text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 08-076
Platypus Genome Decoded

Genome may yield clues about evolution and disease prevention

A platypus shown in three ways with a snake, a bird and a gorilla shown to match its attributes.

Platypus DNA is a combination of reptiles, birds and mammals.
Credit and Larger Version

May 7, 2008

The curious discovery of the duck-billed, egg-laying, otter-footed, beaver-tailed, venomous platypus in Australia in 1798 convinced British scientists that it must be a hoax. Sketches of its appearance were thought to be impossible.

But new research proves that the oddness of the platypus' looks isn't just skin-deep. Platypus DNA is an equally cobbled-together array of avian, reptilian and mammalian lineages that may hold clues for human disease prevention.

Mark Batzer of Louisiana State University, along with an international group of scientists led by Wes Warren at Washington University in St. Louis, Mo., recently completed the first draft sequence and analysis of the platypus genome.

It was the first genome sequencing project of a mammal that lays eggs, confirming that platypus DNA also looks like something of a patchwork.

"Their genomic organization was strange and a little unexpected," says Batzer. "It appeared much more bird- and reptile-like than mammalian, even though it is indeed classified as a mammal."

Having the genome in hand is a huge step for scientists seeking new details about evolution and human disease. The fact that the platypus is an ancient animal that is relatively primitive and unchanged may be a scientific boon for researchers.

At least that's the hope of researchers at the National Science Foundation (NSF), who partially funded the study. "Looking at the platypus genome may yield clues about the functions of certain components of DNA and contribute to our understanding of evolution," says Mark Weiss, division director for NSF's behavioral and cognitive sciences.

The platypus occupies the first branch of the mammalian tree of life after the split from "sauropsids" about 315 million years ago. It maintains some long dated features and, as a result, should provide information on how mammals evolved.

"DNA contains small 'mobile elements' that make copies of themselves and then are inserted elsewhere into the genome. These elements can influence important evolutionary processes, and we want to know more about them," says Weiss.

"These mobile elements were once thought to be so small that they had no function," says Batzer. "But, in reality, they cause insertions and deletions which can lead to genetic diseases in humans and they are also involved in the creation of new genes and gene families."

Grants from the National Institutes of Health focused on aspects of genetic disease.

"This is a huge genetic step. We're learning a lot about mammalian gene regulation and immune systems, which has huge implications for disease susceptibility research," says Batzer. "We hope to, in time, identify the underlying causes and methods of disease prevention in humans."

Better insight into monotreme biology, or the biology of mammals that lay eggs, provides a "baseline" for understanding immunity, reproduction and chemoreception, which can further the study of the evolution of human biology.

"In other words, it provides the ‘big picture' as compared to the genomes of other animals more similar to humans that have a more focused window," says Batzer.

In addition, the platypus was chosen as the subject of this study in large part due to its strange appearance, but other selection factors include the species' endangered status in its only indigenous habitat, Australia.

One interesting finding for the researchers is that several of the populations seem to have been geographically separated for a long time. Based on an analysis using mobile elements, the population on the island of Tasmania seemed genetically far distanced compared to other platypus populations from the mainland of Australia.

This was one of the largest platypus population genetics studies ever conducted.

Platypuses are extremely shy by nature and only a few places like Healesville Sanctuary in Victoria, Australia, have had success breeding them in captivity. Researchers hope that some of the clues unearthed in the platypus genome might lead to a better understanding of the history of the species and new conservation efforts.

-NSF-

Media Contacts
Bobbie Mixon, NSF (703) 292-8485 bmixon@nsf.gov
Lisa-Joy Zgorski, NSF (703) 292-8311 lzgorski@nsf.gov
Ashley Berthelot, Louisiana State University (225) 578-3870 aberth4@lsu.edu

Program Contacts
Mark Weiss, NSF (703) 292-7272 mweiss@nsf.gov

Co-Investigators
Mark Batzer, Louisiana State University (225) 578-7102 mbatzer@lsu.edu

Related Websites
Healesville Sanctuary, Victoria, Australia: http://www.zoo.org.au/HealesvilleSanctuary

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Mark Batzer of LSU explains the curious makeup of platypus DNA.
View Video
Mark Batzer of LSU explains the curious makeup of platypus DNA.
Credit and Larger Version

Photo of platypus swimming.
The otter-footed platypus is comfortable on both land and in water.
Credit and Larger Version

Photo of baby platypus born at Healesville Sanctuary, Victoria, Australia.
Platypus research may help uncover information about human gene regulation and immune systems.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
May 9, 2008
Text Only


Last Updated: May 9, 2008