Digital Elevation Models Derived from Small Format Lunar Images

Mark Rosiek
USGS Astrogeology Team
Planetary Geomatics Group
2255 N Gemini Dr
Flagstaff AZ 86001

Phone: 520-556-7206 e-mail: mrosiek@usgs.gov

Outline

- Overview of Clementine Spacecraft - Image Sensors
 - Clementine Laser Altimeter
 - Clementine Global Mosaic
 - Collection of Digital Elevation Models

Clementine Mission to the Moon

Sensor Overview

Footprint

> Near-Infrared 5.6° by 5.6° .6 band pass filters

Ultraviolet-Visible 5.6° by 4.2°

- 6 band pass filters
-750 m source

High-Resolution
0.4° by 0.3°

- 5 band pass
filters
-LASER Altimeter
science for a changing world

Orbit Overview

- orbits 1-31 shakedown/ testing
- orbits 32-168, periselene in the southern hemisphere
- orbits 169-297, periselene in the northern hemisphere
- orbits 298-348, cover gaps in coverage, acquire observations of special targets
\curvearrowright
science for a changing world

UVVIS Images

Oblique
Nadir

Thursday, May 25, 2000

LASER Altimeter Points

science for a changing world

Interpolation of LASER Altimeter

 A 720 line by 1440 sample image of topography (0.25×0.25 degree resolution)
science for a changing world

Clementine Global Mosaic

 11 Bands - 100m/pixel
science for a changing world

Mosaic Tile Scheme 78 CDs for UVVIS

Figure 2 -Quadrangle Layout on the Lunar Surface and the CD-ROM Volume Coverage.

UVVIS 5-band global mosaic

Top images - enhanced false color composite of the lunar front side (left) and far side (right). 450 (blue), 750(green), and 1000 nm (red) spectral bands.
Bottom images - ratio using 415/750 nm (blue), 750/950 nm (green), and 750/415 (red). cancel the albedo component and enhance the color differences. Blue to red tones highlight titanium variations among mature maria and indicate maturity differences among the lunar highland soils. Yellow and orange colors indicate a greater abundance of iron and magnesium-rich materials in the lunar maria and cryptomaria.

Production of Global Mosaic

- Select match points
- Tie images from same orbit together
- Tie images from adjacent orbits together
- Tie images from different collection periods together
\square Adjust camera pointing angles
- Sphere of 1737.4 km

Setting up SOCET SET

- Geodetic information
- Lunar datum definition
- Map projection for moon
- UVVIS camera definition
-ISIS to SOCET SET
-Raw to ISIS
-Enhancements/Calibration
-Earth Mean Equatorial
Coordinates to planetographic coordinates (X, Y, Z, , ,)
- gpf file - ground point file
- Single file - add weights and type of point
- .ipf files - image point files
- Single file to multiple files
- Pixels to image coordinates
science for a changing world

Triangulation

First Run

- 3,635 images
- 29,386 match points
- Blocks of images
- Avg RMS 0.3 pixel
- DEMs mismatch 2-3 km
- 75% on two images
- 15-24 points per image

Triangulation Second Run

- 978 images
- 1,265 match points use as control points weight $1,000(x y) 5,000$ or 10,000 (z)
- Added 1,200 tie points Weight 10,000 (xyz)

Triangulation Second Run

Triangulation Second Run

science for a changing world

Triangulation Second Run

Final Elevation Vs Distance

Triangulation
 Third Run

- 978 images
- Use two passes - low Z weights on first pass
- Use sensor information before global mosaic adjustment
- 1,265 match points use as control points weight 1,000 (xy)
- first pass 20 or 10,000 then 750 or $10,000(z)$
- 1,200 tie points - Weight 10,000 ($x y z$)

Triangulation
 Third Run - first pass

Starting Eevation Vs Distance

Triangulation Third Run - first pass

Delta Elevation Vs Distance

Triangulation

Third Run - first pass

Triangulation

Third Run - second pass

Triangulation

Third Run - second pass

Triangulation

Third Run - second pass

Initial DEM

Equalized
DEM

Triangulation
 Fourth Run

- 978 images
- Use three passes - increase weights
- Adjust sensor position
- Use sensor information before global mosaic adjustment
- Initialize Z using equalized DEM

Fourth Run

DEM before equalizer

Fourth Run
DEM After
Equalizer No feathering

Conclusions

- Topography data was collected at 1 km spacing
- Clementine Altimeter 20 km spacing, voids at poles
- Photogrammetric topography
- Systematic bias
- Orbital errors?
- Oblique/nadir stereopairs ?
- Geometry?
- Control point distribution?

Conclusions

\square Modify procedures for lunar north pole collection

- Increase number of match point (~ 4000 points)
- Use higher resolution UVVIS imagery to tie images
- Hand transfer points
- Final data products will be distributed on line

