - 272)	(1 - 248)	(1 - 246)	(0 - 236)	(0 - 210)	(0 - 195)	(0 - 188)	(0 - 157)
Chicago Namamilla Michigan City II IN MI	15	12	10	7	5	4	3	1
Chicago-Naperville-Michigan_CityIL-IN-WI	(1 - 480)	(0 - 452)	(0 - 431)	(0 - 396)	(0 - 365)	(0 - 348)	(0 - 324)	(0 - 266)
Claveland Akran Elvria OH	8	6	5	3	3	2	2	1
Cleveland-Akron-ElyriaOH	(0 - 183)	(0 - 168)	(0 - 165)	(0 - 145)	(0 - 140)	(0 - 130)	(0 - 125)	(0 - 104)
Detroit Warren Elint MI	12	9	8	7	4	3	2	1
Detroit-Warren-FlintMI	(0 - 312)	(0 - 286)	(0 - 280)	(0 - 273)	(0 - 236)	(0 - 218)	(0 - 210)	(0 - 173)

Location			rrences (in 1	•	_	-		h O₃
	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Houston-Baytown-HuntsvilleTX	3	2	2	1	1	1	0	0
	(0 - 172)	(0 - 158)	(0 - 152)	(0 - 128)	(0 - 123)	(0 - 114)	(0 - 102)	(0 - 65)
Los_Angeles-Long_Beach-RiversideCA	3 (0 - 745)	3 (0 - 722)	2 (0 - 641)	1 (0 - 458)	1 (0 - 452)	1 (0 - 430)	0 (0 - 331)	0 (0 - 172)
New_York-Newark-BridgeportNY-NJ-CT-PA	29	24	19	9	10	8	6	2
	(1 - 1154)	(1 - 1097)	(0 - 1047)	(0 - 878)	(0 - 900)	(0 - 861)	(0 - 808)	(0 - 659)
Philadelphia-Camden-VinelandPA-NJ-DE-MD	20	15	14	8	7	6	5	2
	(1 - 463)	(1 - 432)	(1 - 421)	(0 - 373)	(0 - 361)	(0 - 340)	(0 - 325)	(0 - 274)
Sacramento-Arden-Arcade-TruckeeCA-NV	1	1	1	1	0	0	0	0
	(0 - 103)	(0 - 97)	(0 - 92)	(0 - 80)	(0 - 77)	(0 - 73)	(0 - 68)	(0 - 54)
StLouis-StCharles-FarmingtonMO-IL	10	8	7	4	4	3	2	1
	(1 - 203)	(0 - 190)	(0 - 182)	(0 - 161)	(0 - 153)	(0 - 145)	(0 - 136)	(0 - 111)
Washington-Baltimore-Northern_VirginiaDC-MD-VA-WV	19	13	13	9	7	5	4	2
	(1 - 515)	(1 - 468)	(1 - 465)	(0 - 421)	(0 - 398)	(0 - 367)	(0 - 357)	(0 - 299)

^{*}Numbers are median (0.5 fractile) numbers of occurrences. Numbers in parentheses below the median are 95% confidence intervals based on statistical uncertainty surrounding the O3 coefficient.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest 1000.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-7. Estimated Incidence of Health Risks Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: Boston, MA, April - September, Based on 2004 O₃ Concentrations

Respiratory Symptoms*	Study	Ages	Lag	Exposure Metric	Other Pollutants in Model	Incidence	of Respirato		-Days (in 100 urrent and Al	•		oncentrations	s that Just
						0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
Chest	Gent et al.	0 - 12	1-day lag	1 hr max.	none	45	42	42	41	38	36	35	31
tightness	(2003)					(7 - 79)	(7 - 75)	(7 - 74)	(7 - 73)	(6 - 67)	(6 - 64)	(6 - 62)	(5 - 55)
Chest	Gent et al.	0 - 12	0-day lag	1 hr max.	PM2.5	72	68	67	66	61	58	56	50
tightness	(2003)					(32 - 107)	(30 - 102)	(30 - 101)	(29 - 99)	(27 - 92)	(26 - 88)	(25 - 85)	(22 - 75)
Chest	Gent et al.	0 - 12	1-day lag	1 hr max.	PM2.5	66	62	62	61	56	53	52	45
tightness	(2003)					(25 - 102)	(24 - 97)	(24 - 96)	(23 - 94)	(21 - 87)	(20 - 83)	(20 - 81)	(17 - 71)
Chest	Gent et al.	0 - 12	1-day lag	8 hr max.	none	46	44	43	42	39	37	36	31
tightness	(2003)					(15 - 75)	(14 - 71)	(14 - 70)	(13 - 69)	(12 - 63)	(12 - 61)	(11 - 59)	(10 - 52)
Shortness of	Gent et al.	0 - 12	1-day lag	1 hr max.	none	48	46	45	44	41	39	38	33
breath	(2003)					(6 - 87)	(6 - 83)	(5 - 82)	(5 - 80)	(5 - 74)	(5 - 71)	(5 - 69)	(4 - 60)
Shortness of	Gent et al.	0 - 12	1-day lag	8 hr max.	none	53	50	50	49	45	43	41	36
breath	(2003)					(10 - 92)	(10 - 87)	(10 - 87)	(9 - 85)	(9 - 78)	(8 - 75)	(8 - 72)	(7 - 64)
Wheeze	Gent et al.	0 - 12	0-day lag	1 hr max.	PM2.5	132	124	123	121	111	106	103	90
	(2003)					(47 - 208)	(44 - 197)	(44 - 196)	(43 - 192)	(39 - 177)	(37 - 169)	(36 - 164)	(32 - 145)

^{*}Respiratory symptoms among asthmatic medication-users associated with short-term exposures to O₃.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences of respiratory symptom-days are rounded to the nearest 100.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-8. Estimated Percent of Total Incidence of Health Risks Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: Boston, MA, April - September, Based on 2004 O₃ Concentrations

Respiratory Symptoms*		Ages	Lag	Expo- sure Metric	Other Pollutants in Model	Percent of 1	Fotal Incidence		Symptom-Day			ntrations that J	ust Meet the
						0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	none	8%	7.6%	7.5%	7.4%	6.8%	6.5%	6.3%	5.5%
						(1.3% - 14.2%)	(1.2% - 13.4%)	(1.2% - 13.3%)	(1.2% - 13.1%)	(1.1% - 12%)	(1% - 11.5%)	(1% - 11.2%)	(0.9% - 9.8%)
	Gent et al. (2003)	0 - 12	0-day lag	1 hr max.	PM2.5	12.9%	12.2%	12.1%	11.9%	11%	10.5%	10.1%	8.9%
						(5.8% - 19.3%)	(5.5% - 18.3%)	(5.4% - 18.2%)	(5.3% - 17.8%)	(4.9% - 16.5%)	(4.6% - 15.8%)	(4.5% - 15.3%)	(3.9% - 13.5%)
	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	PM2.5	11.9%	11.2%	11.1%	10.9%	10%	9.6%	9.3%	8.2%
						(4.6% - 18.4%)	(4.3% - 17.4%)	(4.3% - 17.3%)	(4.2% - 17%)	(3.8% - 15.7%)	(3.7% - 15%)	(3.5% - 14.6%)	(3.1% - 12.8%)
	Gent et al. (2003)	0 - 12	1-day lag	8 hr max.	none	8.3%	7.8%	7.8%	7.6%	7%	6.7%	6.5%	5.7%
						(2.6% - 13.4%)	(2.5% - 12.7%)	(2.5% - 12.6%)	(2.4% - 12.4%)	(2.2% - 11.4%)	(2.1% - 10.9%)	(2% - 10.6%)	(1.8% - 9.3%)
	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	none	7%	6.6%	6.5%	6.4%	5.9%	5.6%	5.4%	4.7%
						(0.8% - 12.6%)	(0.8% - 11.9%)	(0.8% - 11.8%)	(0.8% - 11.6%)	(0.7% - 10.6%)	(0.7% - 10.2%)	(0.6% - 9.9%)	(0.6% - 8.7%)
	Gent et al. (2003)	0 - 12	1-day lag	8 hr max.	none	7.6%	7.2%	7.2%	7%	6.4%	6.1%	5.9%	5.2%
						(1.5% - 13.2%)	(1.4% - 12.5%)	(1.4% - 12.4%)	(1.4% - 12.2%)	(1.2% - 11.2%)	(1.2% - 10.7%)	(1.1% - 10.4%)	(1% - 9.1%)
Wheeze	Gent et al. (2003)	0 - 12	0-day lag	1 hr max.	PM2.5	10.1%	9.6%	9.5%	9.3%	8.6%	8.2%	7.9%	6.9%
						(3.6% - 16%)	(3.4% - 15.2%)	(3.4% - 15.1%)	(3.3% - 14.8%)	(3% - 13.7%)	(2.9% - 13%)	(2.8% - 12.7%)	(2.4% - 11.2%)

^{*}Respiratory symptoms among asthmatic medication-users associated with short-term exposures to O₃.

^{**}Incidence was quantified down to estimated policy relevant background levels. Percents are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-9. Estimated Incidence of Health Risks Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: Boston, MA, April - September, Based on 2002 O₃ Concentrations

Respiratory	Study	Ages	Ages Lag	Exposure	Other Pollutants	Incidence	-	ory Sympton at Meet the C	• •	•			ations that
Symptoms*				Metric	in Model	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Chest tightness	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	none	61 (10 - 105)	58 (9 - 101)	58 (9 - 1)	57 (9 - 99)	53 (9 - 93)	52 (8 - 90)	50 (8 - 88)	46 (7 - 80)
Chest tightness	Gent et al. (2003)	0 - 12	0-day lag	1 hr max.	PM2.5	96 (44 - 141)	93 (42 - 136)	92 (42 - 135)	90 (41 - 133)	85 (38 - 126)	82 (37 - 122)	80 (36 - 119)	73 (33 - 109)
Chest tightness	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	PM2.5	89 (35 - 135)	85 (33 - 130)	85 (33 - 129)	83 (32 - 127)	78 (30 - 120)	76 (29 - 116)	74 (29 - 114)	67 (26 - 104)
Chest tightness	Gent et al. (2003)	0 - 12	1-day lag	8 hr max.	none	64 (21 - 101)	61 (20 - 97)	60 (20 - 97)	59 (19 - 95)	56 (18 - 90)	54 (17 - 87)	53 (17 - 85)	48 (15 - 77)
Shortness of breath	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	none	66 (8 - 117)	63 (8 - 113)	63 (8 - 112)	61 (8 - 110)	58 (7 - 103)	56 (7 - 1)	54 (7 - 98)	49 (6 - 89)
Shortness of breath	Gent et al. (2003)	0 - 12	1-day lag	8 hr max.	none	73 (15 - 125)	70 (14 - 120)	70 (14 - 119)	68 (13 - 117)	64 (13 - 110)	62 (12 - 107)	61 (12 - 104)	55 (11 - 95)
Wheeze	Gent et al. (2003)	0 - 12	0-day lag	1 hr max.	PM2.5	178 (65 - 277)	171 (62 - 266)	169 (61 - 264)	166 (60 - 259)	156 (56 - 245)	151 (54 - 238)	147 (53 - 232)	134 (48 - 212)

^{*}Respiratory symptoms among asthmatic medication-users associated with short-term exposures to O3.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences of respiratory symptom-days are rounded to the nearest 100.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-10. Estimated Percent of Total Incidence of Health Risks Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: Boston, MA, April - September, Based on 2002 O₃ Concentrations

Respiratory		Ages	Lag	Expos- ure	Other Pollu-	Percent of T	otal Incidence		Symptom-Day ent and Alterna		with O ₃ Concer ords**	ntrations that J	ust Meet the
Symptoms*		7.900	9	Metric	tants in Model	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	none	11%	10.5%	10.4%	10.2%	9.6%	9.3%	9%	8.2%
						(1.8% - 18.9%)	(1.7% - 18.2%)	(1.7% - 18.1%)	(1.6% - 17.7%)	(1.5% - 16.7%)	(1.5% - 16.2%)	(1.4% - 15.8%)	(1.3% - 14.4%)
	Gent et al. (2003)	0 - 12	0-day lag	1 hr max.	PM2.5	17.3%	16.6%	16.5%	16.2%	15.3%	14.8%	14.4%	13.1%
						(7.9% - 25.4%)	(7.6% - 24.5%)	(7.5% - 24.3%)	(7.3% - 23.9%)	(6.9% - 22.6%)	(6.7% - 21.9%)	(6.5% - 21.4%)	(5.9% - 19.6%)
	Gent et al. (2003)	0 - 12	1-day lag	1 hr max.	PM2.5	16%	15.3%	15.2%	14.9%	14%	13.6%	13.3%	12%
						(6.3% - 24.3%)	(6% - 23.3%)	(6% - 23.2%)	(5.8% - 22.7%)	(5.5% - 21.5%)	(5.3% - 20.9%)	(5.1% - 20.4%)	(4.6% - 18.7%)
	Gent et al. (2003)	0 - 12	1-day lag	8 hr max.	none	11.4%	10.9%	10.9%	10.6%	10%	9.7%	9.5%	8.6%
						(3.7% - 18.2%)	(3.5% - 17.5%)	(3.5% - 17.4%)	(3.4% - 17%)	(3.2% - 16.1%)	(3.1% - 15.6%)	(3% - 15.2%)	(2.7% - 13.9%)
Shortness of breath		0 - 12	1-day lag	1 hr max.	none	9.5%	9.1%	9%	8.8%	8.3%	8%	7.8%	7.1%
						(1.2% - 16.9%)	(1.1% - 16.2%)	(1.1% - 16.1%)	(1.1% - 15.8%)	(1% - 14.9%)	(1% - 14.4%)	(0.9% - 14%)	(0.9% - 12.8%)
Shortness of breath		0 - 12	1-day lag	8 hr max.	none	10.6%	10.1%	10%	9.8%	9.2%	8.9%	8.7%	7.9%
	,		J			(2.1% - 17.9%)	(2% - 17.2%)	(2% - 17.1%)	(1.9% - 16.8%)	(1.8% - 15.8%)	(1.8% - 15.4%)	(1.7% - 15%)	(1.5% - 13.7%)
	Gent et al. (2003)	0 - 12	0-day lag	1 hr max.	PM2.5	13.7%	13.1%	13%	12.8%	12%	11.6%	11.3%	10.3%
						(5% - 21.3%)	(4.8% - 20.5%)	(4.7% - 20.4%)	(4.6% - 20%)	(4.3% - 18.9%)	(4.2% - 18.3%)	(4.1% - 17.9%)	(3.7% - 16.3%)

^{*}Respiratory symptoms among asthmatic medication-users associated with short-term exposures to O3.

^{**}Incidence was quantified down to estimated policy relevant background levels. Percents are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-11. Estimated Percent of Total Incidence of Hospital Admissions Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: New York, NY, April - September, Based on 2004 O₃ Concentrations

Hospital Admissions	Lag	Incidence of	Health Effects A	ssociated with	O ₃ Concentratio	ns that Just Med	et the Current ar	nd Alternative O	₃ Standards**
		0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Respiratory illness	3-day lag	366	334	341	314	304	279	278	241
(unscheduled)		(89 - 644)	(81 - 588)	(82 - 599)	(76 - 551)	(73 - 534)	(67 - 490)	(67 - 489)	(58 - 424)
Asthma (unscheduled)	1-day lag	313	286	291	268	259	238	238	206
		(66 - 559)	(61 - 510)	(62 - 520)	(57 - 479)	(55 - 464)	(51 - 425)	(51 - 425)	(44 - 368)
		Incidence of I	Health Effects pe	er 100,000 Relev	ant Population	Associated with	O ₃ Concentration	ons that Just Me	et the Current
Hospital Admissions	Lag				and Alternative	e O ₃ Standards			
Trospital Admissions	Lug	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Respiratory illness	3-day lag	4.6	4.2	4.3	3.9	3.8	3.5	3.5	3
(unscheduled)		(1.1 - 8)	(1 - 7.3)	(1 - 7.5)	(0.9 - 6.9)	(0.9 - 6.7)	(0.8 - 6.1)	(0.8 - 6.1)	(0.7 - 5.3)
Asthma (unscheduled)	1-day lag	3.9	3.6	3.6	3.3	3.2	3	3	2.6
		(0.8 - 7)	(0.8 - 6.4)	(0.8 - 6.5)	(0.7 - 6)	(0.7 - 5.8)	(0.6 - 5.3)	(0.6 - 5.3)	(0.5 - 4.6)
		Percent of Tota	I Incidence of H	ealth Effects As	sociated with O	3 Concentration	s that Just Meet	the Current and	Alternative O3
Hospital Admissions	Lag				Stand	dards			
ricopital / talliloololic	_~9	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4
Respiratory illness	3-day lag	1%	0.9%	1%	0.9%	0.9%	0.8%	0.8%	0.7%
(unscheduled)		(0.3% - 1.8%)	(0.2% - 1.7%)	(0.2% - 1.7%)	(0.2% - 1.6%)	(0.2% - 1.5%)	(0.2% - 1.4%)	(0.2% - 1.4%)	(0.2% - 1.2%)
Asthma (unscheduled)	1-day lag	2.4%	2.2%	2.2%	2%	2%	1.8%	1.8%	1.6%
		(0.5% - 4.3%)	(0.5% - 3.9%)	(0.5% - 4%)	(0.4% - 3.6%)	(0.4% - 3.5%)	(0.4% - 3.2%)	(0.4% - 3.2%)	(0.3% - 2.8%)

^{*}Based on single-pollutant models from Thurston et al. (1992) relating daily hospital admissions among all ages to daily 1-hr maximum O₃ exposures. New York in this study is defined as the five boroughs of New York City.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest whole number; incidences per 100,000 relevant population and percent of total incidence are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-12. Estimated Percent of Total Incidence of Hospital Admissions Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: New York, NY, April - September, Based on 2002 O₃ Concentrations

		Incidence of	Health Effects A	ssociated with	O₃ Concentratio	ns that Just Me	et the Current ar	nd Alternative O	₃ Standards**	
Hospital Admissions	Lag	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4	
Respiratory illness	3-day lag	513	472	483	452	439	404	410	365	
(unscheduled)		(124 - 902)	(114 - 830)	(117 - 850)	(109 - 795)	(106 - 772)	(98 - 710)	(99 - 721)	(88 - 642)	
Asthma (unscheduled)	1-day lag	438	403	413	386	375	345	350	312	
		(93 - 783)	(86 - 720)	(88 - 738)	(82 - 690)	(80 - 670)	(73 - 617)	(75 - 626)	(66 - 558)	
		Incidence of F	lealth Effects pe	r 100,000 Relev	ant Population A	Associated with	O3 Concentration	ons that Just Me	et the Current	
Hospital Admissions	Lag		and Alternative O3 Standards							
Troophar Admissions	Lug	0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4	
Respiratory illness	3-day lag	6.4	5.9	6	5.6	5.5	5	5.1	4.6	
(unscheduled)		(1.5 - 11.3)	(1.4 - 10.4)	(1.5 - 10.6)	(1.4 - 9.9)	(1.3 - 9.6)	(1.2 - 8.9)	(1.2 - 9)	(1.1 - 8)	
Asthma (unscheduled)	1-day lag	5.5	5	5.2	4.8	4.7	4.3	4.4	3.9	
		(1.2 - 9.8)	(1.1 - 9)	(1.1 - 9.2)	(1 - 8.6)	(1 - 8.4)	(0.9 - 7.7)	(0.9 - 7.8)	(0.8 - 7)	
		Percent of Tota	I Incidence of H	ealth Effects As	sociated with O	3 Concentration	s that Just Meet	the Current and	Alternative O3	
Hospital Admissions	Lag				Stand	dards				
nospital Admissions	Lag	0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4***	0.064/4	
Respiratory illness	3-day lag	1.5%	1.3%	1.4%	1.3%	1.2%	1.1%	1.2%	1%	
(unscheduled)		(0.4% - 2.6%)	(0.3% - 2.3%)	(0.3% - 2.4%)	(0.3% - 2.2%)	(0.3% - 2.2%)	(0.3% - 2%)	(0.3% - 2%)	(0.2% - 1.8%)	
Asthma (unscheduled)	1-day lag	3.3%	3.1%	3.1%	2.9%	2.9%	2.6%	2.7%	2.4%	
		(0.7% - 6%)	(0.7% - 5.5%)	(0.7% - 5.6%)	(0.6% - 5.3%)	(0.6% - 5.1%)	(0.6% - 4.7%)	(0.6% - 4.8%)	(0.5% - 4.2%)	

^{*}Based on single-pollutant models from Thurston et al. (1992) relating daily hospital admissions among all ages to daily 1-hr maximum O₃ exposures. New York in this study is defined as the five boroughs of New York City.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest whole number; incidences per 100,000 relevant population and percent of total incidence are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppm and an nth daily maximum. So, for example, the current standard is 0.084/4 -- 0.084 ppm, 4th daily maximum 8-hr average using the current rounding convention.

^{****}This alternative 8-hr standard assumes an alternative rounding convention where the standard is specified to the third decimal place.

Table 5C-13. Estimated Incidence of Non-Accidental Mortality Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: April - September, Based on 2004 O₃ Concentrations*

Location	Study	Lag	Exposure Metric	Incidence o	f Non-Acciden	tal Mortality As Current and A				s that Just	Meet the
				0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Bell et al. (2004)	distributed lag	24 hr avg.	5	5	4	4	4	4	3	3
Atlanta				(-20 - 29)	(-20 - 29)	(-18 - 26)	(-16 - 23)	(-15 - 22)	(-15 - 22)	(-13 - 19)	(-11 - 16)
Atlanta	Bell et al 95 US	distributed lag	24 hr avg.	9	9	8	7	7	7	6	5
	Cities (2004)			(3 - 15)	(3 - 15)	(3 - 14)	(2 - 12)	(2 - 12)	(2 - 12)	(2 - 10)	(2 - 8)
Boston	Bell et al 95 US	distributed lag	24 hr avg.	6	5	5	5	4	4	4	3
Boston	Cities (2004)			(2 - 9)	(2 - 9)	(2 - 9)	(2 - 8)	(1 - 7)	(1 - 7)	(1 - 7)	(1 - 6)
	Bell et al 95 US	distributed lag	24 hr avg.	33	31	29	26	23	22	19	14
	Cities (2004)			(11 - 55)	(10 - 52)	(10 - 48)	(9 - 43)	(8 - 39)	(7 - 36)	(6 - 32)	(5 - 24)
Chicago	Schwartz (2004)	0-day lag	1 hr max.	314	300	288	268	249	238	222	183
Cilicago				(99 - 525)	(95 - 501)	(91 - 482)	(85 - 448)	(79 - 417)	(75 - 399)	(70 - 372)	(58 - 307)
	Schwartz 14 US	0-day lag	1 hr max.	118	113	108	101	93	89	83	69
	Cities (2004)			(37 - 199)	(35 - 190)	(34 - 182)	(31 - 170)	(29 - 157)	(28 - 151)	(26 - 140)	(21 - 116)
	Bell et al. (2004)	distributed lag	24 hr avg.	19	18	17	15	14	14	13	10
Cleveland				(-12 - 49)	(-11 - 46)	(-11 - 44)	(-9 - 39)	(-9 - 37)	(-9 - 36)	(-8 - 33)	(-6 - 26)
Cieveianu	Bell et al 95 US	distributed lag	24 hr avg.	12	11	11	9	9	9	8	6
	Cities (2004)			(4 - 20)	(4 - 19)	(4 - 18)	(3 - 16)	(3 - 15)	(3 - 14)	(3 - 13)	(2 - 11)
Detroit	Bell et al. (2004)	distributed lag	24 hr avg.	24	22	21	21	17	16	15	11
				(-8 - 56)	(-7 - 51)	(-7 - 49)	(-7 - 48)	(-6 - 40)	(-5 - 38)	(-5 - 35)	(-4 - 27)
	Bell et al 95 US	distributed lag	24 hr avg.	12	11	11	11	9	8	8	6
	Cities (2004)			(4 - 20)	(4 - 19)	(4 - 18)	(4 - 18)	(3 - 15)	(3 - 14)	(3 - 13)	(2 - 10)
	Schwartz (2004)	0-day lag	1 hr max.	107	102	99	97	87	83	78	66
				(-17 - 229)	(-17 - 218)	(-16 - 212)	(-16 - 209)	(-14 - 186)	(-13 - 178)	(-13 - 168)	(-11 - 142)
	Schwartz 14 US	0-day lag	1 hr max.	58	55	54	53	47	45	42	36
	Cities (2004)			(18 - 98)	(17 - 93)	(17 - 91)	(17 - 89)	(15 - 79)	(14 - 76)	(13 - 72)	(11 - 61)

Location	Study	Lag	Exposure Metric	Incidence o	f Non-Acciden	tal Mortality As Current and A		_		s that Just	Meet the
				0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Ito (2003)	0-day lag	24 hr avg.	29	27	26	25	21	20	18	14
				(-27 - 85)	(-25 - 78)	(-24 - 75)	(-23 - 73)	(-20 - 62)	(-18 - 57)	(-17 - 53)	(-13 - 41)
	Bell et al. (2004)	distributed lag	24 hr avg.	22	20	19	17	16	15	13	8
				(1 - 42)	(1 - 39)	(1 - 37)	(1 - 32)	(1 - 30)	(1 - 28)	(1 - 25)	(0 - 15)
	Bell et al 95 US	distributed lag	24 hr avg.	11	10	10	8	8	7	6	4
Houston	Cities (2004)			(4 - 18)	(3 - 16)	(3 - 16)	(3 - 13)	(3 - 13)	(2 - 12)	(2 - 11)	(1 - 6)
Houston	Schwartz (2004)	0-day lag	1 hr max.	70	66	65	59	57	55	52	42
				(6 - 132)	(6 - 126)	(6 - 123)	(5 - 112)	(5 - 109)	(5 - 104)	(5 - 99)	(4 - 80)
	Schwartz 14 US	0-day lag	1 hr max.	58	55	54	49	48	46	43	35
	Cities (2004)			(18 - 98)	(17 - 93)	(17 - 91)	(15 - 83)	(15 - 81)	(14 - 77)	(14 - 73)	(11 - 59)
	Bell et al. (2004)	distributed lag	24 hr avg.	31	30	27	22	20	19	16	9
Los Angeles				(-74 - 135)	(-72 - 131)	(-66 - 120)	(-52 - 95)	(-49 - 90)	(-46 - 83)	(-38 - 69)	(-22 - 41)
LOS Aligeles	Bell et al 95 US	distributed lag	24 hr avg.	67	64	59	47	44	41	34	20
	Cities (2004)			(22 - 111)	(22 - 107)	(20 - 98)	(16 - 78)	(15 - 74)	(14 - 68)	(11 - 56)	(7 - 33)
New York	Bell et al 95 US	distributed lag	24 hr avg.	43	38	39	35	33	29	29	24
New York	Cities (2004)			(15 - 72)	(13 - 63)	(13 - 65)	(12 - 58)	(11 - 55)	(10 - 48)	(10 - 49)	(8 - 39)
	Bell et al 95 US	distributed lag	24 hr avg.	17	15	15	13	13	12	11	9
Philadelphia	Cities (2004)			(6 - 28)	(5 - 25)	(5 - 25)	(4 - 22)	(4 - 21)	(4 - 20)	(4 - 19)	(3 - 15)
· ·····ado.p····a	Moolgavkar et al.	1-day lag	24 hr avg.	59	54	54	47	46	42	41	33
	(1995)			(37 - 81)	(34 - 75)	(34 - 74)	(30 - 65)	(29 - 63)	(27 - 58)	(26 - 56)	(21 - 46)
	Bell et al. (2004)	distributed lag	24 hr avg.	8	8	8	7	7	7	6	5
Sacramento				(-25 - 42)	(-25 - 41)	(-23 - 39)	(-21 - 35)	(-21 - 34)	(-20 - 34)	(-19 - 31)	(-16 - 26)
	Bell et al 95 US	distributed lag	24 hr avg.	12	12	11	10	10	10	9	8
	Cities (2004)			(4 - 21)	(4 - 20)	(4 - 19)	(4 - 17)	(3 - 17)	(3 - 17)	(3 - 15)	(3 - 13)
	Bell et al. (2004)	distributed lag	24 hr avg.	3	2	2	2	2	1	1	1
St Louis				(-4 - 9)	(-4 - 8)	(-4 - 8)	(-3 - 6)	(-3 - 6)	(-2 - 5)	(-2 - 5)	(-1 - 3)
	Bell et al 95 US	distributed lag	24 hr avg.	2	2	2	2	1	1	1	1
	Cities (2004)			(1 - 4)	(1 - 3)	(1 - 3)	(1 - 3)	(0 - 2)	(0 - 2)	(0 - 2)	(0 - 1)

Location	Study	Lag	Exposure Metric	Incidence of	f Non-Accident	al Mortality As Current and A		·		s that Just I	Meet the
				0.084/4*** 0.084/3 0.080/4*** 0.074/5 0.074/4 0.074/3 0.070/4*** 0.064/4							
Washington	Bell et al 95 US Cities (2004)	distributed lag	24 hr avg.								4 (1 - 7)

^{*}All results are for mortality (among all ages) associated with short-term exposures to O3. All results are based on single-pollutant models.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest whole number.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppb and an nth daily maximum. So, for example, the current standard is 84/4 -- 84 ppb, 4th daily maximum 8-hr average.

Table 5C-14. Estimated Percent of Total Incidence of Non-Accidental Mortality Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: April - September, Based on 2004 O₃ Concentrations*

Location	Study	Lag	Exposure Metric	Percent of To	otal Incidence	of Non-Accid		y Associated native O ₃ Stan		centrations th	at Just Meet
				0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Bell et al. (2004)	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Atlanta		lag		(-0.4% -0.6%)	(-0.4% -0.6%)	(-0.4% -0.6%)	(-0.3% -0.5%)	(-0.3% -0.5%)	(-0.3% -0.5%)	(-0.3% -0.4%)	(-0.2% -0.3%
Allalita	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%
	Cities (2004)	lag		(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)	(0% -0.2%)
Boston	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
BOSION	Cities (2004)	lag		(0.1% -0.4%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)
	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
	Cities (2004)	lag		(0.1% -0.3%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)
Chicago	Schwartz (2004)	0-day lag	1 hr max.	1.5%	1.4%	1.4%	1.3%	1.2%	1.1%	1.1%	0.9%
Cilicago				(0.5% -2.5%)	(0.5% -2.4%)	(0.4% -2.3%)	(0.4% -2.1%)	(0.4% -2%)	(0.4% -1.9%)	(0.3% -1.8%)	(0.3% -1.5%)
	Schwartz 14 US	0-day lag	1 hr max.	0.6%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%	0.3%
	Cities (2004)			(0.2% -0.9%)	(0.2% -0.9%)	(0.2% -0.9%)	(0.1% -0.8%)	(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.6%)
	Bell et al. (2004)	distributed	24 hr avg.	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
Cleveland		lag		(-0.2% -0.7%)	(-0.1% -0.6%)	(-0.1% -0.6%)	(-0.1% -0.5%)	(-0.1% -0.5%)	(-0.1% -0.5%)	(-0.1% -0.4%)	(-0.1% -0.4%
Cieveiailu	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
	Cities (2004)	lag		(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)
Detroit	Bell et al. (2004)	distributed	24 hr avg.	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
		lag		(-0.1% -0.6%)	(-0.1% -0.5%)	(-0.1% -0.5%)	(-0.1% -0.5%)	(-0.1% -0.4%)	(-0.1% -0.4%)	(-0.1% -0.4%)	(0% -0.3%)
	Bell et al 95 US	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
	Cities (2004)	lag		(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)
	Schwartz (2004)	0-day lag	1 hr max.	1.1%	1.1%	1.1%	1%	0.9%	0.9%	0.8%	0.7%
				(-0.2% -2.4%)	(-0.2% -2.3%)	(-0.2% -2.3%)	(-0.2% -2.2%)	(-0.1% -2%)	(-0.1% -1.9%)	(-0.1% -1.8%)	(-0.1% -1.5%
	Schwartz 14 US	0-day lag	1 hr max.	0.6%	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%	0.4%
	Cities (2004)			(0.2% -1%)	(0.2% -1%)	(0.2% -1%)	(0.2% -0.9%)	(0.2% -0.8%)	(0.1% -0.8%)	(0.1% -0.8%)	(0.1% -0.6%)
	Ito (2003)	0-day lag	24 hr avg.	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	0.1%

Location	Study	Lag	Exposure Metric	Percent of To	otal Incidence			y Associated native O ₃ Stan	-	centrations th	at Just Meet
				0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
				(-0.3% -0.9%)	(-0.3% -0.8%)	(-0.3% -0.8%)	(-0.2% -0.8%)	(-0.2% -0.7%)	(-0.2% -0.6%)	(-0.2% -0.6%)	(-0.1% -0.4%)
	Bell et al. (2004)	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%
		lag		(0% -0.5%)	(0% -0.4%)	(0% -0.4%)	(0% -0.4%)	(0% -0.3%)	(0% -0.3%)	(0% -0.3%)	(0% -0.2%)
	Bell et al 95 US	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0%
Houston	Cities (2004)	lag		(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)
Houston	Schwartz (2004)	0-day lag	1 hr max.	0.8%	0.7%	0.7%	0.6%	0.6%	0.6%	0.6%	0.5%
				(0.1% -1.5%)	(0.1% -1.4%)	(0.1% -1.4%)	(0.1% -1.2%)	(0.1% -1.2%)	(0.1% -1.1%)	(0.1% -1.1%)	(0% -0.9%)
	Schwartz 14 US	0-day lag	1 hr max.	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%	0.5%	0.4%
	Cities (2004)			(0.2% -1.1%)	(0.2% -1%)	(0.2% -1%)	(0.2% -0.9%)	(0.2% -0.9%)	(0.2% -0.8%)	(0.1% -0.8%)	(0.1% -0.7%)
	Bell et al. (2004)	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0%
Los Angeles		lag		(-0.3% -0.5%)	(-0.3% -0.5%)	(-0.2% -0.4%)	(-0.2% -0.3%)	(-0.2% -0.3%)	(-0.2% -0.3%)	(-0.1% -0.3%)	(-0.1% -0.2%)
Los Angeles	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%
	Cities (2004)	lag		(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)	(0% -0.1%)
New York	Bell et al 95 US	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
New Tork	Cities (2004)	lag		(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)
	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%
Philadelphia	Cities (2004)	lag		(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)
Filliadelpilia	Moolgavkar et al.	1-day lag	24 hr avg.	0.7%	0.7%	0.7%	0.6%	0.6%	0.5%	0.5%	0.4%
	(1995)			(0.5% -1%)	(0.4% -0.9%)	(0.4% -0.9%)	(0.4% -0.8%)	(0.4% -0.8%)	(0.3% -0.7%)	(0.3% -0.7%)	(0.3% -0.6%)
	Bell et al. (2004)	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%
Sacramento		lag		(-0.6% -1%)	(-0.6% -1%)	(-0.6% -0.9%)	(-0.5% -0.8%)	(-0.5% -0.8%)	(-0.5% -0.8%)	(-0.5% -0.7%)	(-0.4% -0.6%)
Gaeramento	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%
	Cities (2004)	lag		(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)
	Bell et al. (2004)	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0%
St Louis		lag		(-0.2% -0.5%)	(-0.2% -0.4%)	(-0.2% -0.4%)	(-0.1% -0.3%)	(-0.1% -0.3%)	(-0.1% -0.3%)	(-0.1% -0.2%)	(-0.1% -0.1%)
Ot Louis	Bell et al 95 US	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0%
	Cities (2004)	lag		(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)
Washington	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%

Location	Study	Lag	Exposure Metric	Percent of To	otal Incidence			y Associated native O ₃ Stan	· ·	centrations th	at Just Meet
				0.084/4*** 0.084/3 0.080/4*** 0.074/5 0.074/4 0.074/3 0.070/4*** 0.06							0.064/4
	Cities (2004)	lag		(0.1% -0.4%) (0.1% -0.4%) (0.1% -0.4%) (0.1% -0.3%) (0.1% -0.3%) (0.1% -0.3%) (0.1% -0.3%) (0.1% -0.3%)							

^{*}All results are for mortality (among all ages) associated with short-term exposures to O3. All results are based on single-pollutant models.

^{**}Incidence was quantified down to estimated policy relevant background levels. Percents are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppb and an nth daily maximum. So, for example, the current standard is 84/4 -- 84 ppb, 4th daily maximum 8-hr average.

Table 5C-15. Estimated Incidence of Non-Accidental Mortality Associated with O₃ Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: April - September, Based on 2002 O₃ Concentrations*

Location	Study	Lag	Exposure Metric	Incidence o	of Non-Accide	-	Associated w Alternative O			Just Meet the	Current and
				0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Bell et al. (2004)	distributed lag	24 hr avg.	7	7	6	6	6	6	5	4
Atlanta				(-30 - 43)	(-30 - 43)	(-28 - 40)	(-26 - 38)	(-24 - 35)	(-24 - 35)	(-22 - 32)	(-19 - 27)
Atlanta	Bell et al 95	distributed lag	24 hr avg.	14	14	13	12	11	11	10	9
	US Cities (2004)			(5 - 23)	(5 - 23)	(4 - 21)	(4 - 20)	(4 - 19)	(4 - 19)	(3 - 17)	(3 - 14)
Boston	Bell et al 95	distributed lag	24 hr avg.	9	8	8	8	7	7	7	6
DOSION	US Cities (2004)			(3 - 15)	(3 - 14)	(3 - 14)	(3 - 13)	(3 - 12)	(2 - 12)	(2 - 12)	(2 - 10)
	Bell et al 95	distributed lag	24 hr avg.	55	52	50	47	44	43	40	34
	US Cities (2004)			(18 - 91)	(18 - 87)	(17 - 84)	(16 - 79)	(15 - 74)	(14 - 71)	(13 - 67)	(11 - 57)
Chicago	Schwartz (2004)	0-day lag	1 hr max.	427	412	401	381	361	350	335	294
Omougo				(136 - 712)	(131 - 687)	(127 - 669)	(121 - 636)	(115 - 603)	(111 - 585)	(106 - 559)	(93 - 493)
	Schwartz 14	0-day lag	1 hr max.	161	156	151	144	136	132	126	111
	US Cities (2004)			(51 - 271)	(49 - 261)	(47 - 254)	(45 - 242)	(43 - 229)	(41 - 222)	(39 - 212)	(35 - 187)
	Bell et al. (2004)	distributed lag	24 hr avg.	49	47	46	43	42	40	39	35
Cleveland				(-31 - 128)	(-30 - 123)	(-29 - 120)	(-27 - 112)	(-26 - 109)	(-25 - 105)	(-25 - 102)	(-22 - 91)
Olo Volulia	Bell et al 95	distributed lag	24 hr avg.	31	30	29	27	27	26	25	22
	US Cities (2004)			(10 - 52)	(10 - 50)	(10 - 49)	(9 - 45)	(9 - 44)	(9 - 43)	(8 - 41)	(7 - 37)
Detroit	Bell et al. (2004)	distributed lag	24 hr avg.	46	43	43	42	38	35	34	29
				(-15 - 106)	(-14 - 100)	(-14 - 98)	(-14 - 97)	(-12 - 87)	(-11 - 81)	(-11 - 79)	(-9 - 67)
	Bell et al 95	distributed lag	24 hr avg.	24	22	22	22	19	18	18	15
	US Cities (2004)			(8 - 39)	(7 - 37)	(7 - 36)	(7 - 36)	(6 - 32)	(6 - 30)	(6 - 29)	(5 - 25)
	Schwartz (2004)	0-day lag	1 hr max.	158	150	148	147	134	128	125	111
				(-26 - 336)	(-24 - 320)	(-24 - 316)	(-24 - 313)	(-22 - 287)	(-21 - 274)	(-20 - 268)	(-18 - 239)
	Schwartz 14	0-day lag	1 hr max.	86	82	81	80	73	70	68	61
	US Cities (2004)			(27 - 144)	(26 - 137)	(25 - 136)	(25 - 134)	(23 - 123)	(22 - 117)	(21 - 115)	(19 - 102)
	Ito (2003)	0-day lag	24 hr avg.	56	53	52	51	46	43	42	36

Location	Study	Lag	Exposure Metric	Incidence o	f Non-Accide	-	Associated w Alternative O			Just Meet the	Current and
				0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
				(-52 - 162)	(-49 - 151)	(-48 - 150)	(-48 - 147)	(-42 - 132)	(-40 - 124)	(-39 - 120)	(-33 - 103)
	Bell et al. (2004)	distributed lag	24 hr avg.	18	16	16	13	13	12	11	7
				(1 - 34)	(1 - 32)	(1 - 31)	(1 - 26)	(1 - 25)	(1 - 23)	(1 - 21)	(0 - 13)
	Bell et al 95	distributed lag	24 hr avg.	9	8	8	7	6	6	5	3
Houston	US Cities (2004)			(3 - 15)	(3 - 13)	(3 - 13)	(2 - 11)	(2 - 10)	(2 - 10)	(2 - 9)	(1 - 5)
Houston	Schwartz (2004)	0-day lag	1 hr max.	63	59	58	53	51	48	46	36
				(6 - 119)	(5 - 113)	(5 - 110)	(5 - 100)	(5 - 97)	(4 - 92)	(4 - 87)	(3 - 69)
	Schwartz 14	0-day lag	1 hr max.	53	50	49	44	43	40	38	30
	US Cities (2004)			(16 - 88)	(16 - 84)	(15 - 82)	(14 - 74)	(13 - 72)	(13 - 68)	(12 - 64)	(9 - 51)
	Bell et al. (2004)	distributed lag	24 hr avg.	24	23	21	15	15	13	11	7
Los Angeles				(-58 - 105)	(-55 - 100)	(-50 - 91)	(-36 - 66)	(-35 - 64)	(-32 - 59)	(-26 - 48)	(-16 - 29)
LOS Aligeles	Bell et al 95	distributed lag	24 hr avg.	52	49	45	33	32	29	24	14
	US Cities (2004)			(17 - 86)	(17 - 82)	(15 - 74)	(11 - 54)	(11 - 53)	(10 - 48)	(8 - 39)	(5 - 23)
New York	Bell et al 95	distributed lag	24 hr avg.	84	76	78	73	70	64	65	57
New TOIK	US Cities (2004)			(28 - 139)	(25 - 126)	(26 - 130)	(24 - 121)	(23 - 116)	(21 - 106)	(22 - 108)	(19 - 95)
	Bell et al 95	distributed lag	24 hr avg.	30	28	28	26	26	24	24	21
Philadelphia	US Cities (2004)			(10 - 50)	(10 - 47)	(9 - 47)	(9 - 43)	(9 - 42)	(8 - 40)	(8 - 40)	(7 - 35)
Filliaueipilia	Moolgavkar et al.	1-day lag	24 hr avg.	107	101	101	93	91	86	85	75
	(1995)			(67 - 146)	(63 - 138)	(63 - 137)	(58 - 127)	(57 - 124)	(54 - 117)	(53 - 116)	(47 - 103)
	Bell et al. (2004)	distributed lag	24 hr avg.	12	12	11	11	10	10	10	9
Sacramento				(-37 - 60)	(-36 - 58)	(-35 - 57)	(-32 - 53)	(-32 - 52)	(-31 - 50)	(-30 - 49)	(-27 - 44)
Sacramento	Bell et al 95	distributed lag	24 hr avg.	18	17	17	16	15	15	14	13
	US Cities (2004)			(6 - 30)	(6 - 29)	(6 - 28)	(5 - 26)	(5 - 26)	(5 - 25)	(5 - 24)	(4 - 22)
	Bell et al. (2004)	distributed lag	24 hr avg.	5	5	5	4	4	4	4	3
St Louis				(-9 - 20)	(-9 - 19)	(-8 - 18)	(-8 - 16)	(-7 - 15)	(-7 - 15)	(-6 - 14)	(-5 - 12)
Ot Louis	Bell et al 95	distributed lag	24 hr avg.	5	5	4	4	4	4	3	3
	US Cities (2004)			(2 - 8)	(2 - 8)	(1 - 7)	(1 - 7)	(1 - 6)	(1 - 6)	(1 - 6)	(1 - 5)
Washington	Bell et al 95	distributed lag	24 hr avg.	14	12	13	12	12	10	11	10

Location	Study	Lag	Exposure Metric	• • • • • • • • • • • • • • • • • • • •								
				0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4	
	US Cities (2004)			(5 - 23) (4 - 20) (4 - 21) (4 - 19) (4 - 19) (3 - 17) (4 - 18) (3 - 16)							(3 - 16)	

^{*}All results are for mortality (among all ages) associated with short-term exposures to O3. All results are based on single-pollutant models.

^{**}Incidence was quantified down to estimated policy relevant background levels. Incidences are rounded to the nearest whole number.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppb and an nth daily maximum. So, for example, the current standard is 84/4 -- 84 ppb, 4th daily maximum 8-hr average.

Table 5C-16. Estimated Percent of Total Incidence of Non-Accidental Mortality Associated with O3 Concentrations that Just Meet the Current and Alternative 8-Hour Daily Maximum Standards: April - September, Based on 2002 O3 Concentrations*

Location	Study	Lag	Exposure	Percent of Tot	tal Incidence of	Non-Accident	al Mortality As	ssociated wit	h O₃ Concent	rations that J	ust Meet the
	,	9	Metric				and Alternativ				
				0.084/4***	0.084/3	0.080/4***	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
	Bell et al. (2004)	distributed	24 hr avg.	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
Atlanta		lag		(-0.7% -0.9%)	(-0.6% -0.9%)	(-0.6% -0.9%)	(-0.6% -0.8%)	(-0.5% -0.8%)	(-0.5% -0.8%)	(-0.5% -0.7%)	(-0.4% -0.6%)
711111111	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%
	Cities (2004)	lag		(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)
Boston	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.2%
Boston	Cities (2004)	lag		(0.1% -0.6%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.4%)
	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
	Cities (2004)	lag		(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)
Chicago	Schwartz (2004)	0-day lag	1 hr max.	2%	2%	1.9%	1.8%	1.7%	1.7%	1.6%	1.4%
Omougo		o day lag		(0.6% -3.4%)	(0.6% -3.3%)	(0.6% -3.2%)	(0.6% -3%)	(0.5% -2.9%)	(0.5% -2.8%)	(0.5% -2.7%)	(0.4% -2.3%)
	Schwartz 14 US	0-day lag	1 hr max.	0.8%	0.7%	0.7%	0.7%	0.6%	0.6%	0.6%	0.5%
	Cities (2004)	o-day lag		(0.2% -1.3%)	(0.2% -1.2%)	(0.2% -1.2%)	(0.2% -1.1%)	(0.2% -1.1%)	(0.2% -1.1%)	(0.2% -1%)	(0.2% -0.9%)
	Bell et al. (2004)	distributed	24 hr avg.	0.7%	0.6%	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%
Cleveland		lag		(-0.4% -1.7%)	(-0.4% -1.7%)	(-0.4% -1.6%)	(-0.4% -1.5%)	(-0.4% -1.5%)	(-0.3% -1.4%)	(-0.3% -1.4%)	(-0.3% -1.2%)
Olevelaria	Bell et al 95 US	distributed	24 hr avg.	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%
	Cities (2004)	lag		(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.5%)
Detroit	Bell et al. (2004)	distributed	24 hr avg.	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%	0.4%	0.3%
		lag		(-0.2% -1.1%)	(-0.1% -1.1%)	(-0.1% -1%)	(-0.1% -1%)	(-0.1% -0.9%)	(-0.1% -0.9%)	(-0.1% -0.8%)	(-0.1% -0.7%)
	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
	Cities (2004)	lag		(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)
	Schwartz (2004)	0-day lag	1 hr max.	1.7%	1.6%	1.6%	1.6%	1.4%	1.4%	1.3%	1.2%
		o-uay iag		(-0.3% -3.6%)	(-0.3% -3.4%)	(-0.3% -3.4%)	(-0.3% -3.3%)	(-0.2% -3%)	(-0.2% -2.9%)	(-0.2% -2.8%)	(-0.2% -2.5%)
	Schwartz 14 US	0-day lag	1 hr max.	0.9%	0.9%	0.9%	0.8%	0.8%	0.7%	0.7%	0.6%
	Cities (2004)	o-day lag		(0.3% -1.5%)	(0.3% -1.5%)	(0.3% -1.4%)	(0.3% -1.4%)	(0.2% -1.3%)	(0.2% -1.2%)	(0.2% -1.2%)	(0.2% -1.1%)
	Ito (2003)	0-day lag	24 hr avg.	0.6%	0.6%	0.6%	0.5%	0.5%	0.5%	0.4%	0.4%

Location	Study	Lag	Exposure	Percent of Tot	tal Incidence of	Non-Accident	al Mortality A	ssociated wit	h O₃ Concent	rations that J	ust Meet the
Location	Otady	Lag	Metric				and Alternativ	e O₃ Standar			
				0.084/4***	0.084/3	0.080/4****	0.074/5	0.074/4	0.074/3	0.070/4****	0.064/4
				(-0.6% -1.7%)	(-0.5% -1.6%)	(-0.5% -1.6%)	(-0.5% -1.6%)	(-0.5% -1.4%)	(-0.4% -1.3%)	(-0.4% -1.3%)	(-0.3% -1.1%)
	Bell et al. (2004)	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%
		lag		(0% -0.4%)	(0% -0.3%)	(0% -0.3%)	(0% -0.3%)	(0% -0.3%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)
	Bell et al 95 US	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0%
Houston	Cities (2004)	lag		(0% -0.2%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)	(0% -0.1%)
Houston	Schwartz (2004)	0-day lag	1 hr max.	0.7%	0.7%	0.6%	0.6%	0.6%	0.5%	0.5%	0.4%
		u-uay iag		(0.1% -1.3%)	(0.1% -1.2%)	(0.1% -1.2%)	(0.1% -1.1%)	(0.1% -1.1%)	(0% -1%)	(0% -1%)	(0% -0.8%)
	Schwartz 14 US	0-day lag	1 hr max.	0.6%	0.5%	0.5%	0.5%	0.5%	0.4%	0.4%	0.3%
	Cities (2004)	u-uay iag		(0.2% -1%)	(0.2% -0.9%)	(0.2% -0.9%)	(0.2% -0.8%)	(0.1% -0.8%)	(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.6%)
	Bell et al. (2004)	distributed	24 hr avg.	0.1%	0.1%	0.1%	0.1%	0.1%	0%	0%	0%
Los Angeles		lag		(-0.2% -0.4%)	(-0.2% -0.4%)	(-0.2% -0.3%)	(-0.1% -0.2%)	(-0.1% -0.2%)	(-0.1% -0.2%)	(-0.1% -0.2%)	(-0.1% -0.1%)
LOS Aligeles	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%
	Cities (2004)	lag		(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)	(0% -0.2%)	(0% -0.2%)	(0% -0.1%)	(0% -0.1%)
New York	Bell et al 95 US	distributed	24 hr avg.	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
New TOIK	Cities (2004)	lag		(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)
	Bell et al 95 US	distributed	24 hr avg.	0.4%	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%
Philadelphia	Cities (2004)	lag		(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.5%)	(0.1% -0.4%)
Timadeipina	Moolgavkar et al.	1-day lag	24 hr avg.	1.3%	1.3%	1.3%	1.2%	1.1%	1.1%	1.1%	0.9%
	(1995)	1-day lag		(0.8% -1.8%)	(0.8% -1.7%)	(0.8% -1.7%)	(0.7% -1.6%)	(0.7% -1.5%)	(0.7% -1.5%)	(0.7% -1.4%)	(0.6% -1.3%)
	Bell et al. (2004)	distributed	24 hr avg.	0.3%	0.3%	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%
Sacramento		lag		(-0.9% -1.4%)	(-0.8% -1.4%)	(-0.8% -1.3%)	(-0.8% -1.3%)	(-0.8% -1.2%)	(-0.7% -1.2%)	(-0.7% -1.2%)	(-0.6% -1%)
Sacramento	Bell et al 95 US	distributed	24 hr avg.	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%
	Cities (2004)	lag		(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.6%)	(0.1% -0.5%)
	Bell et al. (2004)	distributed	24 hr avg.	0.3%	0.3%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
St Louis		lag		(-0.5% -1%)	(-0.4% -0.9%)	(-0.4% -0.9%)	(-0.4% -0.8%)	(-0.4% -0.8%)	(-0.3% -0.7%)	(-0.3% -0.7%)	(-0.3% -0.6%)
St Louis	Bell et al 95 US	distributed	24 hr avg.	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%
	Cities (2004)	lag		(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.4%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0.1% -0.3%)	(0% -0.2%)
Washington	Bell et al 95 US	distributed	24 hr avg.	0.5%	0.4%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%
Washington	Cities (2004)	lag		(0.2% -0.8%)	(0.1% -0.7%)	(0.2% -0.8%)	(0.1% -0.7%)	(0.1% -0.7%)	(0.1% -0.6%)	(0.1% -0.7%)	(0.1% -0.6%)

Location	Study	Lag	Exposure	Percent of To	Percent of Total Incidence of Non-Accidental Mortality Associated with O ₃ Concentrations that Just Meet the						
	0.0.0,	9	Metric Current and Alternative O ₃ Standards**								
				0.084/4*** 0.084/3 0.080/4*** 0.074/5 0.074/4 0.074/3 0.070/4*** 0.064/4							0.064/4

^{*}All results are for mortality (among all ages) associated with short-term exposures to O3. All results are based on single-pollutant models.

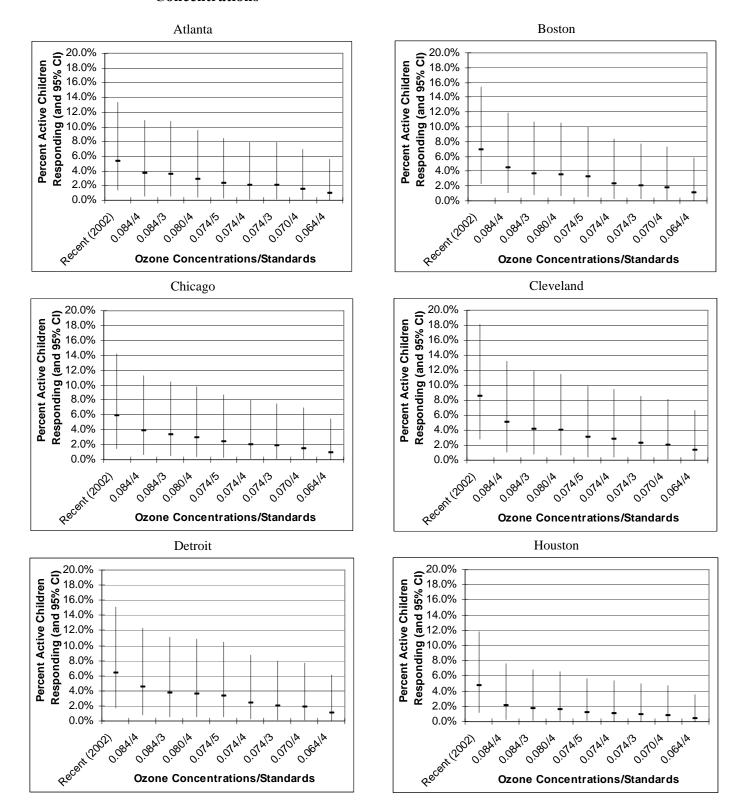
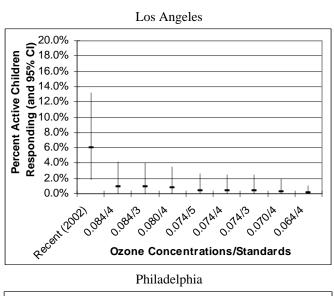
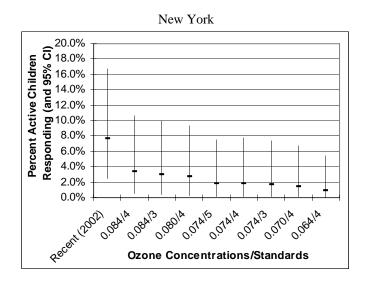
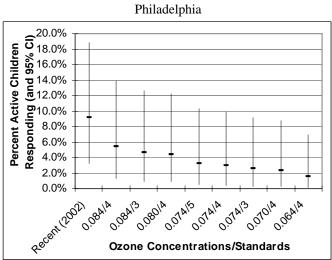
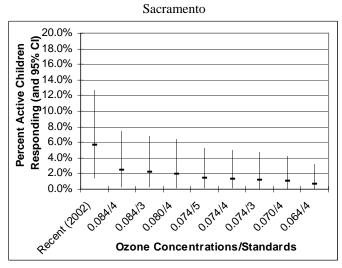
Note: Numbers in parentheses are 95% confidence or credible intervals based on statistical uncertainty surrounding the O₃ coefficient.

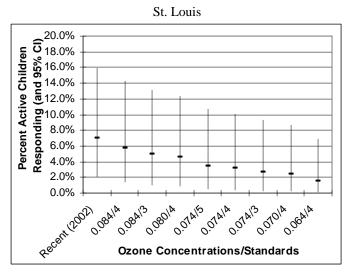
^{**}Incidence was quantified down to estimated policy relevant background levels. Percents are rounded to the nearest tenth.

^{***}An 8-hr average standard, denoted m/n is characterized by a concentration of m ppb and an nth daily maximum. So, for example, the current standard is 84/4 -- 84 ppb, 4th daily maximum 8-hr average.

Figure 5C-1. Percent of Active Children (Ages 5-18) Engaged in Moderate Exertion Estimated to Experience At Least One Lung Function Response (Decrement in FEV $_1 \ge 15$ %) Associated with Exposure to O $_3$ Concentrations That Just Meet the Current and Alternative Average 4th Daily Maximum 8-Hour Standards, for Location-Specific O $_3$ Seasons: Based on Adjusting 2002 O $_3$ Concentrations

Figure 5C-2a. Percent of Active Children (Ages 5-18) Engaged in Moderate Exertion
Estimated to Experience At Least One Lung Function Response (Decrement
in FEV1 ≥ 15 %) Associated with Exposure to Recent (2002) O₃ Levels and
Levels That Just Meet Alternative Average 4th Daily Maximum 8-Hour
Standards, for Location-Specific O₃ Seasons: Based on Adjusting 2002 O₃
Concentrations


Figure 5C-2b. Percent of Active Children (Ages 5-18) Engaged in Moderate Exertion Estimated to Experience At Least One Lung Function Response (Decrement in FEV1 ≥ 15 %) Associated with Exposure to Recent (2002) O₃ Levels and Levels That Just Meet Alternative Average 4th Daily Maximum 8-Hour Standards, for Location-Specific O₃ Seasons: Based on Adjusting 2002 O₃ Concentrations (cont'd)

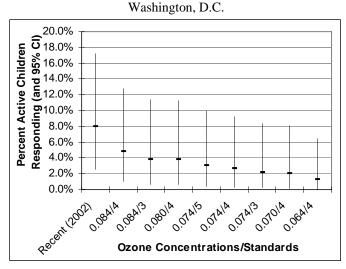


Figure 5C-3. Estimated Symptom-Days for Chest Tightness Among Moderate/Severe Asthmatic Children (Ages 0 – 12) in Boston Associated with O₃ Concentrations that Just Meet the Current and Alternative Average 4th Daily Maximum 8-Hour Standards (Based on Gent et al., 2003): April – September, 2002

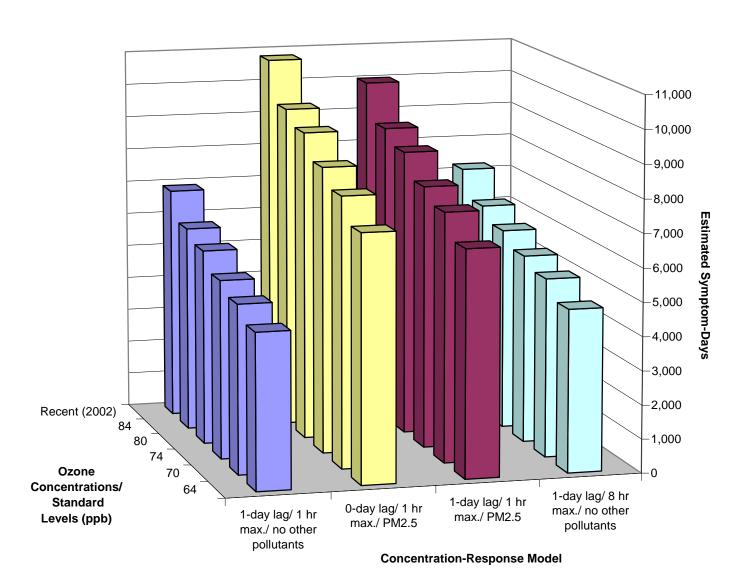


Figure 5C-4. Estimated Incidence of (Unscheduled) Respiratory Hospital Admissions per 100,000 Relevant Population in New York Associated with Recent O₃
Concentrations and with O₃ Concentrations that Just Meet the Current and Alternative Average 4th Daily Maximum 8-Hour Standards (Based on Thurston et al., 1992): April – September, 2002

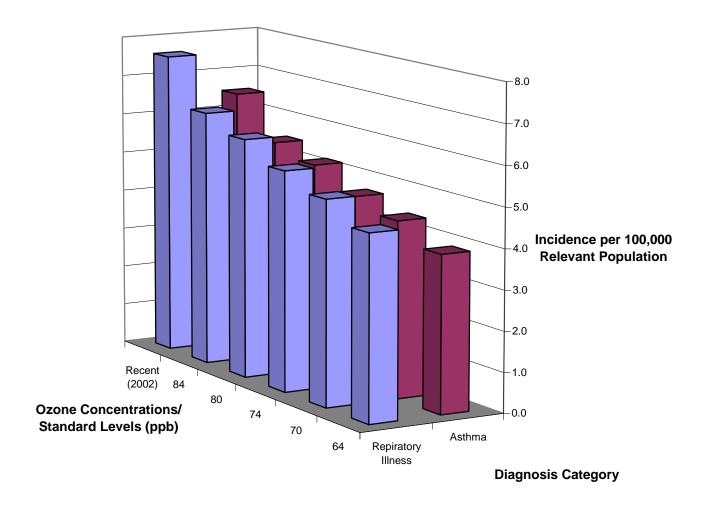
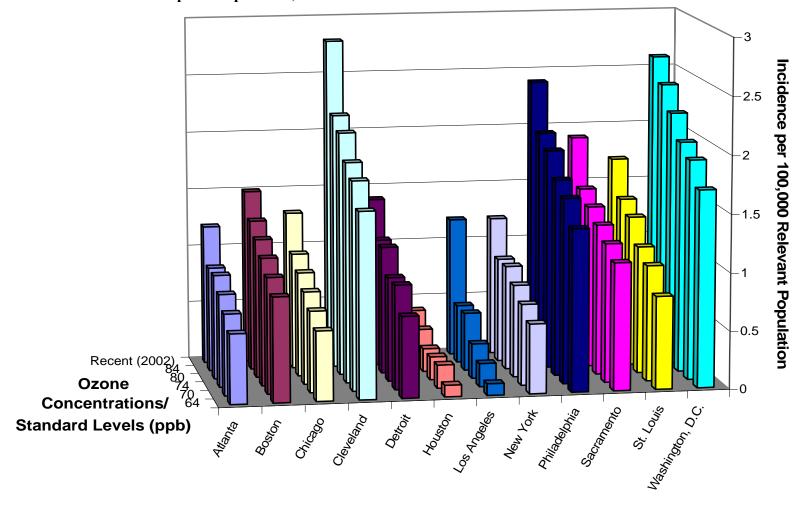



Figure 5C-5. Estimated Incidence of Non-Accidental Mortality per 100,000 Relevant Population Associated with Recent O3
Concentrations and with O3 Concentrations that Just Meet the Current and Alternative Average 4th Daily Maximum 8-Hour Standards: April – September, 2002

Urban Areas

Figure 5C-6a. Annual Warm Season (April to September) Estimated Cases of Ozone-Related Non-Accidental Mortality per Hundred Thousand Relevant Population Associated with Recent Air Quality (2002) and with Just Meeting Alternative 8-hr Ozone Standards (Using Bell et al., 2004 – 95 U.S. Cities), Based on 2002 Ozone Concentrations

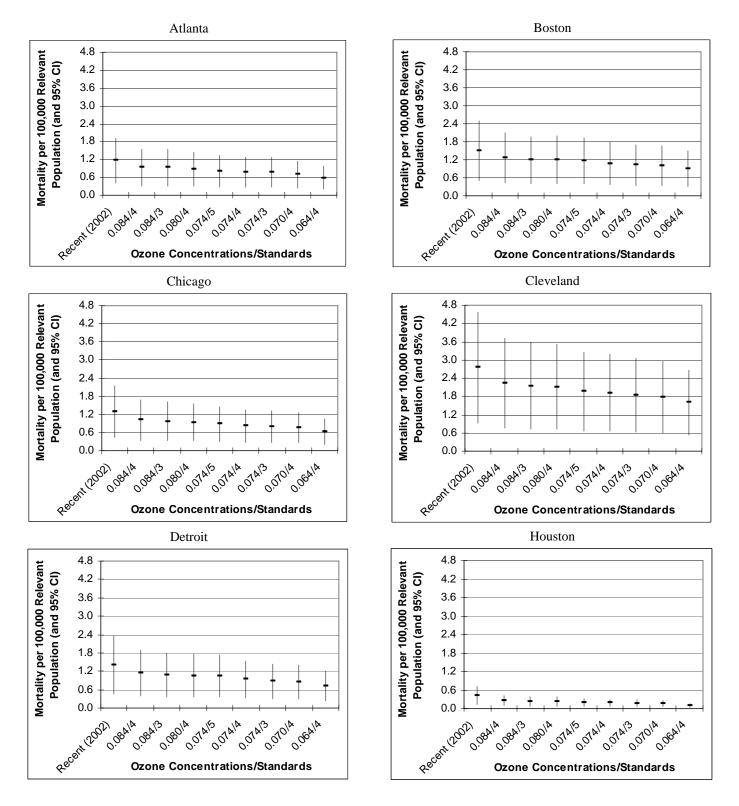
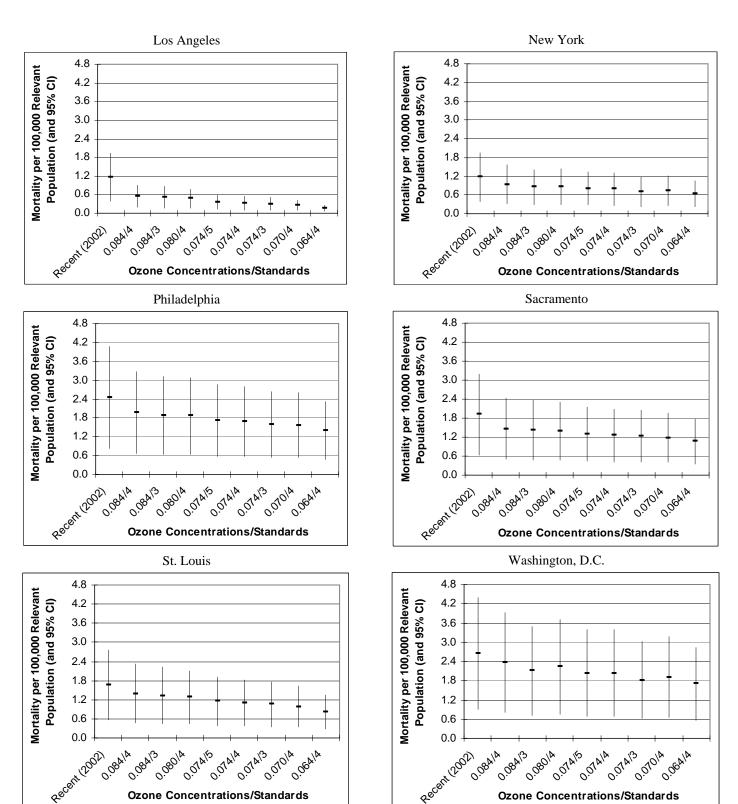



Figure 5C-6b. Annual Warm Season (April to September) Estimated Cases of Ozone-Related Non-Accidental Mortality per Hundred Thousand Relevant Population Associated with Recent Air Quality (2002) and with Just Meeting Alternative 8-hr Ozone Standards (Using Bell et al., 2004 – 95 U.S. Cities), Based on 2002 Ozone Concentrations (cont'd)

APPENDIX 7A: BIOLOGICALLY RELEVANT FORMS OF AIR QUALITY INDICES APPROPRIATE FOR CHARACTERIZING VEGETATION EXPOSURES AND ASSOCIATED LEVELS

APPENDIX 7A.

This appendix provides a general overview of several biologically relevant forms considered appropriate for characterizing exposures relevant to vegetation and currently in use or considered for use in a management context.

CUMULATIVE, CONCENTRATION WEIGHTED FORMS: SUM06, W126, AOT40

In an analysis done by Lee, et al., 1989, a group of cumulative, concentration-weighted forms performed equally well in predicting crop yield loss using data from the NCLAN studies. All three indices were evaluated in the 1996 Staff Paper. In some cases such O₃ exposure indices have been shown to explain O₃ effects as well or better than calculated internal O₃ dose (Grulke, et al. 2002; Hanson et al., 1994). Additional research needs to be done to better evaluate the performance of these indices under a wide range of exposure scenarios.

In the interim between the 1996 proposal notice and the 1997 final rule, the results of a consensus-building workshop on the need for a long-term cumulative secondary O₃ standard were published. At this workshop, expert scientists expressed their judgments on what standard form(s) and level(s) would provide vegetation with adequate protection from O₃-related adverse effects. After agreeing that some form of a cumulative standard would be most appropriate for a secondary standard, consensus was achieved that the SUM06 and W126 forms would give very similar protection against O₃ effects on vegetation. It was agreed that SUM06 was an acceptable form of a secondary standard with the caveat that the acceptance of the SUM06 should not be interpreted as an acceptance of a threshold (Heck and Cowling, 1997).

Consensus was also reached with respect to selecting appropriate levels in terms of a 3-month, 12-hr SUM06 standard. Below are the 3-month, 12-hr SUM06 ranges participants agreed should be considered for a number of endpoints. For foliar injury to natural ecosystems – a SUM06 range of 8 to 12 ppm-hr; for growth effects to tree seedlings in natural forest stands – a range of 10 to 15 ppm-hr; for growth effects to tree seedlings and saplings in plantations – a range of 12 to 16 ppm-hr; and for yield reductions in agricultural crops – a range of 15 to 20 ppm-hr (Heck and Cowling, 1997). Staff note that the AOT40 is another cumulative, concentration weighted form that is currently in use in Europe. This form cumulates the area over the 40 ppb threshold by subtracting 40 ppb from the value of the measured O₃ level. See the Critical Level discussion below for levels of the AOT40 identified with protection for various vegetation effects endpoints.

FLUX-BASED INDICES

As discussed in Chapter 7 above, a measure or prediction of plant O₃ uptake is intuitively a better predictor of plant response to O₃ exposure in the field than a measure of ambient exposure because it accounts for the plant's integration of environmental factors that influence stomatal conductance. In practice, however, there are a number of complicating factors that are not easily accounted for in predictive uptake models. These include:

- (1) The potential disconnect between the timing of two diunal patterns: 1) of maximum stomatal conductance and 2) the timing of peak exposure events. In the absence of synchronicity between these patterns, maximal stomatal conductance of O_3 will not occur and the predicted O_3 effect for that species/individual on the basis of flux will be an overestimation. This concern is especially apparent when assessing the impact of O_3 across all the varied climatic regions and species occurring within the United States.
- (2) Not all O₃ stomatal uptake results in a reduction in yield. This nonlinear relationship between O₃ uptake and plant injury (not growth alteration) response depends to some degree on the amount of internal detoxification occurring with each particular species; species having high amounts of detoxification potential may show less of a relationship between O₃ stomatal uptake and plant response. Because detoxification potential is genetically determined, it cannot be generalized across species. Scientific understanding of the detoxification mechanisms is not yet complete, so that much more needs to be learned about the detoxification processes available to plants and to what extent they modify the potentially phytotoxic dose in the leaf interior before this factor can be meaningfully considered in a biologically-relevant index.
- (3) The varying significance of nocturnal stomatal conductance. Musselman and Minnick (2000) performed an extensive review of the literature and reported that a large number of species had varying degrees of nocturnal stomatal conductance (Musselman and Minnick, 2000). Although stomatal conductance was lower at night than during the day for most plants, nocturnal conductance could result in some measurable O₃ flux into the plants. In addition, it was suggested that plants might be more susceptible to O₃ exposure at night than during the daytime, because of possibly lower plant defenses at night (Musselman and Minnick, 2000). Nocturnal O₃ flux also depends on the level of

turbulence that intermittently occurs at night. Thus, it would appear that the importance of nocturnal conductance and its contribution to total diurnal flux is species and site specific. For additional information on nocturnal conductance see Chapter 9 and AX9 of CD (EPA, 2006).

As is evident from the above discussion, multiple meteorological, species- and site-specific factors influence O₃ uptake. In order to integrate those factors that drive the patterns of stomatal conductance and exposure, the use of O₃ flux models is required. Though significant new research into flux model development has occurred since the last review, at this point in time these models remain species and site specific which limits their usefulness in national or regional scale risk assessments. However, in some countries, efforts are under way to incorporate flux into the policy context (see Critical Level discussion below).

The Critical Level Approach

Both the concentration-based and flux-based exposure index forms can be used to establish a "critical level" for plant exposure to O_3 . One definition of a critical level is "the concentration of pollutant in the atmosphere above which direct adverse effects on receptors, such as plants, ecosystems, or materials may occur according to present knowledge" (UNECE, 1988). As used by the United Nations Economic Commission for Europe International Cooperative Programme (UNECE ICP), the critical levels are not air quality regulatory standards in the U.S. sense, but rather planning targets for reductions in pollutant emissions to protect ecological resources. Critical levels for O₃ are intended to prevent long-term deleterious effects on the most sensitive plant species under the most sensitive environmental conditions, but not to quantify O_3 effects. The nature of the "adverse effects" was not specified in the original definition, which provided for different levels for different types of harmful effect (e.g., visible injury or loss of crop yield). There are also different levels for crops, forests, and seminatural vegetation. The caveat, "according to present knowledge," is important because critical levels are not rigid; they are revised periodically as new scientific information becomes available. To date, critical levels (Level I) have been set for agricultural crops, for foliar injury symptoms in the field and for forest trees in terms of the AOT40 index (see section 7.2.5 and EPA, 2005b). Specifically, critical levels of a 3 month, 3 ppm-hr and a 6 month, 10 ppm-hr AOT40 have been established for crops and tree seedlings, respectively. An additional provisional level of 7 ppm-hr over 6 months for herbaceous perennials has been recommended. Level I critical levels are currently used to map and identify areas in

Europe in which the levels are exceeded, and that information is then used to plan optimized and effects-based abatement strategies.

In the 1990s, however, many exposure studies demonstrated that the simple, exposure-based approach led to the overestimation of effects in some regions and underestimation in others (Fuhrer et al., 1997; Kärenlampi and Skärby, 1996) because it did not differentiate between plant species, and it did not include modifying site and micrometeorological factors of O₃ uptake such vapor pressure deficit (VPD), water stress, temperature, and light and variation in canopy height. At that time, a decision was made by the UNECE ICP to work towards a flux-based approach for the critical levels ("Level II"), with the goal of modeling O₃ flux-effect relationships for three vegetation types: crops, forests, and seminatural vegetation (Grünhage and Jäger, 2003). Progress has been made in modeling flux (Ashmore et al., 2004a,b) and the Mapping Manual is being revised (Ashmore et al., 2004a,b; Grennfelt, 2004; Karlsson et al., 2003). The revisions may include a flux-based approach for three crops: wheat, potatoes, and cotton. However, because of a lack of flux-response data, a cumulative, cutoff concentration-based (e.g., AOT40) exposure index will remain in use for the near future for most crops and for forests and seminatural herbaceous vegetation (Ashmore et al., 2004a).

Summary

Flux-based models are currently limited by the species-specific information required and by the observed nonlinearity between total flux and plant response. Better understanding of the detoxification and compensation processes would be required to account for this nonlinearity in future models. Other relevant information that should be evaluated include the extent to which: (1) nighttime exposures represent a significant percentage of total diurnal exposures, and whether their impact on growth or foliar injury effects are proportional; (2) the degree to which elevation and nocturnal turbulence alter actual nocturnal uptake; and (3) differences in plant defense mechanisms and other processes at night.

Until such research can be done, the current CD (EPA, 2006) concludes that, at this time, based on the current state of knowledge, exposure indices that differentially weight the higher hourly average O₃ concentrations but include the mid-level values still represent the best approach for relating vegetation effects to O₃ exposure in the U.S.. This is due in part to the existence of a large database that has been used for establishing

exposure-response relationships. Such a database does not yet exist for relating O₃ flux to growth response.

Staff anticipate that, as the overlapping mathematical relationships of conductance, concentration, and defense mechanisms are better defined, O₃-flux-based models may be able to predict vegetation injury and/or damage at least for some categories of canopy-types with more accuracy than the currently available exposure-response models. The results of these studies and reviews indicate the need to continue to develop indices that are more physiologically and meteorologically connected to the actual dose of O₃ the plant receives. The flux approach should provide an opportunity to improve upon the concentration-based exposure index in the future, recognizing that a concerted research effort is needed to develop the necessary experimental data and modeling tools that will provide the scientific basis for such critical levels for O₃ (Dämmgen et al., 1994; Fuhrer et al., 1997; Grünhage et al., 2004).

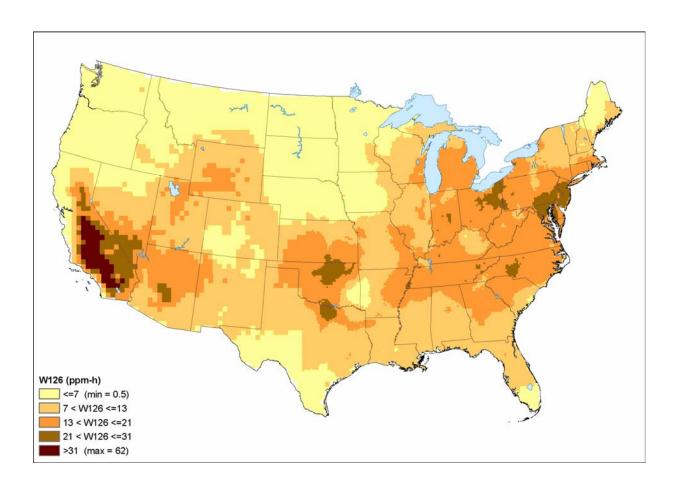
APPENDIX 7B: CMAQ EXPOSURE MODEL

APPENDIX 7B.

Staff investigated the appropriateness of using the spatial scaling from the EPA/NOAA Community Multi-scale Air Quality (CMAQ) model system (http://www.epa.gov/asmdnerl/CMAQ, Byun and Ching, 1999; Arnold et al. 2003, Eder and Yu, 2005) O₃ outputs to improve spatial interpolations based on a regionally limited and unevenly distributed O_3 monitoring network in the western U.S. (see section 7.5.3). The CMAQ model is a multi-pollutant, multiscale air quality model that contains stateof-science techniques for simulating all atmospheric and land processes that affect the transport, transformation, and deposition of atmospheric pollutants and/or their precursors on both regional and urban scales. It is designed as a science-based modeling tool for handling many major pollutants (including photochemical oxidants/O₃, particulate matter, and nutrient deposition) holistically. The CMAQ model can generate estimates of hourly O₃ concentrations for the contiguous U.S., making it possible to express model outputs in terms of a variety of exposure indices (e.g., SUM06, 8-hr average). Due to the significant resources required to run CMAQ, however, model outputs are only available for a limited number of years. For this review, 2001 outputs from CMAQ version 4.5 were the most recent data available. This version of CMAQ utilizes the more refined 12 km x 12 km grid for the eastern U.S., while using the 36 km x 36 km grid for the western U.S. The 12 km x 12 km domain covers an area from roughly central Texas, north to North Dakota, east to Maine, and south to central Florida.

The CMAQ modeling system has undergone two external peer reviews through the Community Modeling and Analysis System (CMAS) based at the University of North Carolina at Chapel Hill (UNC) Carolina Environmental Program (Amar et al. 2005, 2004). In addition, EPA/NOAA recently conducted an initial evaluation of the eastern U.S. domain of CMAQ version 4.5 (Appel et al., 2005; http://www.cmascenter.org/docs/CMAQ/v4.5/CMAQv4.5 EvaluationDocument-Final2005.pdf). Based on this evaluation, hourly O₃ patterns are predicted well during the daytime. The prediction of daily maximum 8-hr average O₃ was relatively good, showing a slight positive normalized mean bias of 1.62% and a normalized mean error of 17.4%. Overall, CMAQ predictions of daily maximum 8-hr O₃ averages were improved in the 12 km x 12 km grid size when compared to the 36 km x 36 km grid size. However, the CMAQ consistently over-predicted hourly O₃ at night. Since many of the assessments outlined below rely daytime O₃ accumulated in the 12-hr SUM06 (8 am-8 pm), the night-time over-prediction is less of an issue.

The results of the CMAQ version 4.5 evaluation should be used with caution for several reasons. First, this evaluation ignores the mismatch of spatial resolution and treats CMAQ output as a point-value, a concern raised by Fuentes and Rafterty 2005. The problem is well known, but is often ignored since there are not standard operational methods that can be applied to the CMAQ model output to deal with this problem. Secondly, the size of the grid being used is unable to capture the rapidly changing O₃ gradients that often occur in complex terrain, across urban/rural gradients and along coastal areas. In these cases significant differences in O₃ concentration could occur with a 12x12km cell and the uncertainties associated with these areas are unknown. Many such features occur in rural areas of importance in this assessment and it is recognized that any estimates of O₃ exposure in complex terrain are very uncertain. Unfortunately, complex terrain is of greater significance in the west, where the CMAQ grid is even larger and the monitoring network is for the most part, sparse. These limitations proved to be determinant in selecting an interpolation technique for the west.


The CMAQ model incorporates output fields from emissions and meteorological modeling systems and several other data sources through special interface processors into the CMAQ Chemical Transport Model (CCTM). Currently, the Sparse Matrix Operator Kernel Emissions (SMOKE) System produces the emissions factors and the Fifth Generation Penn State University/ National Center for Atmospheric Research Mesoscale Model (MM5) provides the meteorological fields. CCTM then performs chemical transport modeling for multiple pollutants on multiple scales. Emission inventories of SO₂, CO, NOx, and VOCs are based on EPA's 2001 National Emission Inventory (NEI) and are consistent with inventories used for the analysis of the Clean Air Interstate Rule (CAIR) rule (EPA, 2005b). Biogenic emissions, from natural sources, were processed using the Biogenic Emissions Inventory System (BEIS) version 3.13. The staff recognizes that O₃ exposures vary between years depending on meteorology and other factors.

Recently EPA/NOAA conducted an initial evaluation of the eastern U.S. domain of CMAQ version 4.5 (Appel et al., 2005; http://www.cmascenter.org/docs/CMAQ/v4.5/CMAQv4.5 EvaluationDocument-Final2005.pdf). This evaluation used the same metrics published by Eder and Yu (2005) for the CMAQ version 4.4 model release. For the modeled summer months of June, July and August of 2001, CMAQ version 4.5 predictions were compared to AQS monitor sites. The prediction of daily maximum 8-hr average O₃ was relatively good, showing a slight positive normalized mean bias of 1.62% and a normalized mean error of 17.4%. Hourly ozone patterns are predicted well during the daytime. However, the CMAQ

consistently over-predicted hourly O₃ at night. Nighttime over-predictions in O₃ have been improved over CMAQ version 4.4 by modifications to the minimum K_z approximation in CMAQ version 4.5, but additional investigations are needed. Again, since many of the assessments outlined below rely daytime O₃ accumulated in the 12-hr SUM06 (8 am to 8 pm), the night-time over-prediction is less of an issue. Overall, CMAQ predictions of daily 8hr O₃ averages were improved in the 12km x 12km grid size when compared to the 36km x 36km grid size. Since CMAQ output is averaged over large square blocks and monitor observations are effectively averages over much smaller regions, CMAQ output and monitor observations have a mismatch in spatial resolution. (Fuentes and Rafterty 2005). The problem is well known, but is often ignored since there are not standard operational methods that can be applied to the CMAQ model output to deal with this problem. The CMAQ version 4.5 evaluation described above ignores the mismatch of spatial resolution and treats CMAQ output as a point-value. The staff believes this simplification is reasonable in flat rural areas where many important crops and vegetation grow, because O_3 is a secondary pollutant and its concentration generally varies fairly smoothly across those areas. However, O₃ is notably more variable in complex terrain, across urban/rural gradients and along coastal areas. In these cases significant differences in O_3 concentration could occur with a 12x12km cell and the uncertainties associated with these areas are unknown. The current assessment is most concerned with rural areas and it is recognized that any estimates of O₃ exposure in complex terrain are very uncertain. Unfortunately, complex terrain is of greater significance in the west, where the CMAQ grid is larger and the monitoring network is for the most part, sparse. These limitations proved to be determinant in selecting an interpolation technique for the west.

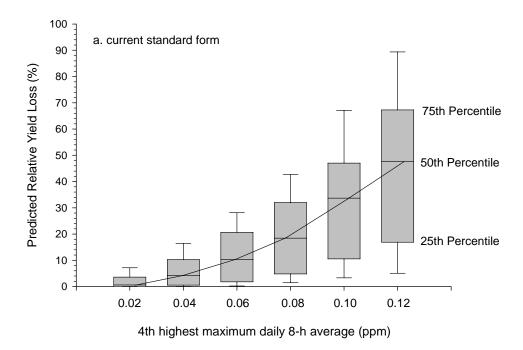

APPENDIX 7C. INTERPOLATED 3MONTH, 12-HR W126 EXPOSURES

Figure 7C-1. Estimated 12-Hr W126 Ozone Exposure – Max 3-months for 2001 "As Is" scenario

APPENDIX 7D. NCLAN RE-ANALYSIS USING THE 8-HR AVERAGE METRIC

Figure 7D-1. Median crop yield loss from NCLAN crops characterized the annual 4th highest maximum 8-hr average (the current standard form).

Distribution of biomass loss predictions from Weibull exposure-response models that relate yield to O_3 exposure characterized with the 4^{th} highest max. 8-hr average statistic using data from 31 crop studies from National Crop Loss Assessment Network (NCLAN). Separate regressions were calculated for studies with multiple harvests or cultivars, resulting in a total of 54 individual equations from the 31 NCLAN studies. Each equation was used to calculate the predicted relative yield or biomass loss at 0.02, 0.04, 0.06, 0.10 and 0.12 ppm, and the distributions of the resulting loss were plotted. The solid line represents the Weibull fit at the 50th percentile.

APPENDIX 7E. C-R FUNCTIONS USED IN CROP AND TREE SEEDLING ANALYSES

Table 7E-1. Ozone Exposure-Response Functions for Selected NCLAN Crops

Ozone Index	Quantity	Crop	Function		
W126	Max	Cotton	1-exp(-(index/74.6)^1.068)		
W126	Min	Cotton	1-exp(-(index/113.3)^1.397)		
W126	Median	Cotton	1-exp(-(index/96.1)^1.482)		
W126	Max	Field Corn	1-exp(-(index/92.7)^2.585)		
W126	Min	Field Corn	1-exp(-(index/94.2)^4.167)		
W126	Median	Field Corn	1-exp(-(index/97.9)^2.966)		
W126	Median	Grain Sorghum*	1-exp(-(index/205.9)^1.963)		
W126	Median	Peanut*	1-exp(-(index/96.8)^1.890)		
W126	Max	Soybean	1-exp(-(index/130.1)^1)		
W126	Min	Soybean	1-exp(-(index/476.7)^1.113)		
W126	Median	Soybean	1-exp(-(index/110.2)^1.359)		
W126	Max	Winter Wheat	1-exp(-(index/24.7)^1.0)		
W126	Min	Winter Wheat	1-exp(-(index/76.8)^2.031)		
W126	Median	Winter Wheat	1-exp(-(index/53.4)^2.367)		
W126	Median	Lettuce*	1-exp(-(index/54.6)^4.917)		
W126	Median	Kidney Bean*	1-exp(-(index/43.1)^2.219)		
W126	Min	Potato	1-exp(-(index/113.8)^1.299)		
W126	Max	Potato	1-exp(-(index/96.3)^1)		
W126	Median	Potato	1-exp(-(index/99.5)^1.242)		

Source: Lee and Hogsett (1996) table 10. *Peanuts, Grain Soghum, Lettuce and Kidney Bean only have one C-R function and therefore do not have a max and min.

Table 7E-2. Ozone Exposure-Response Functions for Selected Fruits and Vegetable Crops

Ozone Index	Quantity	Fruit/Vegetable	Function		
12-hr	Median	Onion*	1-(5034-(10941*12hr))/(5034-		
			(10941*base12))		
7-hr	Median	Rice*	1-(exp(-((7hr/0.2016)^2.474)))/		
			(exp(-((base7/0.2016)^2.474)))		
12-hr	Median	Valencia Oranges*	1-(53.7-(261.1*12hr))/(53.7-		
			(261.1*base12))		
7-hr	Median	Cantaloupes*	1-(35.8-(280.8*7hr))/(35.8-		
			(280.8*base7))		
12-hr	Min	Grapes	1-(1.121-(6.63*12hr))/(1.121-		
			(6.63*base12))		
12-hr	Max	Grapes	1-(9315-(64700*12hr))/(9315-		
			(64700*base12))		
12-hr	Median	Grapes	1-(357.254-(2300*12hr))/(357.254-		
			(2300*base12))		
12-hr	Max	Tomatoes-	1-(8590-(41277*12hr))/(8590-		
		Processing	(41277*base12))		
12-hr	Min	Tomatoes-	1-(6315-(21070*12hr))/(6315-		
		Processing	(21070*base12))		
12-hr	Median	Tomatoes-	1-(9055-(32367*12hr))/(9055-		
		Processing	(32367*base12))		

Source: Abt (1995) Exhibit 11. *Onions, Rice, Oranges, and Cantaloupes only have one C-R function and therefore do not have a max and min. base 7 = 0.027 and base 12 = 0.025 which are equal to the concentrations in the charcoal-filtered treatments.

Table 7E-3. Median Composite Ozone Exposure-Response Functions* for Tree Seedlings

Ozone Index	Quantity	Crop	Function
W126	Median	Ponderosa Pine	1-exp(-(index/159.63)^1.190)
W126	Median	Red Alder	1-exp(-(index/179.06)^1.2377)
W126	Median	Black Cherry	1-exp(-(index/38.92)^0.9921)
W126	Median	Tulip Poplar	1-exp(-(index/51.38)^20889)
W126	Median	Sugar Maple	1-exp(-(index/36.35)^5.7785)
W126	Median	E. White Pine	1-exp(-(index/63.23)^1.6582)
W126	Median	Red Maple	1-exp(-(index/318.12)^1.3756)
W126	Median	Douglas Fir	1-exp(-(index/106.83)^5.9631)
W126	Median	Aspen	1-exp(-(index/109.81)^1.2198)
W126	Median	Virginia Pine	1-exp(-(index/1714.64)^1)

Source: Lee and Hogsett (1996) table 14. *Individual exposure-response curves are reported using the 12-hr-SUM06 index adjusted to a 92-day exposure duration.

Table 7E-4. Median Percent Relative Yield Loss* for Crops

	Air Quality Scenarios						
Crops	As Is (2001)	8-hr, 84 ppb	SUM06 25	8-hr, 70 ppb	SUM06 15		
Kidney Bean	3.8%	1.8%	0.3%	0.3%	0.1%		
Grapes	23.5%	20.5%	16.6%	16.7%	15.0%		
Lettuce	0.0%	0.0%	0.0%	0.0%	0.0%		
Potato	12.6%	8.6%	3.2%	3.3%	2.0%		
Rice	18.1	15.7%	11.2%	11.4%	9.8%		
Grain Sorghum	1.0%	0.5%	0.1%	0.1%	0.1%		
Cantaloupe	23.5%	19.1%	14.9%	14.8%	12.8%		
Corn	0.2%	0.1%	0.0%	0.0%	0.0%		
Cotton	7.7%	4.8%	1.3%	1.3%	0.7%		
Onion	8.1%	7.0%	5.7%	5.8%	5.2%		
Peanut	5.4%	3.1%	0.8%	0.7%	0.3%		
Soybean	3.4%	1.7%	1.7%	0.8%	0.8%		
Valencia	17.0%	15.1%	12.0%	12.1%	10.8%		
Orange							
Tomato	13.8%	11.9%	9.8%	9.8%	8.8%		
Processing							
Winter Wheat	1.4%	0.6%	0.1%	0.1%	0.0%		

^{*} Modified from Figures for Yield Loss (5-5) and Yield Gain (5.6 to 5-9) in the draft Environmental Assessment TSD (Abt, 2006)

Table 7E-5. Median Percent Relative Biomass Loss* for Tree Seedlings

	Air Quality Scenarios						
Tree Species	As Is (2001)	8-hr, 84 ppb	SUM06 25	8-hr, 70 ppb	SUM06 15		
Aspen	12.0%	5.6%	6.3%	2.3%	3.3%		
Black Cherry	40.9%	24.1%	25.5%	12.3%	15.9%		
Douglas Fir	0.0%	0.0%	0.0%	0.0%	0.0%		
Ponderosa Pine	19.9%	10.6%	3.1%	4.2%	2.2%		
Red Alder	0.6%	0.6%	0.6%	0.6%	0.6%		
Red Maple	2.3%	1.0%	1.1%	0.4%	0.5%		
Sugar Maple	3.0%	0.2%	0.2%	0.0%	0.0%		
Tulip Poplar	13.5%	3.6%	5.1%	0.8%	1.4%		
Virginia Pine	1.2%	0.6%	0.7%	0.3%	0.4%		
Eastern White	13.6%	5.8%	5.6%	1.9%	2.4%		
Pine							

^{*} Modified from Figures for Tree Seedling Biomass Loss (5-10) and Biomass Gain (5-11 to 5-14) in the draft Environmental Assessment TSD (Abt, 2006)

APPENDIX 7F. PREDICTED YIELD LOSS FOR SELECTED MAJOR COMMODITY CROPS BASED ON PLANTING AREAS AND PREDICTIONS OF 2001 O_3 EXPOSURE USING THE 12-HR W126 INDEX.

Figure 7F-1. Estimated corn yield loss based on interpolated 2001 3-month 12-hr W126

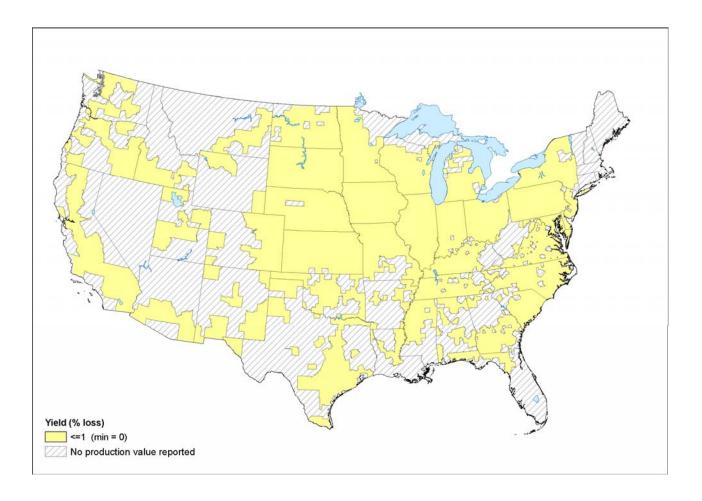


Figure 7F-2. Estimated cotton yield loss based on interpolated 2001 3-month 12-hr W126

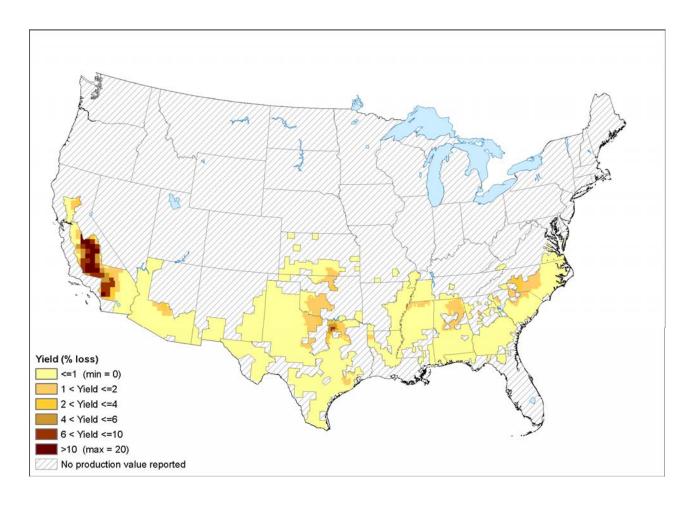
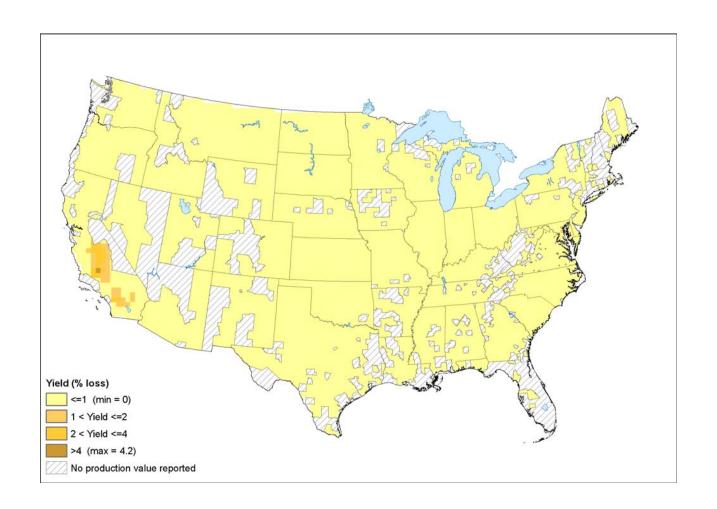
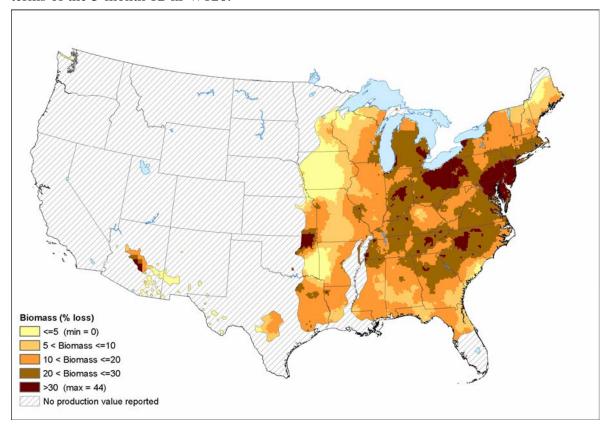




Figure 7F-3. Estimated winter wheat yield loss based on interpolated 2001 3-month 12-hr W126

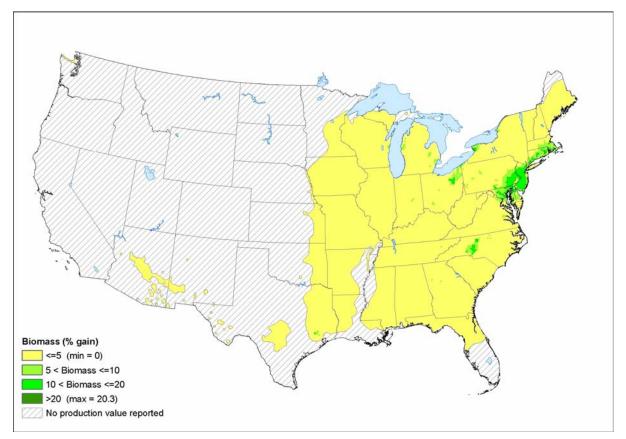

APPENDIX 7G. TREE SEEDLING BIOMASS LOSS AND GAIN MAPS UNDER VARYING AIR QUALITY SCENARIOS

Figure 7G-1. Estimated black cherry seedling* annual biomass **loss** based on interpolated 2001 air quality. Values expressed in terms of the 3-month 12-hr W126.

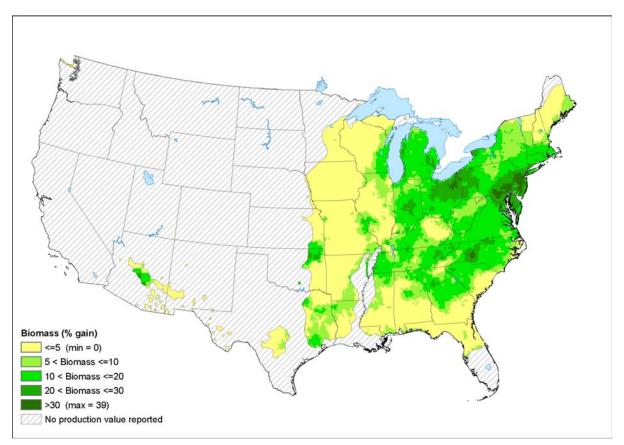

^{*} This map indicates the geographic range for black cherry, but it does not necessarily indicate that black cherry will be found at every point within its range.

Figure 7G-2. Estimated black cherry seedling* annual biomass **gain** for air quality rolled-back to the 4th highest maximum 8-hr average of 0.08 ppm. Values expressed in terms of W126 form.

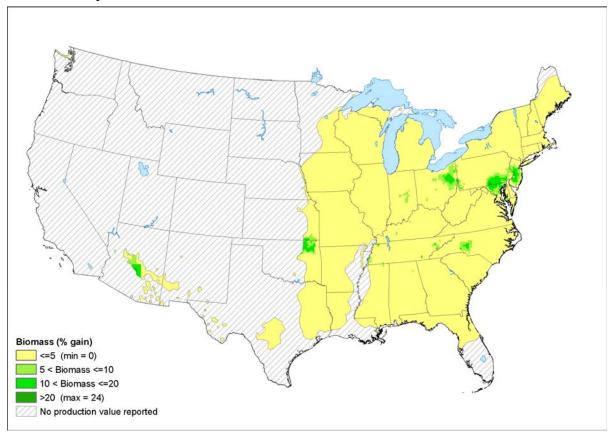

^{*.} This map indicates the geographic range for black cherry, but it does not necessarily indicate that black cherry will be found at every point within its range.

Figure 7G-3. Estimated black cherry seedling* annual biomass **gain** for 2001interpolated air quality rolled-back to the 4th highest maximum 8-hr average of 0.070 ppm. Values expressed in terms of the 12-hr W126

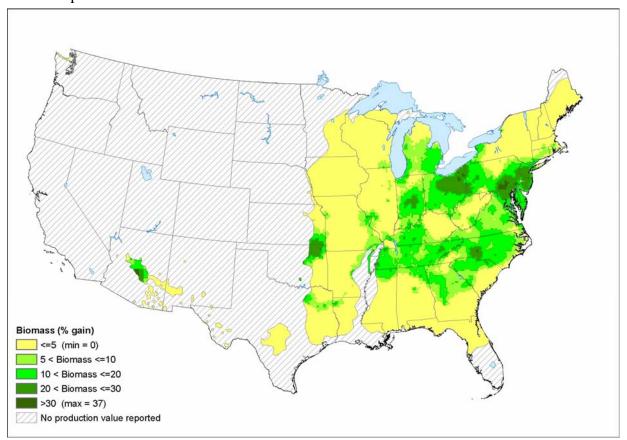

^{*.} This map indicates the geographic range for black cherry, but it does not necessarily indicate that black cherry will be found at every point within its range.

Figure 7G-4. Estimated black cherry *seedling annual biomass **gain** for air quality rolled-back to the 12-hr SUM06 level of 25ppm-hr. Values expressed in terms of W126.

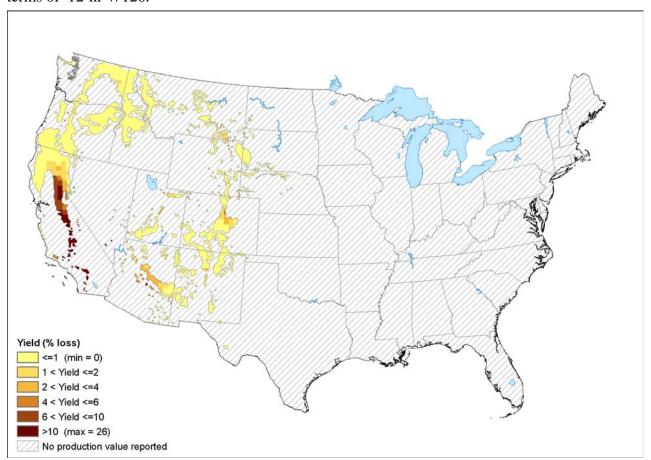
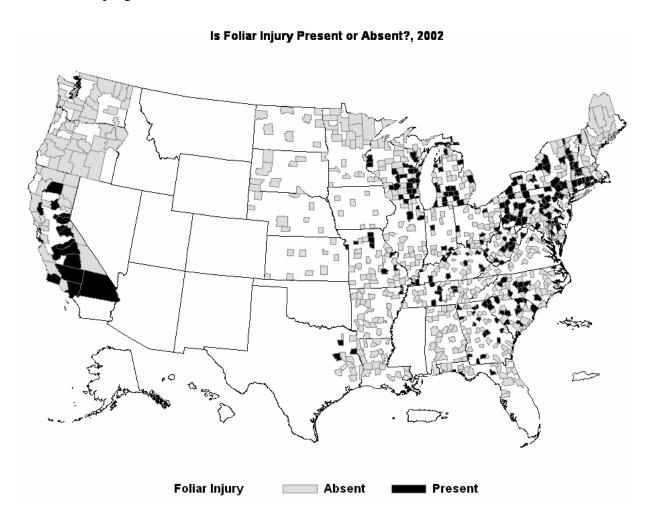

^{*.} This map indicates the geographic range for black cherry, but it does not necessarily indicate that black cherry will be found at every point within its range.

Figure 7G-5. Estimated black cherry* seedling annual biomass **gain** for air quality rolled-back to a 12-hr SUM06 of 15 ppm-hr. Values expressed in terms of the 12-hr W126.

^{*} This map indicates the geographic range for black cherry, but it does not necessarily indicate that black cherry will be found at every point within its range.


Figure 7G-6. Estimated ponderosa pine* seedling annual biomass **loss** based on interpolated 2001 air quality. Values expressed in terms of 12-hr W126.

^{*}This map indicates the geographic range for ponderosa pine, but it does not necessarily indicate that ponderosa pine will be found at every point within its range.

APPENDIX 7H. COUNTY-LEVEL INCIDENCE OF FOLIAR INJURY

Figure 7H-1. 2002 County-level incidence of visible foliar injury in the eastern and western U.S. as measured by the US Forest Service FIA program

