ABLE 6-11b; (ENGLISH). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.044 GR/DSCF) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING PULP PRODUCTION LOSSES)^a TABLE 6-11b; (ENGLISH).

Model recovery furnaces	Pulp type	Black liquor firing rate, Ib BLS/d	Equivalent ADTP/d	Gas flowrate ESP exit, acfm @ 8% O2	Downtime, d	Economizer expansion, demolition,	Concentrator,	Low-odor conversion, \$ (b)	ESP upgrade, \$ (c)	Wet- to dry- bottom ESP conversion, \$ (d)	TCI, \$ (e)
RF-7a/7b	B	900,000	250	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$881,000	\$439,000	\$9,410,000
RF-8a/8b	В	1,500,000	420	198,000	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,200,000	\$596,000	\$12,800,000
RF-9a/9b	B	2,700,000	750	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$1,700,000	\$849,000	\$18,200,000
RF-7a/7b	Unbl	900,000	300	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$881,000	\$439,000	\$9,410,000
RF-8a/8b	Unbi	1,500,000	200	198,000	55	\$6,500,000	\$4,500,000	\$11,000,000	\$1,200,000	\$596,000	\$12,800,000
RF-9a/9b	Unbi	2,700,000	006	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$1,700,000	\$849,000	\$18,200,000

(a) All costs in \$1991
 (b) Low-odor conversion cost = economizer expansion and DCE demolition cost + concentrator cost

Economizer expansion and DCE demolition $cost = $6,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) ^ 0.6]$

Concentrator cost = \$4,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) ^ 0.6]

(c) ESP upgrade cost (to 0.044 gr/dscf) = \$1,292,000/[(230,000 acfm/model gas flowrate) $^{\circ}$ 0.6] x (361.3 \$1991/357 \$May 1993) (d) Wet- to dry-bottom ESP conversion cost = \$845,000/[(357,000 acfm/model gas flowrate) $^{\circ}$ 0.6] x (361.3 \$1991/359.4 \$July 1993) (e) TCl = low-odor conversion cost + ESP upgrade cost + wet- to dry-bottom ESP conversion cost

TABLE 6-12a (METRIC). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM) FOR MODEL DCE RECOVERY FURNACES (INCLUDING PULP PRODUCTION LOSSES)^a

Model recovery furnaces	Pulp type	Black liquor firing rate, kg BLS/d	Equivalent ADMP/d	Gas flowrate Equivalent ESP exit, m3/sec ADMP/d @ 8% 02	Downtime, d	Economizer expansion, demolition, \$	Concentrator,	Low-odor conversion,	ESP upgrade,	Wet- to dry- bottom ESP conversion,		Pulp production	TCI+ production losses,
RF-7a/7b	8	400,000	230	56.2	25	\$4,780,000	\$3,310,000	\$8,090,000	\$881,000	\$439.000	\$9.410.000	\$488,000	000 00
RF-8a/8b	B	700,000	380	93.4	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,200,000	\$596,000	\$12 800 000	000,000	43,500,000
RF-9a/9b	<u>8</u>	1,200,000	089	168	55	\$9,250,000	\$6.400.000	\$15 700 000	\$1 700 000	6840		9920,000	000,000,000
RF-7a/7b	Igun	400,000	270	56.2	35	\$4 780 000	#	000 000 8	000,000,000	000,640%		\$1,460,000	\$19,700,000
RF-8a/8b	IquD	700,000	450	93.4	3 %	\$6.500,000	\$4 500 000	\$41,000,000	9861,000	\$439,000	\$9,410,000	\$348,000	\$9,760,000
RF-9a/9b	linb	1 200 000	008	851	3	-		000,000,110	91,200,000	000,9864	\$12,800,000	\$580,000	\$13,400,000
	_	1,500,000	020	80	62	\$9,250,000	\$6,400,000	\$15,700,000	\$1,700,000	\$849,000	\$18,200,000	\$1,040,000	\$19,200,000

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 6-12b. Refer to Table 6-12b for footnotes, which include calculations.

TABLE 6-12b; (ENGLISH). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.044 GR/DSCF) FOR MODEL DCE RECOVERY FURNACES (INCLUDING PULP PRODUCTION LOSSES)

Model recovery furnaces	Pulp type	Black liquor firing rate, Ib BLS/d	Equivalent ADTP/d	Gas flowrate ESP exit, acfm @ 8% 02	Downtime, d	Economizer expansion, demolition, \$	Concentrator,	Low-odor conversion, \$ (b)	ESP upgrade, \$ (c)	Wet- to dry- bottom ESP conversion, \$ (d)	TCI, \$ (e)	Pulp production losses, \$ (f)	TCI+ production losses,
RF-7a/7b	BI	900,006	250	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$881,000	\$439,000	\$9,410,000	\$488,000	\$9,900,000
RF-8a/8b	В	1,500,000	420	198,000	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,200,000	\$596,000	\$12,800,000	\$820,000	\$13,600,000
RF-9a/9b	BI	2,700,000	750	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$1,700,000	\$849,000	\$18,200,000	\$1,460,000	\$19,700,000
RF-7a/7b	ldnU	000'006	300	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$881,000	\$439,000	\$9,410,000	\$348,000	\$9,760,000
RF-8a/8b	Unbl	1,500,000	200	198,000	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,200,000	\$596,000	\$12,800,000	\$580,000	\$13,400,000
RF-9a/9b	Igun	2,700,000	006	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$1,700,000	\$849,000	\$18,200,000	\$1,040,000	\$19,200,000

(a) All costs in \$1991
 (b) Low-odor conversion cost = economizer expansion and DCE demolition cost + concentrator cost Economizer expansion and DCE demolition cost = \$6,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) ^0.6]

Concentrator cost = $44.500,000/[(1,500,000 \text{ lb BLS/d/model BLS firing rate}) ^ 0.6]$

(c) ESP upgrade cost (to 0.044 gr/dscf) = \$1,292,000/[(230,000 acfm/model gas flowrate) ^ 0.6] x (361.3 \$1991/359.4 \$July 1993)
(d) Wet- to dry-bottom ESP conversion cost = \$845,000/[(357,000 acfm/model gas flowrate) ^ 0.6] x (361.3 \$1991/359.4 \$July 1993)
(e) TCl = low-odor conversion cost + ESP upgrade cost + wet- to dry-bottom ESP conversion cost
(f) Production losses = (25% gross profit margin) x (\$646/fon bleached pulp or \$384/fon unbleached pulp) x (136.2 \$1991/124 \$1989) x (25 d downtime-14 d scheduled downtime) x ADTP/d

TABLE 6-13a (METRIC). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING PULP PRODUCTION LOSSES)^a

Model	-	Black liquor				Economizer expansion,		Low-odor	ESP	Wet- to dry- bottom ESP	
recovery furnaces	rype type	riring rate, kg BLS/d	Equivalent ADMP/d	ESP exit, m3/sec @ 8% 02	Downtime, d	demolition, \$	Concentrator, \$	conversion,	upgrade, \$	conversion, \$	TCI,
RF-7a/7b	8	400,000	230	56.2	25	\$4,780,000	\$3,310,000	\$8,090,000	\$1,270,000	\$439,000	\$9,800,000
RF-8a/8b	8	700,000	380	93.4	52	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13,400,000
RF-9a/9b	B	1,200,000	089	168	25	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849,000	\$19,400,000
RF-7a/7b	Unbl	400,000	270	56.2	25	\$4,780,000	\$3,310,000	\$8,090,000	\$1,270,000	\$439,000	\$9,800,000
RF-8a/8b	Unbl	700,000	450	93.4	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13,400,000
RF-9a/9b	Unbl	1,200,000	820	168	25	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849,000	\$19,400,000

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 6-13b. Refer to Table 6-13b for footnotes, which include calculations.

ABLE 6-13b; (ENGLISH). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.015 GR/DSCF) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING PULP PRODUCTION LOSSES)^a TABLE 6-13b (ENGLISH).

Model		Black liquor		Gas flowrate		Economizer expansion,		Low-odor	ESP	Wet- to dry- bottom ESP	
recovery	Pulp	firing rate,	Equivalent	ESP exit, acfm	Downtime,	demolition,	Concentrator,	conversion,	upgrade,	conversion,	힏
furnaces	type	lb BLS/d	ADTP/d	@ 8% 02	ס	\$	\$	(q) \$	(O) \$	(D) \$	(e) \$
RF-7a/7b	<u>B</u>	900,000	250	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$1,270,000	\$439,000	\$9,800,000
RF-8a/8bb	<u>B</u>	1,500,000	420	198,000	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13.400.000
RF-9a/9b	B	2,700,000	750	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849.000	\$19.400.000
RF-7a/7b	Unbl	900,000	300	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$1.270.000	\$439,000	89.800.000
RF-8a/8b	Unbl	1,500,000	200	198,000	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13.400.000
RF-9a/9b	Unbl	2,700,000	006	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849,000	\$19,400,000

(a) All costs in \$1991
 (b) Low-odor conversion cost = economizer expansion and DCE demolition cost + concentrator cost

Economizer expansion and DCE demolition $\cos t = \$6,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) \sim 0.6]$

Concentrator cost = \$4,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) ^ 0.6]

(c) ESP upgrade cost (to 0.015 gr/dscf) = ESP upgrade cost (to 0.044 gr/dscf) + [(increase in ESP plate area) x (\$39/ft2 plate area)] (d) Wet- to dry-bottom ESP conversion cost = \$845,000/[(357,000 acfm/model gas flowrate) ^ 0.6] x (361.3 \$1991/359.4 \$July 1993) (e) TCl = low-odor conversion cost + ESP upgrade cost + wet- to dry-bottom ESP conversion cost

TABLE 6-14a (METRIC). CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM) FOR MODEL DCE RECOVERY FURNACES (INCLUDING PULP PRODUCTION LOSSES)^a

Gas flowrate- Equivalent ESP exit, m3/sec Downtime,	 owntime,	Economizer expansion, demolition,	Concentrator,	Low-odor conversion,	ESP upgrade,	Wet- to dry- bottom ESP conversion,	TC,	Pulp production	TCI+ production losses,
56.2 25	₩	\$4,780,000	\$3,310,000	\$8,090,000	\$1,270,000	\$439,000	000'008'6\$	\$488,000	\$10,300,000
380 93.4 25 \$6,5	\$6,5	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13,400,000	\$820,000	\$14,200,000
680 168 25 \$9,25	\$9,25	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849,000	\$19,400,000	\$1,460,000	\$20,900,000
270 56.2 25 \$4,78	\$4,78	\$4,780,000	\$3,310,000	\$8,090,000	\$1,270,000	\$439,000	\$9,800,000	\$348,000	\$10,100,000
450 93.4 25 \$6,500,000	\$6,500	000'0	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13,400,000	\$580,000	\$14,000,000
820 168 25 \$9,250,000	\$9.250	000	\$6.400.000	\$15,700,000	\$2.860.000	\$849 000	\$19 400 000	\$1 040 000	\$20.400.000

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 6-14b. Refer to Table 6-14b for footnotes, which include calculations.

CAPITAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TABLE 6-14b; (ENGLISH). CAPITAL COSTS OF LOW-ODOK CONVERSION (INCLUDING PULP TO CONTROL PM TO 0.015 GR/DSCF) FOR MODEL DCE RECOVERY FURNACES (INCLUDING PULP PRODUCTION LOSSES)

Model recovery	Pulp	Black liquor firing rate,	Equivalent	ОЩ	Downtime,	Economizer expansion, demolition,	Economizer expansion, demolition, Concentrator,	Low-odor conversion,	ESP upgrade,	Wet- to dry- bottom ESP conversion,	j D	Pulp production	TCI+ production losses,
rumaces RF-7a/7b	ıybe	10 BLS/d	250 Z	@ 8% 02 119,000	d 25	\$	\$3,310,000	\$ (a) \$8,090,000	\$ (c) \$1,270,000	\$ (d) \$439,000	(e) \$9,800,000	losses, \$ (f) \$488,000	\$10,300,000
RF-8a/8b	18	1,500,000	420	198,000	25	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13,400,000	\$820,000	\$14,200,000
RF-9a/9b	Bi	2,700,000	750	357,000	25	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849,000	\$19,400,000	\$1,460,000	\$20,900,000
RF-7a/7b	Unbl	900,000	300	119,000	25	\$4,780,000	\$3,310,000	\$8,090,000	\$1,270,000	\$439,000	000'008'6\$	\$348,000	\$10,100,000
RF-8a/8b	Unbl	1,500,000	500	198,000	52	\$6,500,000	\$4,500,000	\$11,000,000	\$1,840,000	\$596,000	\$13,400,000	\$580,000	\$14,000,000
RF-9a/9b	Unbl	2,700,000	900	357,000	22	\$9,250,000	\$6,400,000	\$15,700,000	\$2,860,000	\$849,000	\$19,400,000	\$1,040,000	\$20,400,000

(a) All costs in \$1991(b) Low-odor conver

Low-odor conversion cost = economizer expansion and DCE demolition cost + concentrator cost

Economizer expansion and DCE demolition cost = \$6,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) $^{\circ}$ 0.6] Concentrator cost = \$4,500,000/[(1,500,000 lb BLS/d/model BLS firing rate) $^{\circ}$ 0.6]

(c) ESP upgrade cost (to 0.015 gr/dscf) = ESP upgrade cost (to 0.044 gr/dscf) + [(increase in ESP plate area)]
(d) Wet- to dry-bottom ESP conversion cost = \$845,000/[(357,000 acfm/model gas flowrate) ^ 0.6] x (361.3 \$1991/359.4 \$July 1993)
(e) TCl = low-odor conversion cost + ESP upgrade cost + wet- to dry-bottom ESP conversion cost
(f) Production losses = (25% gross profit margin) x (\$646/flon bleached pulp or \$384/flon unbleached pulp) x (136.2 \$1991/124 \$1989) x (25 d downtime-14 d scheduled downtime) x ADTP/d

MODEL DCE RECOVERY FURNACE/ESP DESIGN PARAMETERS TABLE 6-15a (METRIC).

			Model Recovery Furnaces	Furnaces		
Model furnace/ESP design parameters	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Black liquor firing rate, kg BLS/d	400,000	400,000	700,000	700,000	1,200,000	1,200,000
Equivalent ADMP/d Bleached pulp Unbleached pulp	230 270	230 270	380 450	380 450	680 820	680
Gas flow rateESP exit, m3/sec	56.2	56.2	93.4	93.4	168	168
ESP SCA, m2/(m3/sec) Baseline PM controls0.10 g/dscm	66 105	85 105	66 105	85 105	66 201	85
PM controls0.034 g/dscm	121	121	121	121	121	121
ESP plate area, m2 Baseline	3,688	4,794	6,129	796,7	11,024	14.331
PM controls-0.10 g/dscm	5,900	5,900	9,806	9)806	17,638	17,638
PM controls0.034 g/dscm	6,822	6,822	11,338	11,338	20,394	20,394
Operating days per year	351	351	351	351	351	351
Operating hours per year	8,424	8,424	8,424	8,424	8,424	8,424

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 6-15b.

TABLE 6-15b (ENGLISH). MODEL DCE RECOVERY FURNACE/ESP DESIGN PARAMETERS

			Model Recovery Furnaces	Furnaces		
Model furnace/ESP design parameters	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Black liquor firing rate, lb BLS/d	000'006	000'006	1,500,000	1,500,000	2,700,000	2,700,000
Equivalent ADTP/d Bleached pulp Unbleached pulp	250	250 300	420 500	420 500	750 900	750
Gas flow rateESP exit, acfm	119,000	119,000	198,000	198,000	357,000	357,000
Exhaust gas temperature, degrees F	320	320	320	320	320	320
Moisture contentESP exit, %	32	32	32	32	32	32
ESP SCA, ft2/1,000 acfm						
Baseline	333	433	333	433	333	433
PM controls0.044 gr/dscf	533	533	533	533	533	533
PM controls0.015 gr/dscf	617	617	617	617	617	617
ESP plate area, ft2						
Baseline	39,667	51,567	000'99	85,800	119,000	154,700
PM controls0.044 gr/dscf	63,467	63,467	105,600	105,600	190,400	190,400
PM controls0.015 gr/dscf	73,383	73,383	122,100	122,100	220,150	220,150
Operating days per year	351	351	351	351	351	351
Operating hours per year	8,424	8,424	8,424	8,424	8,424	8,424

TABLE 6-16. SCENARIO 1: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM [0.044 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING ANNUALIZED PULP PRODUCTION LOSSES) a

			Model Recover	y Furnaces		
Costs	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Total Capital Investment (TCI)	\$9,410,000	\$9,410,000	\$12,800,000	\$12,800,000	\$18,200,000	\$18,200,000
Direct Annual Costs (DAC)						
Steam production credits (b)]				
Natural gas	(\$758,000)	(\$758,000)	(\$1,260,000)	(\$1,260,000)	(\$2,270,000)	(\$0.070.000)
Fuel oil	(\$1,190,000)	(\$1,190,000)	(\$1,990,000)	(\$1,280,000)	(\$3,580,000)	(\$2,270,000) (\$3,580,000)
BLO operating cost savings (c)	(\$103,000)	(\$103,000)	(0470.000)	(0.170.000)	1	
DES operating cost savings (c)	(\$103,000)	(\$103,000)	(\$172,000)	(\$172,000)	(\$309,000)	(\$309,000)
Concentrator steam costs (d)	\$57,800	\$57,800	\$96,300	\$96,300	\$173,000	\$173,000
ESP operating electricity costs (e)	\$23,300	\$11,700	\$38,800	\$19,400	\$70,000	\$35,000
Total DAC	l					
Natural gas	(\$780,000)	(\$792,000)	(\$1,300,000)	(\$1,320,000)	(\$2,340,000)	(\$2,370,000)
Fuel oil	(\$1,210,000)	(\$1,220,000)	(\$2,030,000)	(\$2,050,000)	(\$3,650,000)	(\$3,680,000)
Indirect Annual Costs (IAC)						
Administrative, taxes, and insurance (f)						
Low-odor conversion	\$324,000	\$324,000	\$440,000	\$440,000	#000 000	****
ESP upgrade	\$35,200	\$35,200	\$48,000		\$628,000	\$628,000
Wet- to dry-bottom ESP conversion	\$17,600	\$17,600	\$23,800	\$48,000	\$68,000	\$68,000
Total	\$377,000	\$377,000	\$512,000	\$23,800 \$512,000	\$34,000 \$730,000	\$34,000 \$730,000
- Capital recovery (g)			·			
Low-odor conversion	4704000					
ESP upgrade	\$764,000	\$764,000	\$1,040,000	\$1,040,000	\$1,480,000	\$1,480,000
	\$103,000	\$103,000	\$140,000	\$140,000	\$199,000	\$199,000
Wet- to dry-bottom ESP conversion Total	\$51,300	\$51,300	\$69,700	\$69,700	\$99,200	\$99,200
Total	\$918,000	\$918,000	\$1,250,000	\$1,250,000	\$1,780,000	\$1,780,000
Total IAC	\$1,300,000	\$1,300,000	\$1,760,000	\$1,760,000	\$2,510,000	\$2,510,000
Total Annual Costs						
Natural gas	\$520,000	\$508,000	\$460,000	\$440,000	\$170,000	\$140,000
Fuel oil	\$90,000	\$80,000	(\$270,000)	(\$290,000)	(\$1,140,000)	(\$1,170,000)

⁽a) All costs in \$1991. Numbers in parentheses represent cost savings.

⁽b) Steam production credit calculations (either natural gas or fuel oil):

Natural gas credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiciency)/(85% power boiler efficiciency) x (1 ft3/1,024 Btu) x (8,424 hr/yr) x (\$3.48/1,000 ft3)

Fuel oil credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiency)/(85% power boiler efficiency) x (1 gal/144,000 Btu) x (8,424 hr/yr) x (\$0.77/gal)

⁽c) BLO operating cost savings = \$251,900/yr x (model BLS firing rate/2,200,000 lb BLS/d) (d) Concentrator steam costs = \$54,000/yr x (model BLS firing rate/2,400,000 lb BLS/d)

⁽e) ESP operating electricity cost = 0.00194 x increase in ESP plate area x 8,424 hr/yr x \$0.06/kWh

⁽f) Administrative, taxes, and insurance = 0.04 x TCI

⁽g) For low-odor conversion, capital recovery cost = 0.0944 x TCl (based on 20-yr remaining service life and 7% interest) For ESP upgrade and wet- to dry-bottom ESP conversion, capital recovery cost = 0.1169 x TCI (based on 13.5-yr ESP life and 7% interest)

TABLE 6-17. SCENARIO 2: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM [0.044 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (INCLUDING BLEACHED PULP PRODUCTION LOSSES) a

			Model Recover	y Furnaces		
Costs	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Total Capital Investment (TCI)	\$9,900,000	\$9,900,000	\$13,600,000	\$13,600,000	\$19,700,000	\$19,700,000
Direct Annual Costs (DAC)						
Steam production credits (b)						
Natural gas	(\$758,000)	(\$758,000)	(\$1,260,000)	(\$1,260,000)	(\$2,270,000)	(\$0.070.000)
Fuel oil	(\$1,190,000)	(\$1,190,000)	(\$1,990,000)	(\$1,990,000)	(\$3,580,000)	(\$2,270,000) (\$3,580,000)
, 23, 3,,	(\$1,100,000)	(ψ1,130,000)	(\$1,880,000)	(\$1,550,000)	(\$3,360,000)	(\$3,580,000)
BLO operating cost savings (c)	(\$103,000)	(\$103,000)	(\$172,000)	(\$172,000)	(\$309,000)	(\$309,000)
Concentrator steam costs (d)	\$57,800	\$57,800	\$96,300	\$96,300	\$173,000	\$173,000
ESP operating electricity costs (d)	\$23,300	\$11,700	\$38,800	\$19,400	\$70,000	\$35,000
Total DAC					i	i
Natural gas	(\$780,000)	(\$792,000)	(\$1,300,000)	(\$1,320,000)	(\$2,340,000)	(\$2,370,000)
Fuel oil	(\$1,210,000)	(\$1,220,000)	(\$2,030,000)	(\$2,050,000)	(\$3,650,000)	(\$3,680,000)
	.,,	(4.1==1,000)	(42,000,000)	(42,000,000)	(40,000,000)	(\$0,000,000)
Indirect Annual Costs (IAC)	<u></u>					
Administrative, taxes, and insurance (e)						
Low-odor conversion	324,000	324.000	440.000	440,000	628,000	628,000
ESP upgrade	35,200	35,200	48,000	48,000	68,000	68,000
Wet- to dry-bottom ESP conversion	17,600	17,600	23,800	23,800	34,000	34,000
Total	\$377,000	\$377,000	\$512,000	\$512,000	\$730.000	\$730,000
-	,	45.1,000	ΨΟ 12,000	ΨΟ12,000	φ/30,000	\$730,000
Capital recovery (f)						
Low-odor conversion	\$764,000	\$764,000	\$1,040,000	\$1,040,000	\$1,480,000	\$1,480,000
ESP upgrade	\$103,000	\$103,000	\$140,000	\$140,000	\$199,000	\$199,000
Wet- to dry-bottom ESP conversion	\$51,300	\$51,300	\$69,700	\$69,700	\$99.200	\$99,200
Production losses	\$46,100	\$46,100	\$77,400	\$77,400	\$138,000	\$138,000
Total	\$964,000	\$964,000	\$1,330,000	\$1,330,000	\$1,920,000	\$1,920,000
Total IAC	\$1,340,000	\$1,340,000	\$1,840,000	\$1,840,000	\$2,650,000	\$2,650,000
Total Annual Costs			,,,			,
Natural gas	\$560,000	#E46.000	45.40.000	****		
Fuel oil	\$130,000	\$548,000	\$540,000	\$520,000	\$310,000	\$280,000
1 461 011	<u> Φ130,000</u>	\$120,000	(\$190,000)	(\$210,000)	(\$1,000,000)	(\$1,030,000)

⁽a) All costs in \$1991. Numbers in parentheses represent cost savings. (b) Steam production credit calculations (either natural gas or fuel oil):

Natural gas credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiciency)/(85% power boiler efficiciency) x (1 ft3/1,024 Btu) x (8,424 hr/yr) x (\$3.48/1,000 ft3)

Fuel oil credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiency)/(85% power boiler efficiency) x (1) gal/144,000 Btu) x (8,424 hr/yr) x (50.07/gal)

(c) BLO operating cost savings = \$251,900/yr x (model BLS firing rate/2,200,000 lb BLS/d)

(d) Concentrator steam costs = \$54,000/yr x (model BLS firing rate/2,400,000 lb BLS/d)

⁽e) ESP operating electricity cost = 0.00194 x increase in ESP plate area x 8,424 hr/yr x \$0.06/kWh

⁽f) Administrative, taxes, and insurance = 0.04 x TCI

⁽g) For low-odor conversion, capital recovery cost = 0.0944 x TCl (based on 20-yr remaining service life and 7% interest)

For ESP upgrade and wet- to dry-bottom ESP conversion, capital recovery cost = 0.1169 x TCl (based on 13.5-yr ESP life and 7% interest)

TABLE 6-18. SCENARIO 3: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.10 G/DSCM [0.044 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (INCLUDING UNBLEACHED PULP PRODUCTION LOSSES) a

			Model Recovery	Furnaces		
Costs	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Total Capital Investment (TCI)	\$9,760,000	\$9,760,000	\$13,400,000	\$13,400,000	\$19,200,000	\$19,200,000
Direct Annual Costs (DAC)						
Steam production credits (b)	1	l		ļ		
Natural gas	(\$758,000)	(\$758,000)	(\$1,260,000)	(\$1,260,000)	(\$2,270,000)	(\$0.070.000)
Fuel oil	(\$1,190,000)	(\$1,190,000)	(\$1,990,000)	(\$1,990,000)	(\$3,580,000)	(\$2,270,000 (\$3,580,000
	(4.1,100,000)	(\$1,100,000)	(\$1,550,550)	(Φ1,990,000)	(\$3,360,000)	(\$3,580,000
BLO operating cost savings (c)	(\$103,000)	(\$103,000)	(\$172,000)	(\$172,000)	(\$309,000)	(\$309,000)
Concentrator steam costs (d)	\$57,800	\$57,800	\$96,300	\$96,300	\$173,000	\$173,000
ESP operating electricity costs (e)	\$23,300	\$11,700	\$38,800	\$19,400	\$70,000	\$35,000
Total DAC		1				,
Natural gas	(\$700,000)	(6700,000)	(0.1.000.000)			
Fuel oil	(\$780,000)	(\$792,000)	(\$1,300,000)	(\$1,320,000)	(\$2,340,000)	(\$2,370,000
T del on	(\$1,210,000)	(\$1,220,000)	(\$2,030,000)	(\$2,050,000)	(\$3,650,000)	(\$3,680,000
ndirect Annual Costs (IAC)						
Administrative, taxes, and insurance (f)						
Low-odor conversion	324,000	324,000	440.000	440.000		
ESP upgrade	35,200	35,200	440,000 48,000	440,000	628,000	628,000
Wet- to dry-bottom ESP conversion	17,600	17.600		48,000	68,000	68,000
Total	377.000	377,000	23,800	23,800	34,000	34,000
, out	377,000	377,000	512,000	512,000	730,000	730,000
Capital recovery (g)						
Low-odor conversion-	\$764,000	\$764,000	\$1,040,000	\$1,040,000	\$1,480,000	\$1,480,000
ESP upgrade	\$103,000	\$103,000	\$140,000	\$140,000	\$1,480,000	\$1,480,000
Wet- to dry-bottom ESP conversion	\$51,300	\$51,300	\$69,700	\$69,700	\$99,200	\$99,200
Production losses	\$32,900	\$32,900	\$54,800	\$54,800	\$98,200	\$98,200
Total	951,000	951,000	1,300,000	1,300,000	1,880,000	
],	001,000	1,000,000	1,500,000	1,000,000	1,880,000
Total IAC	\$1,330,000	\$1,330,000	\$1,820,000	\$1,820,000	\$2,610,000	\$2,610,000
otal Annual Costs						
Natural gas	\$550,000	\$538,000	\$520,000	\$500,000	\$270,000	\$240,000
Fuel oil	\$120,000	\$110,000	(\$210,000)	(\$230,000)	(\$1,040,000)	(\$1,070,000)

⁽a) All costs in \$1991. Numbers in parentheses represent cost savings.

⁽b) Steam production credit calculations (either natural gas or fuel oil):

Natural gas credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiciency)/(85% power boiler efficiciency) x (1 ft3/1,024 Btu) x (8,424 hr/yr) x (\$3.48/1,000 ft3)

Fuel oil credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiency)/(85% power boiler efficiency) x (1 gal/144,000 Btu) x (8,424 hr/yr) x (\$0.77/gal)

⁽c) BLO operating cost savings = \$251,900/yr x (model BLS firing rate/2,200,000 lb BLS/d)
(d) Concentrator steam costs = \$54,000/yr x (model BLS firing rate/2,400,000 lb BLS/d)
(e) ESP operating electricity cost = 0.00194 x increase in ESP plate area x 8,424 hr/yr x \$0.06/kWh

⁽f) Administrative, taxes, and insurance = 0.04 x TCI

⁽g) For low-odor conversion, capital recovery cost = 0.0944 x TCl (based on 20-yr remaining service life and 7% interest)

For ESP upgrade and wet- to dry-bottom ESP conversion, capital recovery cost = 0.1169 x TCl (based on 13.5-yr ESP life and 7% interest)

TABLE 6-19. SCENARIO 1: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM [0.015 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (EXCLUDING ANNUALIZED PULP PRODUCTION LOSSES) a

			Model Recovery	Furnaces		
Costs	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Total Capital Investment (TCI)	\$9,800,000	\$9,800,000	\$13,400,000	\$13,400,000	\$19,400,000	\$19,400,000
Direct Annual Costs (DAC)						
Steam production credits (b) Natural gas Fuel oil	(\$758,000) (\$1,190,000)	(\$758,000) (\$1,190,000)	(\$1,263,000) (\$1,990,000)	(\$1,260,000) (\$1,990,000)	(\$2,270,000) (\$3,580,000)	(\$2,270,000) (\$3,580,000)
BLO operating cost savings (c)	(\$103,000)	(\$103,000)	(\$172,000)	(\$172,000)	(\$309,000)	(\$309,000)
Concentrator steam costs (d)	\$57,800	\$57,800	\$96,300	\$96,300	\$173,000	\$173,000
ESP operating electricity costs (e)	\$33,100	\$21,400	\$55,000	\$35,600	\$99,200	\$64,200
Total DAC Natural gas Fuel oil	(\$770,000) (\$1,200,000)	(\$782,000) (\$1,210,000)	(\$1,280,000) (\$2,010,000)	(\$1,300,000) (\$2,030,000)	(\$2,310,000) (\$3,620,000)	(\$2,340,000) (\$3,650,000)
Indirect Annual Costs (IAC)						
Administrative, taxes, and insurance (f) Low-odor conversion ESP upgrade Wet- to dry-bottom ESP conversion Total	324,000 50,800 17,600 392,000	324,000 50,800 17,600 392,000	440,000 73,600 23,800 537,000	440,000 73,600 23,800 537,000	628,000 114,000 34,000 776,000	628,000 114,000 34,000 776,000
Capital recovery (g) Low-odor conversion ESP upgrade Wet- to dry-bottom ESP conversion Total	\$764,000 \$148,000 \$51,300 963,000	\$764,000 \$148,000 \$51,300 963,000	\$1,040,000 \$215,000 \$69,700 1,320,000	\$1,040,000 \$215,000 \$69,700 1,320,000	\$1,480,000 \$334,000 \$99,200 1,910,000	\$1,480,000 \$334,000 \$99,200 1,910,000
Total IAC	\$1,360,000	\$1,360,000	\$1,860,000	\$1,860,000	\$2,690,000	\$2,690,000
Total Annual Costs Natural gas	\$590,000	\$578,000	\$580,000	\$560,000	\$380,000	\$350,000
Fuel oil	\$160,000	\$150,000	(\$150,000)	(\$170,000)	(\$930,000)	(\$960,000)

⁽a) All costs in \$1991. Numbers in parentheses represent cost savings.

⁽b) Steam production credit calculations (either natural gas or fuel oil):

Natural gas credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiciency)/(85% power boiler efficiciency) x (1 ft3/1,024 Btu) x (8,424 hr/yr) x (\$3.48/1,000 ft3)

Fuel oil credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiency)/(85% power boiler efficiency) x (1 gal/144,000 Btu) x (8,424 hr/yr) x (\$0.77/gal)

(c) BLO operating cost savings = \$251,900/yr x (model BLS firing rate/2,200,000 lb BLS/d)

(d) Concentrator steam costs = \$54,000/yr x (model BLS firing rate/2,400,000 lb BLS/d)

(e) ESP operating electricity cost = 0.00194 x increase in ESP plate area x 8,424 hr/yr x \$0.06/kWh

⁽f) Administrative, taxes, and insurance = 0.04 x TCI

⁽g) For low-odor conversion, capital recovery cost = 0.0944 x TCl (based on 20-yr remaining service life and 7% interest)

For ESP upgrade and wet- to dry-bottom ESP conversion, capital recovery cost = 0.1169 x TCl (based on 13.5-yr ESP life and 7% interest)

TABLE 6-20. SCENARIO 2: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM [0.015 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (INCLUDING BLEACHED PULP PRODUCTION LOSSES) a

	1		Model Recovery	Furnaces		
Costs	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Total Capital Investment (TCI)	\$10,300,000	\$10,300,000	\$14,200,000	\$14,200,000	\$20,900,000	\$20,900,000
Direct Annual Costs (DAC)						
Steam production credits (b)						
Natural gas	(\$758,000)	(\$758,000)	(\$1,260,000)	(\$1,260,000)	(\$2,270,000)	(\$2,270,000)
Fuel oil	(\$1,190,000)	(\$1,190,000)	(\$1,990,000)	(\$1,990,000)	(\$3,580,000)	(\$3,580,000)
BLO operating cost savings (c)	(\$103,000)	(\$103,000)	(\$172,000)	(\$172,000)	(\$309,000)	(\$309,000)
Concentrator steam costs (d)	\$57,800	\$57,800	\$96,300	\$96,300	\$173,000	\$173,000
ESP operating electricity costs (d)	\$33,100	\$21,400	\$55,000	\$35,600	\$99,200	\$64,200
Total DAC						
Natural gas	(\$770,000)	(\$782,000)	(\$1,280,000)	(\$1,300,000)	(\$2,310,000)	(\$2,340,000)
Fuel oil	(\$1,200,000)	(\$1,210,000)	(\$2,010,000)	(\$2,030,000)	(\$3,620,000)	(\$3,650,000)
Indirect Annual Costs (IAC)						
Administrative, taxes, and insurance (e)						
Low-odor conversion	324,000	324.000	440,000	440.000	628.000	628,000
ESP upgrade	50,800	50,800	73,600	73,600	114,000	114,000
Wet- to dry-bottom ESP conversion	17,600	17,600	23.800	23,800	34,000	34,000
Total	392,000	392,000	537,000	537,000	776,000	776,000
, Capital recovery (f) -						
Low-odor conversion	\$764,000	\$764,000	\$1,040,000	\$1,040,000	\$1,480,000	\$1,480,000
ESP upgrade	\$148,000	\$148,000	\$215,000	\$215,000	\$334,000	\$334,000
Wet- to dry-bottom ESP conversion	\$51,300	\$51,300	\$69,700	\$69,700	\$99,200	\$99,200
Production losses	\$46,100	\$46,100	\$77,400	\$77,400	\$138,000	\$138,000
Total	1,010,000	1,010,000	1,400,000	1,400,000	2,050,000	2,050,000
Total IAC	\$1,400,000	\$1,400,000	\$1,940,000	\$1,940,000	\$2,830,000	\$2,830,000
Total Annual Costs						
Natural gas	\$630,000	\$618,000	\$660,000	\$640,000	\$520,000	\$490,000
Fuel oil	\$200,000	\$190,000	(\$70,000)	(\$90,000)	(\$790,000)	(\$820,000)

⁽a) All costs in \$1991. Numbers in parentheses represent cost savings.

⁽a) All Costs in a 1991. Maintens in patiential sease represent costs advings.

(b) Steam production credit calculations (either natural gas or fuel oil):

Natural gas credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiciency)/(85% power boiler efficiciency) x (1 ft3/1,024 Btu) x (8,424 hr/yr) x (\$3.48/1,000 ft3)

Fuel oil credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiency)/(85% power boiler efficiency) x (1 gal/144,000 Btu) x (8,424 hr/yr) x (\$0.77/gal)

(c) BLO operating cost savings = \$251,900/yr x (model BLS firing rate/2,200,000 lb BLS/d)

(d) Concentrator steam costs = \$54,000/yr x (model BLS firing rate/2,400,000 lb BLS/d)

(e) ESP operating electricity cost = 0.00194 x increase in ESP plate area x 8,424 hr/yr x \$0.06/kWh

⁽f) Administrative, taxes, and insurance = 0.04 x TCI

⁽g) For low-odor conversion and production losses, capital recovery cost = 0.0944 x TCI (based on 20-yr remaining service life and 7% interest) For ESP upgrade and wet- to dry-bottom ESP conversion, capital recovery cost = 0.1169 x TCI (based on 13.5-yr ESP life and 7% interest)

TABLE 6-21. SCENARIO 3: ANNUAL COSTS OF LOW-ODOR CONVERSION (INCLUDING ESP UPGRADE TO CONTROL PM TO 0.034 G/DSCM [0.015 GR/DSCF]) FOR MODEL DCE RECOVERY FURNACES (INCLUDING UNBLEACHED PULP PRODUCTION LOSSES) a

			Model Recovery	Furnaces		
Costs	RF-7a	RF-7b	RF-8a	RF-8b	RF-9a	RF-9b
Total Capital Investment (TCI)	\$10,100,000	\$10,100,000	\$14,000,000	\$14,000,000	\$20,400,000	\$20,400,000
Direct Annual Costs (DAC)						
Steam production credits (b)						
Natural gas	(\$758,000)	(\$758,000)	(\$1,260,000)	(\$1,260,000)	(\$2,270,000)	(\$2,270,000)
Fuel oil	(\$1,190,000)	(\$1,190,000)	(\$1,990,000)	(\$1,990,000)	(\$3,580,000)	(\$3,580,000)
. 44. 5	(\$1,100,000)	(ψ1,100,000)	(Ψ1,330,000)	(ψ1,990,000)	(\$3,360,000)	(\$3,380,000)
BLO operating cost savings (c)	(\$103,000)	(\$103,000)	(\$172,000)	(\$172,000)	(\$309,000)	(\$309,000)
Concentrator steam costs (d)	\$57,800	\$57,800	\$96,300	\$96,300	\$173,000	\$173,000
ESP operating electricity costs (e)	\$33,100	\$21,400	\$55,000	\$35,600	\$99,200	\$64,200
Total DAC						
Natural gas	(\$770,000)	(\$782,000)	(\$1,280,000)	(\$1,300,000)	(\$2,310,000)	(\$2,340,000)
Fuel oil	(\$1,200,000)	(\$1,210,000)	(\$2,010,000)	(\$2,030,000)	(\$3,620,000)	(\$3,650,000)
	(0.1200,000)	(\$1,210,000)	(42,010,000)	(02,000,000)	(40,020,000)	(#0,000,000)
Indirect Annual Costs (IAC)						
Administrative, taxes, and insurance (f)						
Low-odor conversion	324,000	324.000	440,000	440.000	628.000	628,000
ESP upgrade	50,800	50,800	73,600	73,600	114,000	114,000
Wet- to dry-bottom ESP conversion	17,600	17,600	23,800	23,800	34,000	34.000
Total	392,000	392,000	537,000	537,000	776,000	776,000
Capital recovery (g)			·	,	,	,
Low-odor conversion	6704.000	\$704.000	** *** ***			
ESP upgrade	\$764,000	\$764,000	\$1,040,000	\$1,040,000	\$1,480,000	\$1,480,000
Wet- to dry-bottom ESP conversion	\$148,000	\$148,000	\$215,000	\$215,000	\$334,000	\$334,000
Production losses	\$51,300	\$51,300	\$69,700	\$69,700	\$99,200	\$99,200
Total	\$32,900 996,000	\$32,900	\$54,800	\$54,800	\$98,200	\$98,200
i Otai	990,000	996,000	1,380,000	1,380,000	2,010,000	2,010,000
Total IAC	\$1,390,000	\$1,390,000	\$1,920,000	\$1,920,000	\$2,790,000	\$2,790,000
Total Annual Costs						
Natural gas	\$620,000	\$608,000	\$640,000	\$620,000	\$480,000	\$450,000
Fuel oil	\$190,000	\$180,000	(\$90,000)	(\$110,000)	(\$830,000)	(\$860,000)
	ψ 130,000	φ100,000	(490,000)	(\$110,000)	(4030,000)	(\$660,000)

⁽a) All costs in \$1991. Numbers in parentheses represent cost savings.

⁽b) Steam production credit calculations (either natural gas or fuel oil):

Natural gas credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiciency)/(85% power boiler efficiciency) x (1 ft3/1,024 Btu) x (8,424 hr/yr) x (\$3.48/1,000 ft3)

Fuel oil credit = (model BLS firing rate) x (6,000 Btu/lb) x (1 d/24 hr) x (66%-56% thermal efficiency)/(85% power boiler efficiency) x (1 gal/144,000 Btu) x (8,424 hr/yr) x (\$0.77/gal)

⁽c) BLO operating cost savings = \$251,900/yr x (model BLS firing rate/2,200,000 lb BLS/d)
(d) Concentrator steam costs = \$54,000/yr x (model BLS firing rate/2,400,000 lb BLS/d)
(e) ESP operating electricity cost = 0.00194 x increase in ESP plate area x 8,424 hr/yr x \$0.06/kWh

⁽f) Administrative, taxes, and insurance = 0.04 x TCI

⁽g) For low-odor conversion and production losses, capital recovery cost = 0.0944 x TCI (based on 20-yr remaining service life and 7% interest) For ESP upgrade and wet- to dry-bottom ESP conversion, capital recovery cost = 0.1169 x TCl (based on 13.5-yr ESP life and 7% interest)

TABLE 6-22a (METRIC). GAS AND LIQUID STREAM PARAMETERS FOR RECOVERY FURNACE MODEL PROCESS UNITS^a

			DCE Recover		Model I	OCE Recovery	Furnaces
Parameters	RF-1/4/8	RF-2/5/9	RF-3/6	RF-7	RF-7	RF-8	RF-9
Gas Stream Properties:							
ESP Outlet:							
Flow rate, m ³ /sec	93	168	243	56	56	93	168
Temperature, °C	199	199	199	199	160	160	160
Moisture content, %	26	26	26	26	32	32	32
Out of Quench:							
Flow rate, m ³ /sec	76	136	197	45	48	80	144
Temperature, °C	72	72	72	72	74	74	74
Moisture content, %	33	33	33	33	37	37	37
Density, kg/m ³	0.8946	0.8946	0.8946	0.8946	0.8762	0.8762	0.8762
Molecular weight, g/gmole	25.3	25.3	25.3	25.3	25.0	25.0	25.0
Viscosity, kg/m-hr	0.0617	0.0617	0.0617	0.0617	0.0607	0.0607	0.0607
HCl concentration, ppmv	9.7	9.7	9.7	9.7	9.2	9.2	9.2
HCl emissions, kg/d -	82	147	212	49	49	82	147
Out of Absorber:							
HCl concentration, ppmv	5	5	5	5	5	5	5
Liquid Stream Properties:							
HCl concentration in entering liquid, gmole HCl per gmole pollutant-free liquid	0	0	0	0	0	0	0
Density, kg/m ³	999	999	999	999	999	999	999
Molecular weight, g/gmole	18	18	18	18	18	18	18
Pollutant Properties:	:						
Diffusivity of HCl in air, m ² /hr	0.0673	0.0673	0.0673	0.0673	0.0673	0.0673	0.0673
Diffusivity of HCl in water, m ² /hr	9.4E-6	9.4-6	9.4E-6	9.4E-6	9.4E-6	9.4E-6	9.4E-6

^aMetric equivalents in this table were converted from the calculated English unit values given in Table 6-22b.

TABLE 6-22b (ENGLISH). GAS AND LIQUID STREAM PARAMETERS FOR RECOVERY FURNACE MODEL PROCESS UNITS

11200		OCE/Converted			Model I	OCE Recovery	Furnaces
			1	Ĭ		1	
Parameters	RF-1/4/8	RF-2/5/9	RF-3/6	RF-7	RF-7	RF-8	RF-9
Gas Stream Properties:							1
ESP Outlet:							
Flow rate, acfm	198,000	357,000	515,000	119,000	119,000	198,000	357,000
Temperature, °F	390	390	390	390	320	320	320
Moisture content, %	26	26	26	26	32	32	32
Out of Quench ^a :							
Flow rate, acfm	161,000	289,000	417,000	96,500	102,000	170,000	307,000
Temperature, °F	161	161	161	161	165	165	165
Moisture content, %	33	33	33	33	37	37	37
Density, lb/ft ³	0.05587	0.05587	0.05587	0.05587	0.05470	0.05470	0.05470
Molecular weight, lb/lbmole	25.3	25.3	25.3	25.3	25.0	25.0	25.0
Viscosity, lb/ft-hr	0.0415	0.0415	0.0415	0.0415	0.0408	0.0408	0.0408
HCl concentration, ppmv	9.7	9.7	9.7	9.7	9.2	9.2	9.2
HCl emissions, lb/d	180	324	468	108	108	180	324
Out of Absorber:							
HCl concentration, ppmv	5	5	5	5	5	5	5
Liquid Stream Properties:							
HCl concentration in entering liquid, Ibmole HCl per Ibmole pollutant- free liquid	0	0	0	0	0	0	0
Density, lb/ft ³	62.4	62.4	62.4	62.4	62.4	62.4	62.4
Molecular weight, lb/lbmole	18	18	18	18	18	18	18
Pollutant Properties:							i
Diffusivity of HCl in air, ft ² /hr	0.725	0.725	0.725	0.725	0.725	0.725	0.725
Diffusivity of HCl in water, ft ² /hr	1.02E-4	1.02E-4	1.02E-4	1.02E-4	1.02E-4	1.02E-4	1.02E-4

^aTo simplify the packed-bed scrubber design analysis, it was assumed that the gas stream exiting the ESP was cooled to saturation with water sprays.

TABLE 6-23a (METRIC). PACKED-BED SCRUBBER DESIGN AND OPERATING PARAMETERS^a

		OCE/Converted			Model D	CE Recovery	Furnaces
Packed-Bed Scrubber Parameters	RF-1/4/8	RF-2/5/9	RF-3/6	RF-7	RF-7	RF-8	RF-9
Packed-Bed Scrubber Design Parameters:							
Cross-sectional area, m ²	36	64	93	21	22	37	67
Vessel diameter, m	6.7	9.0	11	5.2	5.4	6.9	9.3
Packing height, m	0.47	0.47	0.47	0.47	0.43	0.43	0.43
Tower height, m	8.4	11	13	6.8	6.9	8.5	11
Surface area, m ²	249	433	615	155	161	259	452
Pressure drop, mm Hg	2.4	2.4	2.4	2.4	2.2	2.2	2.2
Auxiliary Equipment:							
Stack height, m	30.5	30.5	30.5	30.5	30.5	30.5	30.5
Stack diameter, m	3.1	4.1	5.0	2.4	2.5	3.2	4.3
Fan impeller diameter, m	2.7	3.6	4.1	2.2	2.3	2.8	3.7
Fan motor efficiency, fraction	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Pump motor efficiency, fraction	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Power for fan, kW	34.4	62.3	89.5	20.6	20.2	33.6	60.7
Power for pump, kW	28.1	50.6	73.1	16.9	17.7	29.5	53.1
Wastewater flow rate, L/min	6.25	11.2	16.2	3.75	3.21	5.36	9.65
Caustic addition (dry NaOH), kg/hr	25.6	46.1	66.6	15.4	13.2	22.0	39.6
Column Operation:							
Minimum wetting rate, m ² /hr	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Fraction of flooding gas velocity	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Operating hours per year Equipment Labor	8,424 8,760						
Operating labor requirement, hr/d	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Maintenance labor requirement, hr/d	1.5	1.5	1.5	1.5	1.5	1.5	1.5

^aMetric equivalents in this table were converted from the calculated English unit values given in Table 6-23b.

TABLE 6-23b (ENGLISH). PACKED-BED SCRUBBER DESIGN AND OPERATING PARAMETERS

		CE/C			34.1.15	CE D.	E
Packed-Bed Scrubber		OCE/Converted	i -			CE Recovery	
Parameters	RF-1/4/8	RF-2/5/9	RF-3/6	RF-7	RF-7	RF-8	RF-9
Packed-Bed Scrubber Design Parameters:							
Cross-sectional area, ft ²	384	690	998	231	242	403	725
Vessel diameter, ft	22.1	29.6	35.6	17.1	17.6	22.7	30.4
Packing height, ft	1.54	1.54	1.54	1.53	1.41	1.41	1.41
Tower height, ft	27.5	35.2	41.3	22.4	22.7	27.9	35.8
Surface area, ft ²	2,679	4,657	6,624	1,672	1,735	2,791	4,864
Pressure drop, in H ₂ O	1.3	1.3	1.3	1.3	1.2	1.2	1.2
Auxiliary Equipment:							
Stack height, ft	100	100	100	100	100	100	100
Stack diameter, ft	10.1	13.6	16.3	7.8	8.1	10.4	14.0
Fan impeller diameter, in	105	140	160	85	90	110	145
Fan motor efficiency, fraction	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Pump motor efficiency, fraction	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Power for fan, kW	34.4	62.3	89.5	20.6	20.2	33.6	60.7
Power for pump, kW	28.1	50.6	73.1	16.9	17.7	29.5	53.1
Wastewater flow rate, gpm	1.651	2.971	4.291	0.990	0.849	1.415	2.548
Caustic addition (dry NaOH), lb/hr	56.5	102	147	33.9	29.1	48.4	87.2
Column Operation:							
Minimum wetting rate, ft ² /hr	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Fraction of flooding gas velocity	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Operating hours per year Equipment Labor	8,424 8,760						
Operating labor requirement, hr/d	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Maintenance labor requirement, hr/d	1.5	1.5	1.5	1.5	1.5	1.5	1.5

TABLE 6-24a (METRIC). UNIT COSTS FOR PACKED-BED SCRUBBERa

Parameters	Value
Operator wage rate, \$/hr	15.64
Water cost, \$/m ³	0.05
Electricity, \$/kWh	0.06
Wastewater disposal, \$/m ³	1.0
Caustic (dry NaOH), \$/Mg	441
Packing material, \$/m ³	706

^aMetric equivalents in this table were converted from the calculated English unit values given in Table 6-24b.

TABLE 6-24b (ENGLISH). UNIT COSTS FOR PACKED-BED SCRUBBERa, b

TIBEL O ZIE (ENGLISH): CHII COBIE I CH	THERED DED BERODDER
Parameters	Value
Operator wage rate, \$/hr	15.64
Water cost, \$/1,000 gal	0.2
Electricity, \$/kWh	0.06
Wastewater disposal, \$/1,000 gal	3.8
Caustic (dry NaOH), \$/ton	400
Packing material, \$/ft ³	20

^aOAQPS Control Cost Manual

bMedical Waste Incinerators--Background Information for Proposed Standards and Guidelines: Model Plant Description and Cost Report for New and Existing Facilities. U. S. Environmental Protection Agency. Research Triangle Park, NC. Publication No. EPA-453/R-94-044a. July 1994. p. 62.

L	TABLE 6-25.	PACKE	D-BED SCR	UBBER CAE	D-BED SCRUBBER CAPITAL COSTS FOR MODEL RECOVERY FURNACES ^A	S FOR MOD	EL RECOVE	RY FURNAC	_{ES} a
			Model N	DCE/Converted	Model NDCE/Converted DCE Recovery Furnaces	Furnaces	I ləboM	Model DCE Recovery Furnaces	urnaces
	Costs		RF-1/4/8	RF-2/5/9	RF-3/6	RF-7	RF-7	RF-8	RF-9
	Equipment Costs ^b :	5							
	Tower		\$308,139	\$535,566	\$761,709	\$192,226	\$199,517	\$320,931	\$559,395
	Packing		\$11,810	\$21,196	\$30,685	\$7,084	\$6,809	\$11,366	\$20,409
	Pump		\$27,888	\$50,112	\$72,480	\$16,776	\$17,575	\$29,268	\$52,653
	Fan		\$35,639	\$53,007	\$63,733	\$26,624	\$28,809	\$38,001	\$55,637
	Fan motor		\$2,414	\$3,935	\$5,297	\$1,583	\$1,557	\$2,367	\$3,848
	Stack		\$36,394	\$48,868	\$58,695	\$28,214	\$29,075	\$37,505	\$50,360
	Total Equipment Cost (TEC):	<u></u>	\$422,283	\$712,685	\$992,598	\$272,507	\$283,343	\$439,438	\$742,303
1	Purchased Equipment Cost (PEC) ^c :	PEC) ^c :	\$498,294	\$840,968	\$1,171,266	\$321,559	\$334,344	\$518,536	\$875,918
	Total Capital Investment (TCI) ^d :	(I)d:	\$1,100,000	\$1,850,000	\$2,580,000	\$707,000	\$736,000	\$1.140.000	\$1.930,000

^aAll costs in \$1991

^bEquipment cost equations:

Packing = volume of packing x (\$20/ft³ of packing)

Pump = liquid flow rate x (\$16/gpm)

Fan = 57.9 x (fan impeller diameter)^{1.38}

Fan motor = 104 x (E_{fan}/0.746)^{0.821}

Stack = 36 x stack diameter x stack height

CPurchased equipment cost = 1.18 x (TEC)

dTotal capital investment = 2.2 x (PEC) FRP tower = 115 x surface area of column

TABLE 6-26. PAG	PACKED-BED SC	SCRUBBER ANNUAL COSTS	INUAL COST	'S FOR MOI	DEL RECOV	FOR MODEL RECOVERY FURNACES	CESa
	Model	Model NDCE/Converted DCE Recovery Furnaces	DCE Recovery Furn	laces	Mode	Model DCE Recovery Furnaces	rnaces
Costs	RF-1/4/8	RF-2/5/9	RF-3/6	RF-7	RF-7	RF-8	RF-9
Total Capital Investment (TCI):	\$1,100,000	\$1,850,000	\$2,580,000	\$707,000	\$736,000	\$1,140,000	\$1,930,000
Direct Annual Costs (DAC):							
Operating labor ^b :							
Operator	\$8,563	\$8,563	\$8,563	\$8,563	\$8,563	\$8,563	\$8,563
Supervisor	\$1,284	\$1,284	\$1,284	\$1,284	\$1,284	\$1,284	\$1,284
Maintenance ^c :							
Labor	\$9,419	\$9,419	\$9,419	\$9,419	\$9,419	\$9,419	\$9,419
Material	\$9,419	\$9,419	\$9,419	\$9,419	\$9,419	\$9,419	\$9,419
Utilities ^d :							
Electricity (fan and pump)	\$31,598	\$57,062	\$82,216	\$18,949	\$19,150	\$31,888	\$57,515
Water	\$7,803	\$14,069	\$20,297	\$4,690	\$3,481	\$5,793	\$10,444
Caustice:	\$95,145	\$171,262	\$247,378	\$57,087	\$48,957	\$81,596	\$146,872
Wastewater disposalf:	\$3,170	\$5,706	\$8,242	\$1,902	\$1,631	\$2,719	\$4,894
Total DAC:	\$166,401	\$276,784	\$386,818	\$111,313	\$101,904	\$150,681	\$248,410
Indirect Annual Costs (IAC):							
Overhead ^g :	\$17,211	\$17,211	\$17,211	\$17,211	\$17,211	\$17,211	\$17,211
Admin., taxes and insuranceh:	\$43,850	\$74,005	\$103,071	\$28,297	\$29,422	\$45,631	\$77,081
Capital recoveryi:	\$120,368	\$203,144	\$282,931	\$77,676	\$80,764	\$125,258	\$211,587
Total IAC:	\$181,429	\$294,360	\$403,213	\$123,184	\$127,397	\$188,100	\$305,879
Total Annual Costs (TAC):	\$348,000	\$571,000	\$790,000	\$234,000	\$229,000	\$339,000	\$554,000

All costs in \$1991

b Operator labor = 1.5 hr/d x 365 d/yr x \$15.64/hr; supervisor labor = 15% of operator labor cost

(Maintenance labor = 1.5 hr/d x 365 d/yr x (1.1 x \$15.64/hr); maintenance materials = 100% of maintenance labor cost

(Efan + Epump) x 8,424 hr/yr x \$0.06/kWh

(Equecy and pump) = (Equecy and pump) = (Equecy and pump) x 8,424 hr/yr x \$0.20/gal H₂O Caustic = caustic addition (lb/hr) x 8,424 hr/yr x 1 ton/2,000 lb x \$400/ton caustic

fWastewater disposal = wastewater flow rate (gpm) x 60 min/hr x 8,424 hr/yr x \$3.80/1,000 gal wastewater Boverhead = 0.6 x (maintenance cost + operating labor cost)

hAdministrative, taxes, and insurance = 0.04 x TCI

'Capital recovery = 0.1098 x TCI (based on 15-yr scrubber life and 7% interest)

MODEL BLACK LIQUOR OXIDATION UNIT DESIGN PARAMETERS^a TABLE 6-27a (METRIC).

		Model BLO units	nits
Design parameters	BLO-1	BLO-2	BLO-3
Black liquor firing rate, kg BLS/d	400,000	700,000	1,200,000
Equivalent ADMP/d Bleached pulp Unbleached pulp	230	380 450	680 820
Vent gas flowrate, m3/sec @ 54 degrees C	4.2	8.5	12.7
Operating days per year Equipment Labor	351 365	351 365	351 365
Operating hours per year Equipment Labor	8,424	8,424	8,424

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 6-27b.

TABLE 6727b (ENGLISH). MODEL BLACK LIQUOR OXIDATION UNIT DESIGN PARAMETERSA

		Model BLO Linite	o ii c
Design parameters	BLO-1	BLO-2	BLO-3
Black liquor firing rate, lb BLS/d	900,000	1,500,000	2,700,000
Equivalent ADTP/d Bleached pulp Unbleached pulp	250 300	420 500	750
Vent gas flowrate, acfm @ 130 degrees F	8,900	18,000	26,900
Operating days per year Equipment Labor	351 365	351 365	351 365
Operating hours per year Equipment Labor	8,424 8,760	8,424 8,760	8,424