TABLE 5-14. ENERGY IMPACTS FOR HE CONTROL FOR MODEL RECOVERY FURNACES

A4		Ingramantal
Model		Incremental
recovery	Control	energy impacts,
furnaces	option	MWh/yr
NDCE/con-		
verted DCE		
RF-1/4/8	Packed-bed scrubber	988
RF-2/5/9	Packed-bed scrubber	1,770
RF-3/6	Packed-bed scrubber	2,570
RF-7	Packed-bed scrubber	593
Unconverted DCE		
RF-7	Packed-bed scrubber	625
RF-8	Packed-bed scrubber	1,040
RF-9	Packed-bed scrubber	1,870

(a) Baseline energy impacts are equal to zero. Packed-bed scrubber energy impacts = [0.00018 x model gas flow rate x 3 in. H2O pressure drop x 1 MWh/1,000 kWh x 8,424 hr/yr] + [0.746 kW/hp x liquid flow rate x 60 ft head x specific gravity H2O x hp/3,960 gal x 1/(70% pump motor effic.) x 1 MWh/1,000 kWh x 8,424 hr/yr].

TABLE 5-15a (METRIC). WASTEWATER IMPACTS FOR HCL CONTROL FOR MODEL RECOVERY FURNACES^a

		Incremental
Model		wastewater
recovery	Control	impacts,
furnaces	option	million L/yr
NDCE/con- verted DCE		
RF-1/4/8	Packed-bed scrubber	10
RF-2/5/9	Packed-bed scrubber	18
RF-3/6	Packed-bed scrubber	26
RF-7	Packed-bed scrubber	6.1
Unconverted DCE		
RF-7	Packed-bed scrubber	6.3
RF-8	Packed-bed scrubber	10
RF-9	Packed-bed scrubber	19

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-15b. See Table 5-15b for footnotes, which include calculations.

TABLE 5-15b (ENGLISH). WASTEWATER IMPACTS FOR HCL CONTROL FOR MODEL RECOVERY FURNACES^a

		Incremental
Model	Control	wastewater
recovery	33,14,31	impacts,
furnaces	option	million gal/yr
NDCE/con-	OP401.	
verted DCE		
RF-1/4/8	Packed-bed scrubber	2.7
RF-2/5/9	Packed-bed scrubber	4.8
RF-3/6	Packed-bed scrubber	7.0
RF-7	Packed-bed scrubber	1.6
Unconverted DCE		
RF-7	Packed-bed scrubber	1.7
RF-8	Packed-bed scrubber	2.8
RF-9	Packed-bed scrubber	5.0

(a) Wastewater impacts are zero at baseline; therefore, control level and incremental wastewater impact numbers are the same. Control level wastewater impacts = wastewater flow rate (gpm) x 60 min/hr x 8,424 hr/yr.

MODEL BLACK LIQUOR OXIDATION UNIT PARAMETERS AND EMISSION FACTORS^a TABLE 5-16a (METRIC).

								Baseline	Control level
Model		Black liquor	Equiva	Equivalent pulp	Vent gas	Vent gas	Moisture	gaseous	gaseous
BLO	Equipment	firing rate,	produc	production rate	flow rate,	temperature,	content,	organic HAP's,	organic HAP's,
units	type	kg BLS/d	ADMUP/d	ADMBP/d	m3/sec	degrees C	%	kg/kg BLS	kg/kg BLS
BLO-1	2-stage, air sparging	400,000	270	230	4.2	54	35	2.03E-04	4.06E-06
BLO-2	2-stage, air sparging	700,000	450	380	8.5	24	35	2.03E-04	4.06E-06
BLO-3	2-stage, air sparging	1,200,000	820	089	12.7	54	35	2.03E-04	4.06E-06

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-16b.

TABLE 5-16b (ENGLISH). MODEL BLACK LIQUOR OXIDATION UNIT PARAMETERS AND EMISSION FACTORS

								Baseline	Control level
Model		Black liquor	Equiva	Equivalent pulp	Vent gas	Vent gas	Moisture	gaseous	gaseous
BLO	Equipment	firing rate,	produc	production rate	flow rate,	temperature,	content,	organic HAP's,	organic HAP's.
units	type	lb BLS/d	ADTUP/d	ADTBP/d	acfm	degrees F	%	lb/lb BLS (a)	lb/lb BLS (a)
BLO-1	BLO-1 2-stage, air-sparging	000'006	300	250	8,900	130	35	2.03E-04	4.06E-06
BLO-2	BLO-2 2-stage, air-sparging	1,500,000	200	420	18,000	130	35	2.03E-04	4.06E-06
BLO-3	BLO-3 2-stage, air-sparging	2,700,000	006	750	26,900	130	35	2.03E-04	4.06E-06

(a) Gaseous organic HAP's include acetaldehyde, benzene, formaldehyde, methanol, methyl ethyl ketone, methyl isobutyl ketone, phenol, toluene, and xylenes. Methanol comprises 85 percent of the total. Assume 98 percent control with incineration of BLO vent gases.

PRIMARY GASEOUS ORGANIC HAP EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS^a TABLE 5-17a (METRIC).

Model	Baseline		Control level	Emission	Emission
BLO	emissions,	Control	emissions,	reductions,	reductions,
units	Mg/yr	option	Mg/yr	Mg/yr	%
7 0 10	OC		90	CC	a C
-0-1 -0-1	67	DEO Verit gas continui	0	67	000
BI 0-2	48	BLO vent gas control	1.0	48	86
1	1			!	
BLO-3	87	BLO vent gas control	1.7	86	86

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-17b. Refer to Table 5-17b for footnotes, which include calculations.

PRIMARY GASEOUS ORGANIC HAP EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS^a TABLE 5-17b (ENGLISH).

Model BLO	Baseline emissions,	Control	Control level emissions,	Emission reductions,	Emission reductions,
units	ton/yr	option	ton/yr	ton/yr	%
BLO-1	32	BLO vent gas control	9.0	31	86
BLO-2	53	BLO vent gas control	-	52	86
BLO-3	96	BLO vent gas control	1.9	94	98

(a) Gaseous organic HAP emissions (ton/yr) = emission factor (lb/lb BLS) x model BLS firing rate (lb BLS/d) x 351 d/yr x 1 ton/2,000 lb. Gaseous organic HAP's include acetaldehyde, benzene, formaldehyde, methyl ethyl ketone, methyl isobutyl ketone, phenol, toluene, and xylenes. Methanol comprises 85 percent of the total.

TABLE 5-18a (METRIC). SECONDARY EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS^a

Model BLO	Control		Increment	al emissions, kç	g/yr
units	option	PM	SO2	NOx	CO
BLO-1	BLO vent gas control	400	9,710	776	1,470
BLO-2	BLO vent gas control	807	16,900	1,560	2,970
BLO-3	BLO vent gas control	1,210	29,200	2,340	4,440 • .

⁽a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-18b. Refer to Table 5-18b for footnotes.

TABLE 5-18b (ENGLISH). SECONDARY EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS^a

Model BLO	Control		Increment	al emissions, lb	/yr
units	option	PM	SO2	NOx	CO
BLO-1	BLO vent gas control	883	21,400	1,710	3,240
BLO-2	BLO vent gas control	1,780	37,200	3,450	6,540
BLO-3	BLO vent gas control	2,670	64,300	5,160	9,780

(a) Secondary emissions are zero at baseline; therefore, control level and incremental secondary emission numbers are the same. Secondary emissions for PM, NOx, and CO were estimated based on energy and emission factors for PM, NOx, and CO. Secondary emissions for SO2 were estimated based on (1) energy requirements and the emission factor for SO2 and (2) 1.88 lb of SO2 generated for each lb of TRS combusted. Calculations for energy impacts are presented in Table 5-19. Emission factors = 0.15 lb PM/MM Btu; 0.73 lb SO2/MM Btu; 0.29 lb NOx/MM Btu; and 0.55 lb CO/MM Btu.

TABLE 5-19. ENERGY IMPACTS FOR MODEL BLACK LIQUOR OXIDATION UNITS

Model BLO units	Control option	Incremental energy impacts, MWh/yr
BLO-1	BLO vent gas control	1,720
BLO-2	BLO vent gas control	3,480
BLO-3	BLO vent gas control	5,210

(a) BLO control energy impacts = 503 hp x 0.746 kW/hp x 8,424 hr/yr x 1 MWh/1,000 kWh x model vent gas flow rate/16,327 acfm. The hp requirements and vent gas flow rate were provided by an individual mill that controls vent gas emissions.

TABLE 5-20a (METRIC). TOTAL REDUCED SULFUR COMPOUND EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS^a

Model BLO units	Baseline emissions, Mg/yr	Control option	Control level emissions, Mg/yr	Emission reduction, Mg/yr	Emission reduction, %
BLO-1	4.2	BLO vent gas control	0.08	4.1	98
BLO-2	7.0	BLO vent gas control	0.14	6.9	98
BLO-3	13	BLO vent gas control	0.25	12	98

⁽a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-20b. Refer to Table 5-20b for footnotes.

TABLE 5-20b (ENGLISH). TOTAL REDUCED SULFUR COMPOUND EMISSIONS FOR MODEL BLACK LIQUOR OXIDATION UNITS

Model	Baseline		Control level	Emission	Emission
BLO	emissions,	Control	emissions,	reduction,	reduction,
units	ton/yr (a)	option	ton/yr (b)	ton/yr	′% (b)
BLO-1	4.6	BLO vent gas control	0.09	4.6	98
BLO-2	7.7	BLO vent gas control	0.15	7.6	98
BLO-3	14	BLO vent gas control	0.28	14	98

⁽a) The baseline TRS emissions for BLO units are based on an average TRS emission factor of 0.10 lb/ADTP (assuming an average 3,400 lb BLS/ADT of bleached and unbleached pulp).

⁽b) The control level TRS emissions for BLO units are based on 98 percent TRS control.

MODEL SMELT DISSOLVING TANK PARAMETERS AND PM EMISSION FACTORS^a TABLE 5-21a (METRIC).

_		-							
M, kg/Mg BLS	PM control	0.06 kg/Mg BLS	90'0	90.06	90:0	0.06	90:0	90.0	0.06
Control level PM, kg/Mg BLS	-louroo MA	0.10 kg/Mg BLS	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Baseline	PM,	kg/Mg BLS	0.19	0.19	0.19	0.19	0.23	0.23	0.23
New	pressure drop,	mm Hg	13	13	13	13	13	13	13
Existing	gas flow rate, pressure drop, pressure drop,	mm Hg	13	13	13	13	1.3	1.3	1.3
Scrubber inlet	gas flow rate,	m3/sec	4.4	7.4	13.4	19.3	4.4	7.4	13.4
Stack gas	flow rate,	m3/sec	4.2	7.1	12.7	18.4	4.2	7.1	12.7
Equivalent pulp	production rate,	ADMBP/d	230	380	980	1,000	530	380	680
Equivale	producti	ADMUP/d	270	450	820	1,200	270	450	820
Black liquor	firing rate	kg BLS/d	400,000	700,000	1,200,000	1,800,000	400,000	700,000	1,200,000
Control	option	APCD	scrubber	scrubber	scrubber	scrubber	scrubber	scrubber	scrubber
	Baseline	APCD	scrubber	scrubber	scrubber	scrubber	mist eliminator	mist eliminator	mist eliminator
	Model	SDT's	SDT-1	SDT-2	SDT-3	SDT-4	SDT-5	SDT-6	SDT-7

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-21b.

TABLE 5-21b (ENGLISH). MODEL SMELT DISSOLVING TANK PARAMETERS AND PM EMISSION FACTORS^a

		Control	Black liquor	Equivalent pulp	nt pulp	Stack gas	Scrubber inlet	Existing	New	Baseline	Control level PM, lb/ton BLS	M, lb/ton BLS
Model	Baseline	option	firing rate	production rate,	on rate,	flow rate,	gas flow rate,	pressure drop, pressure drop,	pressure drop,	PW,	PM control	PM control
SDT's	APCD	APCD	IP BLS/d	ADTUP/d	ADTBP/d	acfm	acfm	in. H20	in. H20	lb/ton BLS	0.2 lb/ton BLS	0.12 lb/ton BLS
SDT-1	scrubber	scrubber	000'006	300	250	000'6	9,400	7	7	0.37	0.20	0.12
SDT-2	scrubber	scrubber	1,500,000	200	420	15,000	15,700	^	7	0.37	0.20	0.12
SDT-3	scrubber	scrubber	2,700,000	006	750	27,000	28,300		2	0.37	0.20	0.12
SDT-4	scrubber	scrubber	3,900,000	1,300	1,100	39,000	40,900	7	7	0.37	0.20	0.12
SDT-5	mist eliminator	scrubber	000'006	300	520	000'6	9,400	0.7	7	0.46	0.20	0.12
SDT-6	mist eliminator	scrubber	1,500,000	200	420	15,000	15,700	0.7	۲	0.46	0.20	0.12
SDT-7	mist eliminator	scrubber	2,700,000	006	750	27,000	28,300	0.7	7	0.46	0.20	0.12

PRIMARY PM AND PM HAP EMISSIONS FOR MODEL SMELT DISSOLVING TANKS $^{\rm a}$ TABLE 5-22a (METRIC).

	Baseline emissions, Mg/yr	sions, Mg/yr		Control level er	Control level emissions, Mg/yr	Emission reduction, Mg/yr	uction, Mg/yr	Emission
Model		PM	Control		PM		PM	reduction,
SDT's	PM	HAP's	option	PM	HAP's	PM	HAP's	%
SDT-1	27	0.02	PM control0.10 kg/Mg BLS (b)	4	0.009	12	0.007	46
			PM control0.06 kg/Mg BLS (b)	8.6	0.005	18	0.01	89
SDT-2	44	0.03	PM control0.10 kg/Mg BLS (b)	24	0.01	50	0.01	46
			PM control0.06 kg/Mg BLS (b)	4	0.009	90	0.02	89
SDT-3	80	0.05	PM control0.10 kg/Mg BLS (b)	43	0.03	37	0.02	46
		-	PM control0.06 kg/Mg BLS (b)	56	0.02	54	0.03	89
SDT-4	115	0.07	PM control0.10 kg/Mg BLS (b)	62	0.04	23	0.03	46
			PM control0.06 kg/Mg BLS (b)	37	0.02	78	0.05	89
SDT-5	33	0.02	PM control0.10 kg/Mg BLS (c)	14	0.009	19	0.01	22
			PM control0.06 kg/Mg BLS (c)	8.6	0.005	24	0.01	74
SDT-6	55	0.03	PM control0.10 kg/Mg BLS (c)	24	0.01	31	0.02	22
			PM control0.06 kg/Mg BLS (c)	14	0.009	41	0.02	74
SDT-7	66	90.0	PM control0.10 kg/Mg BLS (c)	43	0.03	56	0.03	22
			PM control0.06 kg/Mg BLS (c)	26	0.02	73	0.04	74

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-22b.

Refer to Table 5-22b for footnotes, which include calculations.

⁽b) PM control is replacement of existing scrubber with a new scrubber. (c) PM control is replacement of existing mist eliminator with a new scrubber.

PRIMARY PM AND PM HAP EMISSIONS FOR MODEL SMELT DISSOLVING TANKS $^{\rm a}$ TABLE 5-22b (ENGLISH).

	Baseline emissions, ton/yr	sions, ton/yr		Control level en	Control level emissions, ton/vr	Emission reduction ton/vr	iction ton/vr	Fmission
Model		PM	Control		PM		PM	reduction.
SDT's	PM	HAP's	option	ΡZ	HAP's	PM	HAP's	%
SDT-1	59	0.02	PM control0.20 lb/ton BLS (b)	16	0.009	13	0.008	46
			PM control0.12 lb/ton BLS (b)	9.5	900.0	20	0.01	89
SDT-2	49	0.03	PM control0.20 lb/ton BLS (b)	56	0.02	23	0.01	46
			PM control0.12 lb/ton BLS (b)	16	600.0	33	0.02	89
SDT-3	88	9.05	PM control0.20 lb/ton BLS (b)	47	0.03	40	0.02	46
			PM control0.12 lb/ton BLS (b)	28	0.02	29	0.04	89
SDT-4	127	0.08	PM control-0.20 lb/ton BLS (b)	89	0.04	28	0.03	46
			PM control-0.12 lb/ton BLS (b)	14	0.02	98	0.05	89
SDT-5	36	0.02	PM control0.20 lb/ton BLS (c)	16	0.009	2	0.01	22
			PM control0.12 lb/ton BLS (c)	9.5	900.0	27	0.02	74
SDT-6	61	0.04	PM control0.20 lb/ton BLS (c)	56	0.02	34	0.02	57
			PM control0.12 lb/ton BLS (c)	16	0.009	45	0.03	74
SDT-7	109	0.07	PM control0.20 lb/ton BLS (c)	47	0.03	62	0.04	22
			PM control0.12 lb/ton BLS (c)	28	0.02	81	0.05	74

(a) PM emissions (ton/yr) = PM emission factor (lb PM/ton BLS) \times BLS firing rate (lb BLS/d) \times 1 ton BLS/2,000 lb BLS \times 351 d/yr \times 1 ton PM/2,000 lb PM. PM HAP emissions (ton/yr) = 0.06 percent of PM emissions.

⁽b) PM control is replacement of existing scrubber with a new scrubber. (c) PM control is replacement of existing mist eliminator with a new scrubber.

SECONDARY EMISSIONS FOR MODEL SMELT DISSOLVING TANKSA TABLE 5-23a (METRIC).

Model		Baseline en	Baseline emissions, kg/y	/yr	Control		Incremental	Incremental emissions. kg/vr	ka/vr
SDT's	PM	S02	NOX	00	option	PM	802	XON	00
SDT-5	2.3	÷	4.5	8.5	PM control (b)	21	102	40	92
SDT-6	9. 6.	19	7.5	4	PM control (b)	35	170	29	128
SDT-7	7.0	34	13	26	PM control (b)	63	306	121	230

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-23b. Refer to Table 5-23b for footnotes.

(b) Impacts were estimated based on replacement of existing mist eliminator with a new scrubber.

SECONDARY EMISSIONS FOR MODEL SMELT DISSOLVING TANKSA TABLE 5-23b (ENGLISH).

Model		Baseline em	nissions, Ib/y	\rac{1}{r}	Control		Incrementa	Incremental emissions, lb/yr	lb/yr
SDT's	PM	802	XON	00	option	PM	802	XON	00
SDT-5	5.1	25	თ. თ.	19	PM control (b)	46	224	88	169
SDT-6	8.5	42	17	31	PM control (b)	77	374	149	282
SDT-7	15	75	30	56	PM control (b)	138	674	268	508

(a) Secondary emissions were estimated based on energy impacts and emission factors for PM, SO2, NOx, and CO. Calculations for energy impacts are presented in Table 5-24. Emission factors = 0.15 lb PM/MM Btu; 0.73 lb SO2/MM Btu; 0.29 lb NOx/MM Btu; and 0.55 lb CO/MM Btu.

(b) Impacts were estimated based on replacement of existing mist eliminator with a new scrubber.

TABLE 5-24. ENERGY REQUIREMENTS FOR MODEL SMELT DISSOLVING TANKS

Model	Baseline energy impacts,	Control	Control level energy impacts,	Incremental energy impacts,
SDT's	MWh/yr (a)	option	MWh/yr (b)	MWh/yr (b)
SDT-5	10	PM control (c)	100	90
SDT-6	17	PM control (c)	167	150
SDT-7	30	PM control (c)	300	270

- (a) Baseline mist eliminator energy impacts = 0.00018 x model inlet gas flow rate x 0.7 in. H2O pressure drop x 8,424 hr/yr x 1 MWh/1,000 kWh
- (b) Incremental energy impacts = (control level scrubber energy impacts) -(baseline mist eliminator energy impacts). Control level scrubber energy impacts = 0.00018 x model inlet gas flow rate x 7 in. H2O pressure drop x 8,424 hr/yr x 1 MWh/1,000 kWh
- (c) Impacts were estimated based on replacement of existing mist eliminator with a new scrubber.

TABLE; 5-25a (METRIC). MODEL LIME KILN PARAMETERS AND PM CONCENTRATIONS^a

Model		Control	Lime produc-	Lime produc- Equivalent pulp	Gas flow rate, m3/sec	ite, m3/sec	Temperature, degrees C	degrees C	Moisture content %	ontent %
ime	Baseline	level	tion rate,	production rate	APCD	APCD	APCD	APCD	APCD	APCh
kilns	APCD	APCD	Mg CaO/d	ADMP/d	inlet	outlet	inlet	outlet	inet	outlet
L K -1	scrubber	ESP	06	320	10	7.3	249	71	25	30
LK-2	scrubber	ESP	180	089	50	14	249	71	25	30
LK-3	scrubber	ESP	270	1,000	34	24	249	71	25	30
LK-4	ESP	ESP	06	320	10	10	249	249	25	25
LK-5	ESP	ESP	180	089	20	50	249	249	25	52
LK-6	ESP	ESP	270	1,000	34	34	249	249	25	25

Model	Baseline	ESP S	ESP SCA, m2/(m3/sec)		Baseline	Control level	Control level PM a/dscm
lime	pressure		PM control	PM control	PM.	PM control	PM control PM control
kilns	drop, mm Hg	Baseline	0.15 g/dscm	0.15 g/dscm 0.023 g/dscm	g/dscm	0.15 g/dscm	0.15 g/dscm 0.023 g/dscm
- F-	39	ŀ	06	220	0.27	0.15	0.023
LK-2	39	ł	06	220	0.27	0.15	0.023
LK-3	39	1	06	220	0.27	0.15	0.023
LK-4	1	06	06	220	0.15	0.15	0.023
LK-5	1	06	06	220	0.15	0.15	0.023
LK-6	ļ	06	06	220	0.15	0.15	0.023

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-25b.

TABLE 5-25b (ENGLISH). MODEL LIME KILN PARAMETERS AND PM CONCENTRATIONS^A

	Т		1					
ntent. %	APCD	outlet	30	30	30	52	52	52
Moisture content. %	APCD	inlet	25	25	25	52	25	25
, degrees F	APCD	outlet	160	160	160	480	480	480
Temperature, degrees F	APCD	inlet	480	480	480	480	480	480
Gas flow rate, acfm	APCD	outlet	15,500	30,000	51,000	22,000	42,500	72,200
Gas flow r	APCD	inlet	22,000	42,500	72,200	22,000	42,500	72,200
Equivalent pulp	production rate,	ADTP/d	350	750	1,100	350	750	1,100
Lime produc-	tion rate,	ton CaO/d	100	200	300	100	200	300
Control	level	APCD	ESP	ESP	ESP	ESP	ESP	ESP
;	Baseline	APCD	scrubber	scrubber	scrubber	ESP	ESP	ESP
Model	= E	kilns	LK-1	LK-2	LK-3	LK-4	LK-5	LK-6

Model	Baseline	ESP SC	ESP SCA, ft2/1,000 acfm		Baseline	Control level PM. ar/dscf	M. ar/dscf
lime	bressure		PM control	PM control	PM,	PM control	PM control-
kilns	drop, in. H2O	Baseline	0.067 gr/dscf	0.01 gr/dscf	gr/dscf	0.067 gr/dscf	0.01 ar/dscf
LK-1	21	ı	460	1,120	0.12	0.067	0.01
LK-2	24	1	460	1,120	0.12	0.067	0.01
LK-3	21	1	460	1,120	0.12	0.067	0.01
LK-4	ļ	460	460	1,120	0.067	0.067	0.01
LK-5	ı	460	460	1,120	0.067	290.0	0.01
LK-6	1	460	460	1,120	0.067	290.0	5 0

PRIMARY PM AND PM HAP EMISSIONS FOR MODEL LIME KILNSA TABLE 5,26a (METRIC).

Model	Baseline emissions, Mg/yr	ssions, Mg/yr		Control level er	Control level emissions, Mg/yr	Emission reduction, Mg/yr	uction, Mg/yr	Emission
Kilns	Ž	T 4	Control	Y C	Md.	i	E G	reduction,
		5		2	HAPS	Z	HAP'S	\perp
- X	36	0.5	PM control0.15 g/dscm (b)	8	0.3	16	0.2	
****			PM control0.023 g/dscm (b)	3.0	0.04	33	0.5	
LK-2	70	1.0	PM control0.15 g/dscm (b)	39	9.0	31	0.4	
			PM control0.023 g/dscm (b)	5.9	0.08	65	6.0	
LK-3	120	1.7	PM control0.15 g/dscm (b)	29	6.0	23	0.7	
		-	PM control0.023 g/dscm (b)	10	0.1	110	1.5	
LK-4	20	0.3	PM control0.023 g/dscm (c)	3.0	0.04	17	0.2	
LK-5	39	9.0	PM control0.023 g/dscm (c)	5.9	0.08	33	0.5	
LK-6	67	0.9	PM control0.023 g/dscm (c)	10	0.1	57	0.8	

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-26b.

⁽b) PM control is replacement of existing scrubber with new ESP. (c) PM control is upgrade of existing ESP. Refer to Table 5-26b for footnotes, which include calculations.

PRIMARY PM AND PM HAP EMISSIONS FOR MODEL LIME KILNSA TABLE 5-26b (ENGLISH).

Emission	reduction, %	92	44 92	44 92	85	85	85
uction, ton/yr	PM HAP's	0.2	0.5	0.8	0.3	0.5	6.0
Emission reduction, ton/yr	Md	18 37	34	58 121	19	37	63
Control level emissions, ton/yr	PM HAP's	0.3	0.0	1.0	0.05	0.09	0.2
Control level er	PM	3.3	43 6.5	74	3.3	6.5	11
	Control option	PM control0.067 gr/dscf (b) PM control0.01 gr/dscf (b)	PM control0.067 gr/dscf (b) PM control0.01 gr/dscf (b)	PM control0.067 gr/dscf (b) PM control0.01 gr/dscf (b)	PM control0.01 gr/dscf (c)	PM control0.01 gr/dscf (c)	PM control0.01 gr/dscf (c)
sions, ton/yr	HAP's	9.0	Ξ	8:	0.3	9.0	1.0
Baseline emissions, ton/yr	PM	40	78	132	22	43	74
Model	Kilns	LK-1	LK-2	LK-3	LK-4	LK-5	LK-6

(a) PM emissions (ton/yr) = PM concentration (gr/dscf) \times lb/7,000 gr \times model inlet gas flow rate (acfm) \times (528R/[model inlet temperature + 460F]) \times (100% - model inlet %H2O)/100% \times

60 min/hr x 8,424 hr/yr x 1 ton/2,000 lb. PM HAP emissions (ton/yr) = 1.4 percent of PM emissions.

(b) PM control is replacement of existing scrubber with new ESP.(c) PM control is upgrade of existing ESP.

SECONDARY EMISSIONS FOR MODEL LIME KILNS^a TABLE 5-27a (METRIC).

Model									
lime		Baseline er	Baseline emissions, kg/yr	g/yr	Control		Incrementa	Incremental emissions, kg/yr	s, kg/yr
Kilns	Δd	S02	NOX	00	option	PM	802	NOX	00
LK-1	163	794	315	599	PM control0.15 g/dscm (b)	(116)	(567)	(225)	(429)
LK-2	314	1.530	808	1 150	PM control-0.15 a/dscm (b)	(01)	(1,000)	(1 0)	(958)
)		PM control0.023 g/dscm (b)	(118)	(576)	(433) (229)	(431)
LK-3	535	2,600	1,030	1,960	PM control-0.15 g/dscm (b)	(383)	(1,860)	(739)	(1,400)
					FIM CONTROI0.023 g/ascm (b)	(202)	(086)	(390)	(739)
LK-4	46	225	06	170	PM control0.023 g/dscm (c)	55	269	107	202
LK-5	88	435	173	328	PM control0.023 g/dscm (c)	107	517	206	393
LK-6	152	739	294	558	PM control0.023 g/dscm (c)	181	880	350	662

(a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-27b. Refer to Table 5-27b for footnotes.

(b) Impacts were estimated based on replacement of existing scrubber with a new ESP. (c) Impacts were estimated based on upgrade of existing ESP.

SECONDARY EMISSIONS FOR MODEL LIME KILNSA TABLE 5-27b (ENGLISH).

Model									
lime		Baseline e	Baseline emissions, Ib/vr)/vr	Control				
kilns	PM	S02	XON	00	option	Md		SO2 NO. NO.	s, lb/yr
						A .	200	XON.	3
 	329	1,750	694	1,320	PM control0.067 gr/dscf (b)	(257)	(1,250)	(496)	(946)
					PM control0.01 gr/dscf (b)	(135)	(099)	(261)	(499)
LK-2	693	3,370	1,340	2,540	PM control0.067 gr/dscf (b)	(496)	(2,410)	(626)	(1,820)
					PM control0.01 gr/dscf (b)	(261)	(1,270)	(204)	(026)
LK-3	1,180	5,730	2,280	4,320	PM control0.067 gr/dscf (b)	(845)	(4.100)	(1.630)	(3.090)
					PM control0.01 gr/dscf (b)	(442)	(2,160)	(860)	(1,630)
LK-4	102	497	197	374	PM control0.01 ar/dscf (c)	122	593	235	776
	!	1					}	557	
C-V-2	/61	096	381	723	PM control0.01 gr/dscf (c)	235	1,140	455	867
LK-6	335	1,630	648	1,230	PM control0.01 ar/dscf (c)	399	1 040	777	. 4
					(2)	200	0+6,1	7//	004,-

(a) Secondary emissions were estimated based on electricity requirements and emission factors for PM, SO2, NOx, and CO. Calculations for electricity requirements are presented in Table 5-28. Emission factors = 0.15 lb PM/MM Btu; 0.73 lb SO2/MM Btu; 0.29 lb NOx/MM Btu; and 0.55 lb CO/MM Btu.

Numbers in parentheses represent negative values, indicating that secondary emissions are reduced by that amount. (b) Impacts were estimated based on replacement of existing scrubber with a new ESP. (c) Impacts were estimated based on upgrade of existing ESP.

TABLE 5-28. ENERGY IMPACTS FOR MODEL LIME KILNSA

Model lime kilns	Baseline energy impacts, MWh/yr (b),(c)	Control	Control level energy impacts, MWh/yr (c)	Incremental energy impacts, MWh/yr
LK-1	701	PM control0.15 g/dscm (0.067 gr/dscf) (d) PM control0.023 g/dscm (0.01 gr/dscf) (d)	199 437	(501) (264)
LK-2	1,350	PM control0.15 g/dscm (0.067 gr/dscf) (d) PM control0.023 g/dscm (0.01 gr/dscf) (d)	385 844	(965) (506)
LK-3	2,300	PM control0.15 g/dscm (0.067 gr/dscf) (d) PM control0.023 g/dscm (0.01 gr/dscf) (d)	654 1,430	(1,650) (870)
LK-4	199	PM control0.023 g/dscm (0.01 gr/dscf) (e)	437	238
LK-5	385	PM control0.023 g/dscm (0.01 gr/dscf) (e)	844	459
LK-6	654	PM control0.023 g/dscm (0.01 gr/dscf) (e)	1,430	276

(a) Numbers in parentheses represent negative values, indicating that energy impacts are reduced by that amount. (b) Baseline scrubber energy impacts = 0.00018 x scrubber inlet gas flow rate x 21 in. H2O pressure drop x 8,424 hr/yr x 1 MWh/1,000 kWh

pressure drop) + $(0.00194 \times ESP \text{ inlet gas flow rate} \times ESP SCA)] \times (8,424 \text{ hr/yr} \times 1 \text{ MWh/1,000 kWh})$ (c) Baseline and control level ESP energy impacts = $[(0.00018 \times ESP \text{ inlet gas flow rate } \times 1 \text{ in. H2O}]$ (d) Impacts were estimated based on replacement of existing scrubber with a new ESP.

(e) Impacts were estimated based on upgrade of existing ESP.

TABLE 5-29a (METRIC). WASTEWATER IMPACTS FOR MODEL LIME KILNSa

Model		Incremental
lime	Control	wastewater impacts,
kilns	option	million L/yr
LK-1	PM control (b)	(226)
LK-2	PM control (b)	(484)
LK-3	PM control (b)	(709)

- (a) Metric equivalents in this table were converted from the calculated English unit values given in Table 5-29b. Refer to Table 5-29b for footnotes, which include calculations.
- (b) Impacts were estimated based on replacement of the existing scrubber with a new ESP.

TABLE 5-29b (ENGLISH). WASTEWATER IMPACTS FOR MODEL LIME KILNSa

Model		Incremental
lime	Control	wastewater impacts,
kilns	option	million gal/yr
LK-1 LK-2	PM control (b)	(60)
LN-Z	PM control (b)	(128)
LK-3	PM control (b)	(187)

- (a) Control level wastewater impacts are zero. Therefore, incremental impacts are equal to baseline. Numbers in parentheses represent negative values, indicating that wastewater impacts are reduced by that amount. Wastewater impacts = 4,500 lb/ODTP x 0.9 ODTP/ADTP x ADTP/d x 351 d/yr x gal/8.345 lb
- (b) Impacts were estimated based on replacement of the existing scrubber with a new ESP.

5.6 REFERENCES FOR CHAPTER 5

- Memorandum from Holloway, T. and Nicholson, R., MRI, to Telander, J., EPA/MICG. October 9, 1996. Nationwide Costs, Environmental Impacts, and Cost-Effectiveness of Regulatory Alternatives for Kraft, Soda, Sulfite, and Semichemical Combustion Sources.
- Memorandum from Holloway, T., MRI, to the project file.
 June 14, 1996. Summary of PM and HAP Metals Data.
- 3. Telecon. Soltis, V., MRI, with Sanders, D., Andersen 2000, Inc. August 11, 1993. Cost and efficiency information about HCl control for recovery furnaces.
- 4. Telecon. Soltis, V., MRI, with Bruno, J., AirPol, Inc. July 2, 1993. Information about scrubbers used to control HCl emissions.
- 5. Someshwar, A. and J. Pinkerton. Wood Processing Industry. In: Air Pollution Engineering Manual, Air & Waste Management Association. Buonicore, A. and W. Davis (eds.). New York, Van Norstrand Reinhold. 1992. pp. 835-849.
- 6. Memorandum from Soltis, V., MRI, to the project file.
 April 3, 1995. Kraft and Soda Pulp Mill Combustion Sources
 Data Base.
- 7. Memorandum from Holloway, T., MRI, to the project file. May 3, 1995. Sulfur Dioxide Control by Recovery Furnace Scrubbers.
- 8. Memorandum from Holloway, T., MRI, to the project file. May 21, 1996. Secondary Emission Calculations.
- 9. OAQPS Control Cost Manual. 4th Edition. U.S. Environmental Protection Agency. Research Triangle Park, NC Publication No. EPA-450/3-90-006. January 1990.
- 10. Letter and attachments from Black, C., Champion International Corp., Courtland, AL, to Crowder, J., EPA/ISB. June 10, 1993. Response to request for information on costs for the BLO vent gas control system at the Champion facility in Courtland, AL..
- 11. Kirby, M. Economic and Process Considerations in the Use of Oxygen for Black Liquor Oxidation. Union Carbide Canada Limited. Ontario, Canada. (Presented at the 21st Pulp and Paper ABCP Annual Meeting. Sao Paolo, Brazil. November 21-25, 1988.) 10 p.

- 12. Stultz, S. and J. Kitto (eds.). Steam: Its Generation and Use. 40th Edition. Babcock & Wilcox Co. New York. 1992. Chapter 26, pp. 3-7.
- 13. Handbook: Control Technologies for Hazardous Air Pollutants. U. S. Environmental Protection Agency. Cincinnati, OH. Publication No. EPA-625/6-91-014. June 1991. Chapter 4.
- 14. Proposed Standards of Performance for Kraft Pulp Mills. In: Standards Support and Environmental Impact Statement. Volume 1. U. S. Environmental Protection Agency. Research Triangle Park, NC. Publication No. EPA-450/2-76-014-a. September 1976. p. 2-9.
- 15. McIlvane, R. Removal of Heavy Metals and Other Utility Air Toxics. (Presented at the EPRI Hazardous Air Pollutant Conference. 1993.).
- 16. Letter from Burt, R., Radian Corp., to Holbrook, J. and Bringman, L., Environmental Elements Corp. July 23, 1985. Facsimile cover letter discussing utility and maintenance costs for wet- vs. dry-bottom ESP designs.
- 17. Memorandum from Eddinger, J., EPA/ISB, to Durkee, K., EPA/ISB. July 8, 1983. Meeting minutes from the April 14, 1993 meeting between kraft pulp mill representatives, the National Council of the Paper Industry for Air and Stream Improvement, Inc., and the U. S. Environmental Protection Agency. Discussion of problems mills have with TRS pickup in wet-bottom ESP's using unoxidized black liquor. Attachments.
- 18. Devore, J. Probability and Statistics for Engineering and the Sciences. Brooks/Cole Publishing Co. Monterey, California. 1982. pp. 15-17.
- 19. Someshwar, A. Compilation of "Air Toxic" Emission Data for Boilers, Pulp Mills, and Bleach Plants. National Council of the Paper Industry for Air and Stream Improvement, Inc. New York. Technical Bulletin No. 650. June 1993. 128 p.
- 20. Garner, J., Jaako Pöyry. Conversion to Low Odor Improves Recovery Boiler Efficiency and Life. Pulp and Paper. 63(7):91-95. July 1989.
- 21. Green, R. and G. Hough (eds.). Chemical Recovery in the Alkaline Pulping Process. 3rd Edition. Prepared by the Alkaline Pulping Committee of the Pulp Manufacture Division. Atlanta, GA, TAPPI Press, 1992. 196 p.
- 22. Telecon. Soltis, V., MRI, with Oscarsson, B., Götaverken Energy Systems, Inc. December 16, 1993. Concentrator steam costs.

- 23. Letter and attachments from Sanders, D., Andersen 2000, Inc., to Soltis, V., MRI. November 9, 1993. Preliminary proposal for three separate quench and packed-tower absorption systems to control hydrochloric acid gas emissions from recovery furnaces at kraft pulp and paper mills.
- 24. Memorandum from Nicholson, R. and Holloway, T., MRI, to Telander, J., EPA/MICG. September 6, 1995. Trip Report for S.D. Warren Co., Muskegon, MI.
- 25. Memorandum from Holloway, T., MRI, to the project file. July 16, 1996. State of Washington PM Data for Kraft Recovery Furnaces, Smelt Dissolving Tanks, and Lime Kilns.