equipment subject to this subpart complying with 40 CFR part 65, subpart F, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart F, must comply with 40 CFR part 65, subpart A.

(2) Comply on a SOCMI unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks), or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2 of subpart A.

Section 60.481 is amended by revising the definition of "closed vent system" and adding in alphabetical order the definitions of "duct work," "hard-piping," and "sampling connection system," to read as follows:

§ 60.481 Definitions.

Closed vent system means a system that is not open to the atmosphere and that is composed of hard-piping, ductwork connections, and, if necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device or back to a process.

Duct work means a conveyance system such as those commonly used for heating and ventilation systems. It is often made of sheet metal and often has sections connected by screws or crimping. Hard-piping is not ductwork.

Hard-piping means pipe or tubing that is manufactured and properly installed using good engineering judgement and standards such as ANSI B31-3.

Sampling connection system means an assembly of equipment within a process unit used during periods of representative operation to take samples of the process fluid. Equipment used to take non-routine grab samples is not considered a sampling connection system.

8. Section 60.482-1 is amended by revising paragraph (a) to read as follows:

§ 60.482-1 Standards: General.

(a) Each owner or operator subject to the provisions of this subpart shall

demonstrate compliance with the requirements of §§ 60.482-1 to 60.482-10 or 60.480(e) for all equipment within 180 days of initial startup.

9. Section 60.482-2 is amended by revising paragraphs (d)(1)(ii) and (f), and adding paragraphs (g) and (h) to read as follows:

§ 60.482-2 Standards: Pumps in light liquid service.

*

- (d) * * *
- (1) * * *
- (ii) Equipment with a barrier fluid degassing reservoir that is routed to a process or fuel gas system connected by a closed vent system to a control device that complies with the requirements of § 60.482-10; or
- (f) If any pump is equipped with a closed vent system capable of capturing and transporting any leakage from the seal or seals to a process or to a fuel gas system or to a control device that complies with the requirements of § 60.482–10, it is exempt from the paragraphs (a) through (e) of this section.
- (g) Any pump that is designated, as described in § 60.486(f)(1), as an unsafeto-monitor pump is exempt from the requirements of paragraph (a) of this section if:
- (1) The owner or operator of the pump demonstrates that the pump is unsafeto-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and
- (2) The owner or operator of the pump has a written plan that requires monitoring of the pump as frequently as practicable during safe-to-monitor
- (h) Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (a)(2) and (d)(4) of this section, and provided that each pump is visually inspected as often as practicable and at least monthly.
- 10. Section 60.482–3 is amended by revising paragraphs (b)(2) and (h) to read as follows:

§ 60.482-3 Standards: Compressors.

* * (b) * * *

(2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a

control device that complies with the requirements of § 60.482–10; or

(h) A compressor is exempt from the requirements of paragraphs (a) and (b) of this section, if it is equipped with a closed vent system to capture and transport leakage from the compressor drive shaft back to a process or fuel gas system or to a control device that complies with the requirements of § 60.482–10, except as provided in paragraph (i) of this section. * * *

11. Section 60.482-4 is amended by revising paragraph (c), and adding paragraph (d) to read as follows:

§ 60.482-4 Standards: Pressure relief devices in gas/vapor service.

* *

(c) Any pressure relief device that is routed to a process or fuel gas system equipped with a closed vent system capable of capturing and transporting leakage through the pressure relief device to a control device as described in § 60.482–10 is exempted from the requirements of paragraphs (a) and (b).

(d)(1) Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (a) and (b) of this section, provided the owner or operator complies with the requirements in paragraph (d)(2) of this section.

(2) After each pressure release, a rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in § 60.482-9 of this subpart.

12. Section 60.482–5 is amended by adding paragraph (b)(4) to read as follows:

§ 60.482-5 Standards: Sampling connection systems.

(b) * * *

(4) Collect, store, and transport the purged process fluid to a system or facility identified in paragraph (b)(4)(i), (b)(4)(ii), or (b)(4)(iii) of this section.

(i) A waste management unit as defined in 40 CFR 63.111 of subpart G, if the waste management unit is subject to, and operated in compliance with the provisions of 40 CFR part 63, subpart G applicable to Group 1 wastewater streams.

(ii) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266; or

(iii) A facility permitted, licensed, or registered by a State to manage municipal or industrial solid waste, if

the process fluids are not hazardous waste as defined in 40 CFR part 261.

* * * * *

13. Section 60.482–6 is amended by adding paragraphs (d) and (e) to read as follows:

$\S 60.482-6$ Standards: Open-ended valves or lines.

* * * * *

- (d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b) and (c) of this section.
- (e) Open-ended valves or lines containing materials which would autocatalytically polymerize or, would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraphs (a) through (c) of this section.
- 14. Section 60.482–10 is amended by revising paragraphs (b) and (c) to read as follows:

§ 60.482–10 Standards: Closed vent systems and control devices.

* * * * *

- (b) Vapor recovery systems (for example, condensers and absorbers) shall be designed and operated to recover the VOC emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, whichever is less stringent.
- (c) Enclosed combustion devices shall be designed and operated to reduce the VOC emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, on a dry basis, corrected to 3 percent oxygen, whichever is less stringent or to provide a minimum residence time of 0.75 seconds at a minimum temperature of 816 °C.

15. Section 60.486 is amended by revising paragraphs (f) introductory text and (f)(1) to read as follows:

§ 60.486 Recordkeeping requirements.

*

- (f) The following information pertaining to all valves subject to the requirements of § 60.482–7 (g) and (h) and to all pumps subject to the requirements of § 60.482–2(g) shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for valves and pumps that are designated as

unsafe-to-monitor, an explanation for each valve or pump stating why the valve or pump is unsafe-to-monitor, and the plan for monitoring each valve or pump.

* * * * *

Subpart DDD—Standards of Performance for Volatile Organic Compound Emissions From the Polymer Manufacturing Industry

16. Section 60.560 is amended by adding paragraphs (j), (k), (l), and (m) to read as follows:

§ 60.560 Applicability and designation of affected facilities.

* * * * *

- (j) Alternative means of compliance— SOCMI CAR unit basis. Owners or operators may choose to comply with 40 CFR part 65, subpart G for continuous process vents that are subject to this subpart, that meet the specifications in $\S 60.562-1(a)(1)(i)(A)$, (a)(1)(i)(B), or (a)(1)(i)(C) where control is required as determined in § 60.562-1(a)(1)(ii) and (a)(1)(iii), and that are part of a SOCMI CAR unit. The requirements of 40 CFR part 65, subpart G satisfy the requirements of paragraph (c) of this section and §§ 60.563 through 60.566, except for 60.565(g)(1) and (l). A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.
- (k) Alternative means of compliance-affected source basis. Owners or operators may choose to comply with 40 CFR part 65, subpart G for continuous process vents that are subject to this subpart, that meet the specifications in $\S 60.562-1(a)(1)(i)(A)$, (a)(1)(i)(B), or (a)(1)(i)(C) where control is required as determined in § 60.562-1(a)(1)(ii) and (a)(1)(iii), and that are not part of a SOCMI CAR unit, but that are located at the same plant site as a SOCMI CAR unit that is complying with 40 CFR, part 65. The requirements of 40 CFR part 65, subpart G satisfy the requirements of paragraph (c) of this section and §§ 60.563 through 60.566, except for 60.565(g)(1) and (l). A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.
- (l) Part 60 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart G, as provided in paragraphs (j) or (k) of this section, must also comply with §§ 60.1, 60.2, 60.5, 60.6, 60.14, 60.15, and 60.16, and 60.7(a)(1) and (a)(4) of subpart A for

those process vents. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply to owners or operators of process vents complying with 40 CFR part 65, subpart G, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart G, must comply with 40 CFR part 65, subpart A.

(m) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks) or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2 of subpart A.

17. Section 60.565 is amended by revising paragraphs (g) introductory text and (l) to read as follows:

§ 60.565 Reporting and recordkeeping requirements.

* * * * *

(g) Each owner or operator of an affected facility subject to the provisions of this subpart and seeking to demonstrate compliance with \S 60.560(j) or \S 60.560(k) or \S 60.562–1 shall keep up-to-date, readily accessible records of:

(l) Each owner or operator subject to the provisions of this subpart shall notify the Administrator of the specific provisions of §§ 60.562, 60.560(d), or 60.560(e), as applicable, with which the owner or operator has elected to comply. Notification shall be submitted with the notifications of initial startup required by § 60.7(a)(3) or 40 CFR 65.5(b) of subpart A. If an owner or operator elects at a later date to use an alternative provision of § 60.562 with which he or she will comply or becomes subject to § 60.562 for the first time [i.e., the owner or operator can no longer meet the requirements of this subpart by complying with the uncontrolled threshold emission rate cutoff provision in § 60.560(d) or (e)], then the owner or operator shall notify the Administrator 90 days before implementing a change and, upon implementing a change, a performance test shall be performed as specified in § 60.564 or 40 CFR part 65, subpart A.

* * * * *

Subpart III—Standards of Performance for Volatile Organic Compound (VOC) Emissions From the Synthetic Organic Chemical Manufacturing Industry (SOCMI) Air Oxidation Unit Processes

18. Section 60.610 is amended by adding paragraphs (d) and (e) to read as follows:

§ 60.610 Applicability and designation of affected facility.

* * * * *

- (d) Alternative means of compliance. Owners or operators of process vents that are subject to this subpart may choose to comply with the provisions of 40 CFR part 65, subpart D to satisfy the requirements of paragraph (c) of this section and §§ 60.612 through 60.615 of this subpart, except § 60.615(a), as provided in paragraphs (d)(1), (d)(2) and (e) of this section. Other provisions applying to an owner or operator who chooses to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.
- (1) Part 60 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart D must also comply with §§ 60.1, 60.2, 60.5, 60.6, 60.14, 60.15, 60.16, and 60.7(a)(1) and (a)(4) of subpart A of this part for those process vents. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply to owners or operators of process vents complying with 40 CFR part 65, subpart D, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart D, must comply with 40 CFR part 65, subpart A.

(2) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, transfer rack or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, transfer racks or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2 of subpart A.

(e) Compliance date. Owners or operators who choose to comply with 40 CFR part 65, subpart D at initial startup shall comply with paragraph (d) of this section for each vent stream on and after the date on which the initial performance test is completed, but not later than 60 days after achieving the maximum production rate at which the

affected facility will be operated, or 180 days after the initial start-up, whichever date comes first.

19. Section 60.615 is amended by revising paragraph (a) to read as follows:

§ 60.615 Reporting and recordkeeping requirements.

(a) Each owner or operator subject to § 60.612 or § 60.610(d) shall notify the Administrator of the specific provisions of § 60.612 [§ 60.612 (a), (b), or (c)] or 40 CFR 65.63 of subpart D [40 CFR 65.63 (a)(1), (a)(2), or (a)(3)] with which the owner or operator has elected to comply. Notification shall be submitted with the notification of initial start-up required by § 60.7(a)(3) or 40 CFR 65.5(b) of subpart A as applicable. If an owner or operator elects at a later date to use an alternative provision of § 60.612 with which he or she will comply, then the Administrator shall be notified by the owner or operator 90 days before implementing a change and, upon implementing the change, a performance test shall be performed as specified by § 60.614 within 180 days.

Subpart NNN—Standards of Performance for Volatile Organic Compound Emissions from Synthetic Organic Chemical Manufacturing Industry Distillation Operations

20. Section 60.660 is amended by adding paragraphs (d) and (e) to read as follows:

§ 60.660 Applicability and designation of affected facility.

* * * * * * * (d) Alternative means

- (d) Alternative means of compliance. Owners or operators of process vents that are subject to this subpart may choose to comply with the provisions of 40 CFR part 65, subpart D to satisfy the requirements of paragraph (c)(4) and (c)(6) of this section and §§ 60.662 through 60.665 of this subpart, except § 60.665(a), as provided in paragraphs (d)(1), (d)(2) and (e). Other provisions applying to an owner or operator who chooses to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.
- (1) Part 60 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart D must also comply with §§ 60.1, 60.2, 60.5, 60.6, 60.14, 60.15, 60.16, and 60.7 (a)(1) and (a)(4) of subpart A of this part for those process vents. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply to owners or operators of process vents complying with 40 CFR part 65, subpart D, except that provisions required to be met prior to

implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart D, must comply with 40 CFR part 65, subpart A.

(2) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks), or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2 of subpart A.

(e) Compliance date. Owners or operators who choose to comply with 40 CFR part 65, subpart D, at initial startup shall comply with paragraph (d) of this section for each vent stream on and after the date on which the initial performance test is completed, but not later than 60 days after achieving the maximum production rate at which the affected facility will be operated, or 180 days after the initial start-up, whichever date comes first.

21. Section 60.665 is amended by revising paragraphs (a) and (l)(6) to read as follows:

§ 60.665 Reporting and recordkeeping requirements.

(a) Each owner or operator subject to §§ 60.662 or 60.660(d) shall notify the Administrator or the specific provisions of § 60.662 [§ 60.662(a), (b), or (c)] or 40 CFR 65.63 of subpart D [40 CFR 65.63(a)(1), (a)(2), or (a)(3)] with which the owner or operator has elected to comply. Notification shall be submitted with the notification of initial start-up required by § 60.7(a)(3) or 40 CFR 65.5(b) of subpart A, as applicable. If an owner or operator elects at a later date to use an alternative provision of § 60.662 with which he or she will comply, then the Administrator shall be notified by the owner or operator 90 days before implementing a change and, upon implementing the change, a performance test shall be performed as specified by § 60.664 no later than 180 days from initial start-up.

(1) * * *

(6) Any change in equipment or process operation, as recorded under § 60.665(j) that increases the design production capacity above the low capacity exemption level in § 60.660(c)(5) and the new capacity resulting from the change for the

destination process unit containing the affected facility. These must be reported as soon as possible after the change and no later than 180 days after the change. These reports may be submitted either in conjunction with semiannual reports or as a single separate report. A performance test must be completed within the same time period to obtain the vent stream flow rate, heating value, and E_{TOC} . The performance test is subject to the requirements of § 60.8 of the General Provisions. Unless the facility qualifies for an exemption under the low flow exemption in § 60.660(c)(6), the facility must begin compliance with the requirements set forth in §§ 60.662 or 60.660(d).

Subpart RRR—Standards of Performance for Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes

22. Section 60.700 is amended by adding paragraphs (d) and (e) to read as follows:

§ 60.700 Applicability and designation of affected facility.

* * * * *

- (d) Alternative means of compliance. Owners or operators of process vents that are subject to this subpart may choose to comply with the provisions of 40 CFR part 65, subpart D to satisfy the requirements of paragraphs (c)(2), (c)(4), and (c)(8) of this section and §§ 60.702 through 60.705 of this subpart, except § 60.705(a), as provided in paragraphs (d)(1), (d)(2) and (e). Other provisions applying to an owner or operator who chooses to comply with 40 CFR part 65 are provided in 40 CFR 65.1, of subpart A.
- (1) Part 60 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart D must also comply with §§ 60.1, 60.2, 60.5, 60.6, 60.14, 60.15, 60.16, and 60.7(a)(1), (a)(2), and (a)(4) of subpart A of this part for those process vents. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply to owners or operators of process vents complying with 40 CFR part 65, subpart D, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart D, must comply with 40 CFR part 65, subpart A.
- (2) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack

(transfer rack), or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks), or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2, subpart A.

- (e) Owners or operators who choose to comply with 40 CFR part 65, subpart D at initial startup shall comply with paragraph (d) of this section for each vent stream on and after the date on which the initial performance test is completed, but not later than 60 days after achieving the maximum production rate at which the affected facility will be operated, or 180 days after the initial start-up, whichever date comes first.
- 23. Section 60.705 is amended by revising paragraphs (a) and (l)(5) to read as follows:

§ 60.705 Reporting and recordkeeping requirements.

(a) Each owner or operator subject to §§ 60.702 or 60.700(d) shall notify the Administrator or the specific provisions of § 60.702 [§ 60.702(a), (b), or (c)] or 40 CFR 65.63 of subpart D [40 CFR 65.63(a)(1), (a)(2), or (a)(3)] with which the owner or operator has elected to comply. Notification shall be submitted with the notification of initial start-up required by § 60.7(a)(3) or 40 CFR 65.5(b) of subpart A, as applicable. If an owner or operator elects at a later date to use an alternative provision of § 60.702 with which he or she will comply, then the Administrator shall be notified by the owner or operator 90 days before implementing a change and, upon implementing the change, a performance test shall be performed as specified by § 60.704 no later than 180 days from initial start-up.

* * * * * (l) * * *

(5) Any change in equipment or process operation, as recorded under § 60.705(i), that increases the design production capacity above the low capacity exemption level in $\S 60.700(c)(3)$ and the new capacity resulting from the change for the reactor process unit containing the affected facility. These must be reported as soon as possible after the change and no later than 180 days after the change. These reports may be submitted either in conjunction with semiannual reports or as a single separate report. A performance test must be completed within the same time period to obtain

the vent stream flow rate, heating value, and ETOC. The performance test is subject to the requirements of \S 60.8 of the General Provisions. Unless the facility qualifies for an exemption under any of the exemption provisions listed in \S 60.700(c), the facility must begin compliance with the requirements set forth in \S 60.702 or \S 60.700(d).

PART 61—NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

1. The authority citation for part 61 continues to read as follows:

Authority: 42 U.S.C. 7401, 7412, 7413, 7414, 7416, 7601 and 7602.

Subpart V—National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

2. Section 61.240 is amended by revising paragraph (a) and adding paragraphs (d), (e), (f), (g), (h), and (i) to read as follows:

§ 61.240 Applicability and designation of sources.

- (a) The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart.
- (d) Alternative means of compliance—SOCMI CAR unit basis. Owners or operators may choose to comply with 40 CFR part 65, to satisfy the requirements of §§ 61.242–1 through 61.247, as provided in paragraphs (f) through (i) of this section, for all equipment that is subject to this subpart and that is part of a SOCMI CAR unit. When choosing to comply with 40 CFR part 65, the requirements of §§ 61.245(d), 61.246(i) and (j), and 61.247(a) and (f) still apply. A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.
- (e) Alternative means of compliance—affected source basis. Owners or operators may choose to comply with 40 CFR part 65, to satisfy the requirements of §§ 61.242–1 through 61.247, as provided in paragraphs (f) through (i) of this section, for any equipment that is subject to this subpart and that is not part of a SOCMI CAR unit, but is located at the same plant site as a SOCMI CAR

unit that is complying with 40 CFR part 65. When choosing to comply with 40 CFR part 65, the requirements of §§ 61.245(d), 61.246(i) and (j), and 61.247(a) and (f) still apply. A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.

- (f) Surge control vessels and bottoms receivers. For owners or operators choosing to comply with 40 CFR part 65 as provided in paragraphs (d) or (e) of this section, each surge control vessel and bottoms receiver subject to this subpart that meets the conditions specified in table 1 or table 2 of this subpart shall meet the requirements for storage vessels in 40 CFR part 65, subpart C; all other equipment subject to this subpart shall meet the requirements in 40 CFR part 65, subpart F.
- (g) Part 61 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart C or F, as provided in paragraphs (d) or (e) of this section, must also comply with §§ 61.01, 61.02, 61.05 through 61.08, 61.11, 61.15, and 61.10(b) through (d) of subpart A for that equipment. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply to owners or operators of equipment subject to this subpart complying with 40 CFR part 65, subparts C or F, except that provisions required to be met prior to implementing 40 CFR part 65 still apply. Owners and operators who choose to comply with 40 CFR part 65, subpart C or F, must comply with 40 CFR part 65, subpart A.
- (h) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks) or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit the CAR referencing subparts are defined in 40 CFR 65.2 of subpart A.
- (i) Rules referencing this subpart. Owners or operators referenced to this subpart from subpart F or J of this part may choose to comply with 40 CFR part 65 for all equipment listed in paragraph (a) of this section as provided in paragraph (d) or (e) of this section.

§61.241 [Amended]

3. Section 61.241 is amended by revising the definitions of *closed-vent system* and *equipment*, adding in alphabetical order the definitions of *duct work*, *hard-piping*, *maximum true vapor pressure*, *sampling connection system*, and *surge control vessel*, and removing the definition of *product accumulator vessel*.

§ 61.241 Definitions.

* * * * *

Closed-vent system means a system that is not open to atmosphere and that is composed of hard-piping, ductwork, connections, and, if necessary, flow-inducing devices that transport gas or vapor from a piece or pieces of equipment to a control device or back to a process.

* * * * *

Duct work means a conveyance system such as those commonly used for heating and ventilation systems. It is often made of sheet metal and often has sections connected by screws or crimping. Hard-piping is not ductwork.

Equipment means each pump, compressor, pressure relief device, sampling connection system, openended valve or line, valve, connector, surge control vessel, bottoms receiver in VHAP service, and any control devices or systems required by this subpart.

Hard-piping means pipe or tubing that is manufactured and properly installed using good engineering judgement and standards such as ANSI B31–3.

* * * * *

Maximum true vapor pressure means the equilibrium partial pressure exerted by the total organic HAP in the stored or transferred liquid at the temperature equal to the highest calendar-month average of the liquid storage or transfer temperature for liquids stored or transferred above or below the ambient temperature or at the local maximum monthly average temperature as reported by the National Weather Service for liquids stored or transferred at the ambient temperature, as determined:

- (1) In accordance with methods described in American Petroleum Institute Publication 2517, Evaporative Loss From External Floating-Roof Tanks (incorporated by reference as specified in 40 CFR 63.14 of subpart A); or
- (2) As obtained from standard reference texts; or
- (3) As determined by the American Society for Testing and Materials Method D2879–83 (incorporated by reference as specified in 40 CFR 63.14 of subpart A); or

(4) Any other method approved by the Administrator.

* * * * *

Sampling connection system means an assembly of equipment within a process unit used during periods of representative operation to take samples of the process fluid. Equipment used to take non-routine grab samples is not considered a sampling connection system.

Surge control vessel means feed drums, recycle drums, and intermediate vessels. Surge control vessels are used within a process unit when in-process storage, mixing, or management of flow rates of volumes is needed on a recurring or ongoing basis to assist in production of a product.

* * * * *

4. Section 61.242–2 is amended by redesignating paragraph (g) as (h) and by revising paragraphs (a)(1), (d)(1)(ii), (d)(6)(iv), and (f), and by adding paragraph (g), and by revising newly redesignated paragraph (h) to read as follows:

§61.242-2 Standards: Pumps.

(a)(1) Each pump shall be monitored monthly to detect leaks by the methods specified in § 61.245(b), except as provided in § 61.242–1(c) and paragraphs (d), (e), (f) and (g) of this section.

* * * *

(d) * * *

(1) * * *

(ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of § 61.242–11; or

* * * * * * (6) * * *

(iv) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected. If there are indications of liquids dripping from the pump seal or the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined in paragraph (d)(5)(ii) of this section, a leak is detected.

* * * * *

- (f) If any pump is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal or seals to a process or fuel gas system or to a control device that complies with the requirements of § 61.242–11, it is exempt from the requirements of paragraphs (a) through (e) of this section.
- (g) Any pump that is designated, a described in § 65.246(f)(1), as an unsafe-

to-monitor pump is exempt from the requirements of paragraph (a) of this section if:

- (1) The owner or operator of the pump demonstrates that the pump is unsafeto-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and
- (2) The owner or operator of the pump has a written plan that requires monitoring of the pump as frequently as practicable during safe-to-monitor times.
- (h) Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (a)(2) and (d)(4) of this section, and the daily requirements of paragraph (d)(5) of this section, provided that each pump is visually inspected as often as practicable and at least monthly.
- 5. Section 61.242–3 is amended by revising paragraphs (b)(2) and (h) to read as follows:

§ 61.242-3 Standards: Compressors.

* * * * * * (b) * * *

(2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed-vent system to a control device that complies with the requirements of § 61.242–11; or

* * * * *

- (h) A compressor is exempt from the requirements of paragraphs (a) and (b) of this section if it is equipped with a closed-vent system to capture and transport leakage from the compressor drive shaft back to a process or to a fuel gas system or to a control device that complies with the requirements of § 61.242–11, except as provided in paragraph (i) of this section.
- 6. Section 61.242–4 is amended by revising paragraph (c) and adding paragraph (d) to read as follows:

§ 61.242–4 Standards: Pressure relief devices in gas/vapor service.

* * * * *

- (c) Any pressure relief device that is routed to a process or fuel gas system equipped with a closed-vent system capable of capturing and transporting leakage from the pressure relief device to a control device as described in § 61.242–11 is exempt from the requirements of paragraphs (a) and (b) of this section.
- (d)(1) Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of

paragraphs (a) and (b) of this section, provided the owner or operator complies with the requirements in paragraph (d)(2) of this section.

(2) After each pressure release, a rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in § 61.242–10 of this subpart.

7. Section 61.242–5 is amended by revising paragraphs (a), (b) introductory text, (b)(1), (b)(2), and (c), and adding paragraph (b)(4) to read as follows:

§ 61.242–5 Standards: Sampling connecting systems.

- (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, closed loop, or closed vent system, except as provided in § 61.242–1(c).
- (b) Each closed-purge, closed-loop, or closed vent system as required in paragraph (a) of this section shall comply with the requirements specified in paragraphs (b)(1) through (b)(3) of this section:
- (1) Return the purged process fluid directly to the process line; or
- (2) Collect and recycle the purged process fluid; or

* * * * *

(4) Collect, store, and transport the purged process fluid to a system or

facility identified in paragraph (b)(4)(i), (b)(4)(ii), or (b)(4)(iii) of this section. (i) A waste management unit as defined in § 63.111 of 40 CFR part 63, subpart G. if the waste management unit

defined in § 63.111 of 40 CFR part 63, subpart G, if the waste management unit is subject to, and operated in compliance with the provisions of 40 CFR part 63, subpart G applicable to Group 1 wastewater streams.

(ii) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266; or

(iii) A facility permitted, licensed, or registered by a State to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261.

(c) In-situ sampling systems and sampling systems without purges are exempt from the requirements of paragraphs (a) and (b) of this section.

8. Section 61.242–6 is amended by adding paragraphs (d) and (e) to read as follows:

§ 61.242–6 Standards: Open-ended valves or lines.

* * * * *

(d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b) and (c) of this section.

- (e) Open-ended valves or lines containing materials which would autocatalytically polymerize or, would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraphs (a) through (c) of this section.
- 9. Section 61.242–8 is amended by revising paragraph (a) to read as follows:

§ 61.242–8 Standards: Pressure relief devices in liquid service and flanges and other connectors.

- (a) Pressure relief devices in liquid service and connectors shall be monitored within 5 days by the method specified in § 61.245(b) if evidence of a potential leak is found by visual, audible, olfactory, or any other detection method, except at provided in § 61.242-1(c).
- 10. Section 61.242–9 is revised to read as follows:

§ 61.242–9 Standards: Surge control vessels and bottoms receivers.

Each surge control vessel and bottoms receiver shall be equipped with a closed-vent system capable of capturing and transporting any leakage from the vessel to a control device as described in $\S 61.242-11$, except as provided in $\S 61.242-1(c)$.

11. Section 61.242–11 is amended by redesignating paragraph (g) as (m), redesignating paragraph (f)(3) as (g) introductory text and revising it, by redesignating paragraph (f)(4) as (g)(1) and revising it, by revising paragraphs (b), (c), and (f) and by adding paragraphs (g)(2), (h), (i), (j), (k), and (l), and by revising newly redesignated paragraph (m) to read as follows:

§ 61.242–11 Standards: Closed-vent systems and control devices.

* * * * *

- (b) Vapor recovery systems (for example, condensers and absorbers) shall be designed and operated to recover the organic vapors vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, whichever is less stringent.
- (c) Enclosed combustion devices shall be designed and operated to reduce the VHAP emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume, on a dry basis, corrected to 3 percent oxygen, whichever is less stringent, or to provide a minimum residence time of

0.50 seconds at a minimum temperature of 760 $^{\circ}\text{C}.$

* * * * *

(f) Except as provided in paragraphs (i) through (k) of this section, each closed vent system shall be inspected according to the procedures and schedule specified in paragraphs (f)(1) and (f)(2) of this section.

(1) If the vapor collection system or closed vent system is constructed of hard-piping, the owner or operator shall comply with the requirements specified in paragraphs (f)(1)(i) and (f)(1)(ii) of

this section:

(i) Conduct an initial inspection according to the procedures in $\S 61.245(b)$; and

(ii) Conduct annual visual inspections for visible, audible, or olfactory indications of leaks.

(2) If the vapor collection system or closed vent system is constructed of ductwork, the owner or operator shall:

- (i) Conduct an initial inspection according to the procedures in § 61.245(b); and
- (ii) Conduct annual inspections according to the procedures in § 61.245(b).
- (g) Leaks, as indicated by an instrument reading greater than 500 parts per million by volume above background or by visual inspections, shall be repaired as soon as practicable except as provided in paragraph (h) of this section.
- (1) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.
- (2) Repair shall be completed no later than 15 calendar days after the leak is detected.
- (h) Delay of repair of a closed vent system for which leaks have been detected is allowed if the repair is technically infeasible without a process unit shutdown or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be complete by the end of the next process unit shutdown.
- (i) If a vapor collection system or closed vent system is operated under a vacuum, it is exempt from the inspection requirements or paragraphs (f)(1)(i) and (f)(2) of this section.
- (j) Any parts of the closed vent system that are designated, as described in paragraph (k)(1) of this section, as unsafe-to-inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section if they comply with the requirements specified in paragraphs (j)(1) and (j)(2) of this section:

- (1) The owner or operator determines that the equipment is unsafe-to-inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (f)(1)(i) or (f)(2) of this section; and
- (2) The owner or operator has a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.
- (k) Any parts of the closed vent system that are designated, as described in paragraph (l)(2) of this section, as difficult to inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section if they comply with the requirements specified in paragraphs (k)(1) through (k)(3) of this section.
- (1) The owner or operator determines that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface; and
- (2) The process unit within which the closed vent system is located is a new process unit, or the owner or operator designates less than 3.0 percent of the total number of closed vent system equipment as difficult-to-inspect; and
- (3) The owner or operator has a written plan that requires inspection of the equipment at least once every 5 years. A closed vent system is exempt from inspection if it is operated under a vacuum.
- (l) The owner or operator shall record the information specified in paragraphs (l)(1) through (l)(5) of this section.
- (1) Identification of all parts of the closed vent system that are designated as unsafe-to-inspect, an explanation of why the equipment is unsafe-to-inspect, and the plan for inspecting the equipment.
- (2) Identification of all parts of the closed vent system that are designated as difficult-to-inspect, an explanation of why the equipment is difficult-to-inspect, and the plan for inspecting the equipment.
- (3) For each inspection during which a leak is detected, a record of the information specified in § 60.486(c).
- (4) For each inspection conducted in accordance with § 61.245(b) during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.
- (5) For each visual inspection conducted in accordance with paragraph (f)(1)(ii) of this section during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.

- (m) Closed vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them
- 12. Section 61.246 is amended by revising paragraphs (f) introductory text and (f)(1) to read as follows:

§ 61.246 Recordkeeping requirements.

* * * * *

- (f) The following information pertaining to all valves subject to the requirements of $\S 61.242-27(g)$ and (h) and to all pumps subject to the requirements of $\S 61.242-2(g)$ shall be recorded in a log that is kept in a readily accessible location:
- (1) A list of identification numbers for valves and pumps that are designated as unsafe to monitor, an explanation for each valve or pump stating why the valve or pump is unsafe to monitor, and the plan for monitoring each valve or pump.

* * * * *

13. Section 61.247 is amended by revising paragraph (a)(3), redesignating paragraph (a)(4) as paragraph (a)(5), and adding paragraphs (a)(4) and (f) to read as follows:

§ 61.247 Reporting requirements.

(a) * * *

- (3) In the case of new sources which did not have an initial startup date preceding the effective date, the statement required under paragraph (a)(1) of this section shall be submitted with the application for approval of construction, as described in § 61.07 of subpart A.
- (4) For owners and operators complying with 40 CFR part 65, subparts C or F, the statement required under paragraph (a)(1) of this section shall notify the Administrator that the requirements of 40 CFR part 65, subparts C or F are being implemented.
- (f) For owners or operators choosing to comply with 40 CFR part 65, subparts C or F an application for approval of construction or modification, as required under §§ 61.05 and 61.07 of subpart A will not be required if:
- (1) The new source complies with 40 CFR 65.106 through 65.115;
- (2) The new source is not part of the construction of a process unit; and
- (3) In the next semiannual report required by 40 CFR 65.120(b), the information in § 61.247(a)(5) is reported.
- 14. Tables 1 and 2 are added to part 61 at the end of subpart V. to read as follows:

TABLE 1.—TO PART 61, SUBPART V. SURGE CONTROL VESSELS AND BOTTOMS RECEIVERS AT EXISTING SOURCES

Vessel capacity (cubic meters)	Vapor pressure ¹ (kilopascals)
75 ≤ capacity < 151	≥ 13.1
151 ≤ capacity	≥ 5.2

¹ Maximum true vapor pressure as defined in §61.241 of this subpart.

TABLE 2.—TO PART 61, SUBPART V.
SURGE CONTROL VESSELS AND
BOTTOMS RECEIVERS AT NEW
SOURCES

Vessel capacity (cubic meters)	Vapor pressure ¹ (kilopascals)
38 ≤ capacity < 151	≥ 13.1
151 ≤ capacity	≥ 0.7

¹ Maximum true vapor pressure as defined in § 61.241 of this subpart.

Subpart Y—National Emission Standard for Benzene Emissions from Benzene Storage Vessels

15. Section 61.270 is amended by adding paragraphs (g), (h), (i), and (j) to read as follows:

* * * * *

- (g) Alternative means of compliance—SOCMI CAR unit basis. Owners or operators may choose to comply with 40 CFR part 65, subpart C to satisfy the requirements of §§ 61.271 through 61.277, except for §§ 61.271(d) and 61.274(a), as provided in paragraphs (i) and (j) of this section, for all storage vessels that are subject to this subpart and that are part of a SOCMI CAR unit. A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.
- (h) Alternative means of compliance-affected source basis. Owners or operators may choose to comply with 40 CFR part 65, subpart C to satisfy the requirements of §§ 61.271 through 61.277, except for §§ 61.271(d) and 61.274(a), as provided in paragraphs (i) and (j) of this section, for any storage vessels that are subject to this subpart and that are not part of a SOCMI CAR unit, but are located at the same plant site as a SOCMI CAR unit that is complying with 40 CFR part 65. A SOCMI ĈAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A.

(i) Part 61 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart C, as provided in paragraphs (g) or (h) of this section, must also comply with §§ 61.01, 61.02, 61.05 through 61.08, 61.11, 61.15, and 61.10(b) through (d) of subpart A for those storage vessels. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply for storage vessels complying with 40 CFR part 65, subpart C, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart C must comply with 40 CFR part 65, subpart A.

part 65, subpart A.

(j) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks) or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR of the CAR.

CFR 65.2 of subpart A.

16. Section 61.271 is amended by revising paragraph (d) to read as follows:

§ 61.271 Emission standard.

* * * * *

- (d) The owner or operator of each affected storage vessel shall meet the requirements of paragraph (a), (b), or (c) of this section or § 61.270(g) or (h) as follows:
- (1) The owner or operator of each existing benzene storage vessel shall meet the requirements of paragraph (a), (b), or (c) of this section or § 61.270(g) or (h) no later than 90 days after September 14, 1989 with the exceptions noted in paragraphs (a)(5) and (b)(5), unless a waiver of compliance has been approved by the Administrator in accordance with § 61.11.
- (2) The owner or operator of each benzene storage vessel upon which construction commenced after September 14, 1989 shall meet the requirements of paragraph (a), (b), or (c) of this section or § 61.270(g) or (h) prior to filling (i.e., roof is lifted off leg supports) the storage vessel with benzene.
- (3) The owner or operator of each benzene storage vessel upon which construction commenced on or after July 28, 1988 and before September 14, 1989 shall meet the requirements of

- paragraph (a), (b), or (c) of this section or §61.270(g) or (h) on September 14, 1989.
- 17. Section 61.274 is amended by revising paragraph (a) to read as follows:

§61.274 Initial report.

(a) The owner or operator of each storage vessel to which this subpart applies and which has a design capacity greater than or equal to 38 cubic meters (10,000 gallons) shall submit an initial report describing the controls which will be applied to meet the equipment requirements of §§ 61.271 or 61.270(g) or (h). For an existing storage vessel or a new storage vessel for which construction and operation commenced prior to September 14, 1989, this report shall be submitted within 90 days of September 14, 1989 and can be combined with the report required by § 61.10. For a new storage vessel for which construction or operation commenced on or after September 14, 1989, the report shall be combined with the report required by § 61.07 or 40 CFR 65.5(b) of subpart A. In the case where the owner or operator seeks to comply with § 61.271(c), with a control device other than a flare, this information may consist of the information required by § 61.272(c)(1).

Subpart BB—National Emission Standard for Benzene Emissions from Benzene Transfer Operations

18. Section 61.300 is amended by revising paragraph (c) and adding paragraphs (f), (g), (h), and (i) to read as follows:

§ 61.300 Applicability.

* * * * *

(c) Comply with standards at each loading rack. Any affected facility under paragraph (a) of this section shall comply with the standards in § 61.302 or as specified in paragraph (f) through (i) of this section if applicable at each loading rack that is handling a liquid containing 70 weight-percent or more benzene.

* * * * *

(f) Alternative means of compliance—SOCMI CAR unit basis. Owners or operators may choose to comply with 40 CFR part 65, subpart E to satisfy the requirements of §§ 61.302 through 61.306, as provided in paragraphs (h) and (i) of this section, for all tank truck or railcar loading racks that are subject to this subpart and that are part of a SOCMI CAR unit. Loading racks are referred to as transfer racks in 40 CFR part 65, subpart E. A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A.

Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A. All marine vessel loading racks shall comply with the provisions in §§ 65.302 through 65.306.

- (g) Alternative means of complianceaffected source basis. Owners or operators may choose to comply with 40 CFR part 65, subpart E to satisfy the requirements of §§ 61.302 through 61.306, as provided in paragraphs (h) and (i) of this section, for any tank trucks or railcar loading racks that are subject to this subpart and that are not part of a SOCMI CAR unit, but are located at the same plant site as a SOCMI CAR unit that is complying with 40 CFR part 65. Loading racks are referred to as transfer racks in 40 CFR part 65 of subpart E. A SOCMI CAR unit is defined in 40 CFR 65.2 of subpart A. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1 of subpart A. All marine vessel loading racks shall comply with §§ 65.302 through 65.306.
- (h) Part 61 subpart A. Owners or operators who choose to comply with 40 CFR part 65, subpart E, as provided in paragraphs (f) or (g) of this section, must also comply with §§ 61.01, 61.02, 61.05 through 61.08, 61.11, 61.15, and 61.10(b) through (d) of subpart A for those loading racks. All sections and paragraphs of subpart A of this part that are not mentioned in this paragraph do not apply to owners or operators of loading racks complying with 40 CFR part 65, subpart E, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subpart E, must comply with 40 CFR part 65, subpart A.
- (i) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all

equipment, process vents, loading racks (transfer racks) or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2, of subpart A.

PART 63—NATIONAL EMISSION STANDARD FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES

1. The authority citation for part 63 continues to read as follows:

Authority: 42 U.S.C. 7401 et seq.

Subpart G—National Emission Standards for Organic Hazardous Air Pollutants From Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater

2. Section 63.110 is amended by adding paragraphs (i), (j), and (k) to read as follows:

§ 63.110 Applicability.

* * * *

(i) Alternative means of compliance. Owners or operators of CMPU that are subject to § 63.100 of subpart F of this part may choose to comply with the provisions of 40 CFR part 65 as provided in paragraphs (i)(1), (i)(2), (i)(3), (j) and (k) of this section for all Group 1 and Group 2 process vents, Group 1 storage vessels, and Group 1 transfer operations that are part of the CMPU. Other provisions applying to owners or operators who choose to comply with 40 CFR part 65 are provided in 40 CFR 65.1, of subpart A. Group 1 and Group 2 wastewater streams, Group 2 transfer operations, Group 2 storage vessels, and in-process streams are not eligible to comply with 40 CFR part 65 and must continue to comply with the requirements of this subpart and subpart F of this part.

(1) For Group 1 and Group 2 process vents, 40 CFR part 65, subpart D satisfies the requirements of §§ 63.113 through 63.118, 63.148, 63.151, and 63.152 of this subpart and the

requirements of §§ 63.102 and 63.103 of subpart F of this part.

- (2) For Group 1 storage vessels, 40 CFR part 65, subpart C satisfies the requirements of §§ 63.119 through 63.123, 63.148, 63.151, and 63.152 of this subpart and the requirements of §§ 63.102 and 63.103 of subpart F of this part.
- (3) For Group 1 transfer racks, 40 CFR part 65, subpart E satisfies the requirements of §§ 63.126 through 63.130, 63.148, 63.151, and 63.152 of this subpart and the requirements of §§ 63.102 and 63.103 of subpart F of this part.
- (j) Part 63 subpart A. Owners or operators who choose to comply with 40 CFR part 65, as provided in paragraph (i) of this section, must also comply with the applicable general provisions of 40 CFR part 63 listed in table 1A of this subpart. All sections and paragraphs of subpart A of this part that are not mentioned in table 1A of this subject do not apply to owners or operators who choose to comply with 40 CFR part 65, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with a subpart of 40 CFR part 65 must comply with 40 CFR part 65, subpart A.
- (k) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack), or storage vessel in a CMPU, owners or operators must also comply with all applicable subparts of 40 CFK part 65 for all equipment, process vents, loading racks (transfer racks), or storage vessels that are within the CMPU, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A CMPU that is subject to § 63.100 of subpart F is a SOCMI CAR unit by definition. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2, of subpart A.
- 3. Table 1A is added to subpart G, immediately after table 1, to read as follows:

TABLE 1A. TO SUBPART G.—APPLICABLE 40 CFR PART 63 GENERAL PROVISION

40 CFR part 63 subpart A provisions for referencing subpart G

§ 63.1(a)(1), (a)(2), (a)(3), (a)(13), (a)(14), (b)(2) and (c)(4). § 63.2.

 $\S 63.5(a)(1), (a)(2), (b),(d)(1)(ii), (d)(3)(v), (d)(4),(e), (f)(2).$

§ 63.6(a), (b)(3), (c)(5),(i)(1), (i)(2), (i)(4)(i)(A), (i)(5) through (i)(14), (i)(16) and (j).

§ 63.9(a)(2), (b)(4)(i)a, (b)(4)(ii), (b)(4)(iii), (b)(5)a, (c), (d).

§ 63.10(d)(4).

§ 63.12(b).

^aThe notifications specified in §§ 63.9(b)(4)(i) and (b)(5) shall be submitted at the times specified in 40 CFR part 65.

Subpart H—National Emission Standards for Organic Hazardous Air Pollutants for Equipment Leaks

4. Section 63.160 is amended by adding paragraph (g) to read as follows:

§ 63.160 Applicability and designation of source.

* * * * *

(g) Alternative means of compliance. Owners or operators of equipment that is subject to § 63.100 of subpart F of this part may choose to comply with the provisions of 40 CFR part 65 to satisfy the requirements of §§ 63.162 through 63.182 of this subpart and §§ 63.102 and 63.103 of subpart F of this part, as provided in paragraphs (g)(1), (g)(2), and (g)(3). When choosing to comply with 40 CFR part 65, the requirements of § 63.180(d) of this subpart remain in effect. Other provisions applying to an owner or operator who chooses to comply with 40 CFR part 65 are provided in 40 CFR 65.1, of subpart A.

- (1) Surge control vessels and bottoms receivers. For owners or operators choosing to comply with 40 CFR part 65, each surge control vessel and bottoms receiver subject to § 63.100 of subpart F of this part that meets the conditions specified in table 2 or table 3 of this subpart shall meet the requirements for storage vessels in 40 CFR part 65, subpart C; all other equipment subject to § 63.100 of subpart F of this part shall meet the requirements in 40 CFR part 65, subpart F.
- (2) Part 63 Subpart A. Owners or operators who choose to comply with 40 CFR part 65, subparts C or F for equipment subject to § 63.100 of subpart F of this part must also comply with the applicable general provisions of 40 CFR part 63 listed in table 4 of this subpart. All sections and paragraphs of subpart A of this part that are not mentioned in table 4 of this subpart do not apply to owners or operators of equipment subject to § 63.100 of subpart F of this
- part complying with 40 CFR part 65, subparts C or F, except that provisions required to be met prior to implementing 40 CFR part 65 remain in effect. Owners and operators who choose to comply with 40 CFR part 65, subparts C or F, must comply with 40 CFR part 65, subpart 65, subpart A.
- (3) Comply on a SOCMI CAR unit basis. When choosing to comply with any subpart of 40 CFR part 65 for any equipment, process vent, loading rack (transfer rack) or storage vessel in a SOCMI CAR unit, owners or operators must also comply with all applicable subparts of 40 CFR part 65 for all equipment, process vents, loading racks (transfer racks), or storage vessels that are within the SOCMI CAR unit, that are subject to a CAR referencing subpart, and that are eligible to comply with the CAR. A SOCMI CAR unit and the CAR referencing subparts are defined in 40 CFR 65.2, of subpart A.
- 5. Table 4 is added to subpart H to read as follows:

TABLE 4 TO SUBPART H—APPLICABLE 40 CFR PART 63 GENERAL PROVISIONS

40 CFR part 63 subpart A provisions for referencing subpart H

§ 63.1(a)(1), (a)(2), (a)(3), (a)(13), (a)(14), (b)(2) and (c)(4). § 63.2.

 $\S 63.5(a)(1), (a)(2), (b), (d)(1)(ii), (d)(3)(v), (d)(4), (e), (f)(1) and (f)(2).$

§ 63.6(a), (b)(3), (c)(5), (i)(1), (i)(2), (i)(4)(i)(A), (i)(5) through (i)(14), (i)(16) and (j).

 $\S 63.9(a)(2)$, (b)(4)(i)^a, (b)(4)(ii), (b)(4)(iii), (b)(5)^a, (c) and (d).

§ 63.10(d)(4).

§ 63.12(b).

6. Add part 65 to read as follows:

PART 65—CONSOLIDATED FEDERAL AIR RULE

Subpart A—General Provisions

Sec.

65.1 Applicability.

65.2 Definitions.

65.3 Compliance with standards and operation and maintenance requirements.

65.4 Recordkeeping.

65.5 Reporting requirements.

65.6 Startup, shutdown, and malfunction plan and procedures.

65.7 Monitoring, recordkeeping, and reporting waivers and alternatives.

65.8 Procedures for approval of alternative means of emission limitation.

65.9 Availability of information and confidentiality.

65.10 State authority.

65.11 Circumvention.

65.12 Delegation of authority.

65.13 Incorporation by reference.

65.14 Addresses.

65.15—65.19 [Reserved].

TABLE 1 TO SUBPART A—APPLICABLE 40 CFR PARTS 60, 61, AND 63 GENERAL PROVISIONS

Subpart B [Reserved]

Subpart C—Storage Vessels

Sec.

65.40 Applicability.

65.41 Definitions.

65.42 Control requirements.

65.43 Fixed roof with an internal floating roof (IFR).

65.44 External floating roof (EFR).

65.45 External floating roof converted into an internal floating roof.

65.46 Alternative means of emission limitation.

65.47 Recordkeeping provisions.

65.48 Reporting provisions.

65.49—65.59 [Reserved].

Subpart D—Process Vents

Sec.

65.60 Applicability.

65.61 Definitions.

65.62 Process vent group determination.

65.63 Performance and group status change requirements.

65.64 Group determination procedures.

65.65 Monitoring.

65.66 Recordkeeping provisions.

65.67 Reporting provisions.

65.68—65.79 [Reserved].

TABLE 1 TO SUBPART D—
CONCENTRATION FOR GROUP
DETERMINATION

TABLE 2 TO SUBPART D—TRE PARAMETERS FOR NSPS REFERENCING SUBPARTS

TABLE 3 TO SUBPART D—TRE PARAMETERS FOR HON REFERENCING SUBPARTS

Subpart E—Transfer Racks

Sec.

65.80 Applicability.

65.81 Definitions.

65.82 Design requirements.

65.83 Performance requirements.

65.84 Operating requirements.

65.85 Procedures.

65.86 Monitoring.

65.87 Recordkeeping provisions.

65.88—65.99 [Reserved].

Subpart F-Equipment Leaks

65.100 Applicability.

65.101 Definitions.

65.102 Alternative means of emission limitation.

65.103 Equipment identification.

65.104 Instrument and sensory monitoring for leaks.

65.105 Leak repair.

^aThe notifications specified in §63.9(b)(4)(i) and (b)(5) shall be submitted at the times specified in 40 CFR part 65.

- 65.106 Standards: Valves in gas/vapor service and in light liquid service.
- 65.107 Standards: Pumps in light liquid service.
- 65.108 Standards: Connectors in gas/vapor service and in light liquid service.
- 65.109 Standards: Agitators in gas/vapor service and in light liquid service.
- 65.110 Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems.
- 65.111 Standards: Pressure relief devices in gas/vapor service.
- 65.112 Standards: Compressors.
- 65.113 Standards: Sampling connection systems.
- 65.114 Standards: Open-ended valves or lines.
- 65.115 Standards: Closed vent systems and control devices; or emissions routed to a fuel gas system or process.
- 65.116 Quality improvement program for pumps.
- 65.117 Alternative means of emission limitation: Batch processes.
- 65.118 Alternative means of emission limitation: Enclosed-vented process units.
- 65.119 Recordkeeping provisions.
- 65.120 Reporting provisions. 65.121—65.139 [Reserved].
- TABLE 1 TO SUBPART F—BATCH PROCESS MONITORING FREQUENCY FOR EQUIPMENT OTHER THAN CONNECTORS

Subpart G-Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process

- 65.140 Applicability.
- 65.141 Definitions.
- 65.142 Standards.
- 65.143 Closed vent systems.
- 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed.
- 65.145 Nonflare control devices used to control emissions from storage vessels or low-throughput transfer racks.
- 65.146 Nonflare control devices used for equipment leaks only.
- 65.147 Flares.
- 65.148 Incinerators.
- 65.149 Boilers and process heaters.
- 65.150 Absorbers used as control devices.
- 65.151 Condensers used as control devices.
- 65.152 Carbon adsorbers used as control devices.
- 65.153 Absorbers, condensers, carbon adsorbers, and other recovery devices used as final recovery devices.
- 65.154 Halogen scrubbers and other halogen reduction devices.
- Other control devices.
- 65.156 General monitoring requirements for control and recovery devices.
- 65.157 Performance test and flare compliance determination requirements.
- 65.158 Performance test procedures for control devices.
- 65.159 Flare compliance determination and monitoring records.
- 65.160 Performance test and TRE index value determination records.

- 65.161 Continuous records and monitoring system data handling.
- 65.162 Nonflare control and recovery device monitoring records.
- 65.163 Other records.
- 65.164 Performance test and flare compliance determination notifications and reports.
- 65.165 Initial Compliance Status Reports.
- 65.166 Periodic reports.
- 65.167 Other reports.
- 65.168-65.169 [Reserved].

Authority: 42 U.S.C. 7401 et seq.

Subpart A—General Provisions

§65.1 Applicability.

- (a) The provisions of this subpart apply to owners or operators expressly referenced to this part from a subpart of 40 CFR part 60, 61, or 63 for which the owner or operator has chosen to comply with the provisions of this part as an alternative to the provisions in the referencing subpart as specified in paragraphs (b) and (c) of this section.
- (b) Owners or operators choosing to comply with a subpart of this part for any regulated source included in or assigned to a synthetic organic chemical manufacturing industry (SOCMI) consolidated air rule (CAR) unit must comply with all applicable subparts of this part for all other regulated sources that are included in or assigned to that SOCMI CAR unit and are subject to one of the referencing subparts. Any sources that become subject to a referencing subpart and that are part of a SOCMI CAR unit complying with this part must comply with this part.
- (c) Owners or operators may choose to comply with this part for any regulated source that meets the specifications listed in paragraphs (c)(1) and (c)(2) of this section.
- (1) The regulated source is located at the same plant site as a SOCMI CAR unit that is complying with this part,
- (2) The regulated source is subject to one of the following subparts: 40 CFR part 60, subparts DDD, Ka, or Kb, or 40 CFR part 61 subparts V, Y, or BB.
- (d) Compliance with this part instead of the referencing subparts does not alter the applicability of the referencing subparts. This part applies to only the equipment, process vents, storage vessels, or transfer operations to which the referencing subparts apply. The CAR does not extend applicability to equipment, process vents, storage vessels, or transfer operations that are not regulated by the referencing subpart.
- (e) The provisions of 40 CFR part 60, subpart A, 40 CFR part 61, subpart A, and 40 CFR part 63, subpart A that are listed in table 1 of this part still apply to owners or operators of regulated

- sources expressly referenced to this part. The owner or operator shall comply with the provisions in table 1 of this subpart in the column corresponding to the referencing subpart. All provisions of 40 CFR part 60, subpart A, 40 CFR part 61, subpart A, and 40 CFR part 63, subpart A not expressly referenced in table 1 do not apply and the provisions of this part apply instead, except that provisions which were required to be met prior to implementation of part 65 remain in force.
- (f) Implementation date. Owners or operators who choose to comply with this part shall comply by the dates specified in paragraph (f)(1) or (f)(2) of this section, as applicable, and shall meet the requirement in paragraph (f)(3) of this section.
- (1) Except as provided in paragraph (f)(2) of this section, owners or operators shall implement this part as specified in an implementation schedule established in a title V permit or, if the source is not a title V source, by a date established by agreement with the Administrator or delegated authority. The implementation schedule shall be proposed by the source in a title V permit application or amendment or, for non-title V sources, in the Initial Notification for part 65 Applicability as specified in §65.5(c). The implementation schedule can not extend for longer than 3 years.
- (2) For SOCMI CAR units or regulated sources that will comply with this part at initial startup instead of with the requirements of the referencing subpart or subparts, the implementation date shall be at initial startup or by the compliance date specified by the applicable referencing subpart(s).
- (3) There shall be no gaps in compliance between compliance with the referencing subpart and compliance with this part.
- (g) Transitioning out of this part. Owners or operators who decide to no longer comply with this part and to comply with the provisions in the referencing subpart instead, shall comply with paragraphs (g)(1) through (g)(3) of this section, as applicable.
- (1) This transition shall be carried out on a date established in a title V permit or if the source is not a title V source, by a date established by agreement with the Administrator or delegated authority. The transition date shall be proposed in a title V permit amendment, or, for non-title V sources, in a periodic report or separate notice.
- (2) There shall be no gaps in compliance between compliance with this part and compliance with the referencing subpart provisions.

- (3) If an owner or operator decides to no longer comply with this part for a regulated source in a SOCMI CAR unit, then the owner or operator shall comply with the applicable referencing subparts for all regulated sources that are part of that SOCMI CAR unit.
- (h) Overlap with provisions of other subparts of this part. When provisions of another subpart of this part conflict with the provisions of this subpart, the provisions of the other subpart shall apply.

(i) Alternative to the assignment procedures.

- (1) If an owner or operator has an elastomer product process unit (EPPU), thermoplastic product process unit (TPPU), or a petroleum refinery process unit (PRPU) that is subject to 40 CFR part 60 subpart VV, III, NNN, or RRR, then the EPPU, TPPU, or PRPU is a SOCMI CAR unit, and the assignment procedures in paragraphs (j), (l), and (m) of this section need not be carried out. The assignment procedures in paragraph (k) for transfer racks must be followed. An EPPU is defined in 40 CFR part 63, subpart U. A TPPU is defined in 40 CFR part 63, subpart JJJ. A PRPU is defined in 40 CFR part 63, subpart
- (2) If an owner or operator has a chemical manufacturing process unit (CMPU) that is subject to 40 CFR 63.100 in subpart A or 40 CFR part 60, subparts VV, III, NNN, or RRR, then the CMPU is a SOCMI CAR unit, and the assignment procedures in paragraphs (j), (k), (l), and (m) of this section need not be carried out.
- (j) Storage vessel assignment procedures. The owner or operator shall follow the procedures specified in paragraphs (j)(1) through (j)(5) of this section to determine whether a storage vessel is part of a SOCMI CAR unit.
- (1) Where a storage vessel is dedicated to a SOCMI CAR unit, the storage vessel shall be considered part of that SOCMI CAR unit.
- (2) Where a storage vessel is not used by a SOCMI CAR unit it can not be assigned to that SOCMI CAR unit.
- (3) If a storage vessel is not dedicated to a SOCMI CAR unit, then the assignment of the storage vessel shall be determined according to the provisions in paragraphs (j)(3)(i) through (j)(3)(iii) of this section.
- (i) If a storage vessel is predominately used by a SOCMI CAR unit, then that storage vessel shall be assigned to that SOCMI CAR unit. If a storage vessel is predominately used by a process unit that is not a SOCMI CAR unit or is not part of a SOCMI CAR unit, then that storage vessel shall not be assigned to a SOCMI CAR unit. Predominant use

- shall be determined as specified in paragraphs (j)(3)(i)(A) through (j)(3)(i)(C) of this section.
- (A) If the greatest input into a storage vessel is from a SOCMI CAR unit that is located on the same plant site as that storage vessel, then that SOCMI CAR unit has the predominant use.
- (B) If the greatest input into the storage vessel is from a process unit that is not a SOCMI CAR unit and that is located on the same plant site as that storage vessel, then that process unit has the predominant use.
- (C) If the greatest input into the storage vessel is not from the same plant site as the storage vessel, then the predominant use is the process unit or SOCMI CAR unit on the same plant site that receives the greatest amount of material from the storage vessel.
- (ii) If a storage vessel is shared among process units and SOCMI CAR units so that there is no single predominant use, the storage vessel shall be considered part of a SOCMI CAR unit unless the storage vessel has been assigned under a subpart of 40 CFR part 63 to a process unit that is not a SOCMI CAR unit. In these cases, the storage vessel shall be assigned as specified in the subpart of 40 CFR part 63. If a storage vessel is shared among more than one SOCMI CAR unit, the owner or operator may assign the storage vessel to any of the SOCMI CAR units.
- (iii) If the predominant use of a storage vessel varies from year to year, then the assignment of the storage vessel shall be determined based on the utilization that occurred during the year preceding the date of the Title V permit establishing the implementation schedule specified in paragraph (f)(1) of this section, or the date of the initial notification of part 65 Applicability specified in paragraph (f)(1) of this section. This determination shall be reported as part of an operating permit application or as otherwise specified by the permitting authority.
- (4) Where a storage vessel is located in a tank farm (including a marine tank farm), the assignment of the storage vessel shall be determined according to the provisions in paragraphs (j)(4)(i) through (j)(4)(iii) of this section. If a plant site does not include a SOCMI CAR unit, a storage vessel in a tank farm associated with a plant site can not be assigned to a SOCMI CAR unit.
- (i) The storage vessel may only be assigned to a SOCMI CAR unit that utilizes the storage vessel and does not have an intervening storage vessel for that product (or raw material, as appropriate). With respect to any process unit or SOCMI CAR unit, an intervening storage vessel means a

- storage vessel connected by hard-piping to the process unit or SOCMI CAR unit and to the storage vessel in the tank farm so that product or raw material entering or leaving the process unit or SOCMI CAR unit flows into (or from) the intervening storage vessel and does not flow directly into (or from) the storage vessel in the tank farm.
- (ii) If there is only one SOCMI CAR unit and no process unit at the plant site that meets the criteria of paragraph (j)(4)(i) of this section with respect to a storage vessel located at a tank farm, the storage vessel shall be assigned to that SOCMI CAR unit.
- (iii) If there are two or more process units and/or SOCMI CAR units at the plant site that meet the criteria of paragraph (j)(4)(i) of this section with respect to a storage vessel located at a tank farm, whether the storage vessel is assigned to a SOCMI CAR unit shall be determined according to the provisions of paragraph (j)(3) of this section. The predominant use shall be determined among only those process units and SOCMI CAR units that meet the criteria of paragraph (j)(4)(i) of this section.
- (5) If a storage vessel begins to receive material from (or send material to) another process unit or SOCMI CAR unit, or ceases to receive material from (or send material to) a SOCMI CAR unit, or if the assignment of the storage vessel has been determined according to the provisions of paragraph (j)(3) of this section and there is a change so that the predominant use may reasonably have changed, the owner or operator shall reevaluate the assignment of the storage vessel, and reassign if necessary.
- (k) Transfer rack assignment procedures. The owner or operator shall follow the procedures specified in paragraphs (k)(1) through (k)(4) of this section to determine whether the arms and hoses in a transfer rack are part of a SOCMI CAR unit.
- (1) Where a transfer rack is dedicated to a SOCMI CAR unit, the transfer rack shall be considered part of that SOCMI CAR unit.
- (2) Where a transfer rack is not used by a SOCMI CAR unit it can not be assigned to a SOCMI CAR unit.
- (3) If a transfer rack is not dedicated to a SOCMI CAR unit, then the assignment of the transfer rack shall be determined at each transfer arm or transfer hose according to the provisions in paragraphs (k)(3)(i) through (k)(3)(iv) of this section.
- (i) Each transfer arm or transfer hose that is dedicated to the transfer of liquid material from a SOCMI CAR unit is part of that SOCMI CAR unit.
- (ii) If a transfer arm or transfer hose is shared among SOCMI CAR units and/

or process units, and one of the SOCMI CAR units provides the greatest amount of the material that is loaded by that transfer arm or transfer hose, then the transfer arm or transfer hose is part of that SOCMI CAR unit. If a process unit that is not a SOCMI CAR unit or is not part of a SOCMI CAR unit provides the greatest amount of the material that is loaded by a transfer arm or transfer hose, then that transfer arm or transfer hose is not part of a SOCMI CAR unit.

(iii) If a transfer arm or transfer hose is shared among process units and SOCMI CAR units so that there is no single predominant use as described in paragraph (k)(2)(ii) of this section, then that transfer arm or hose shall be considered part of the SOCMI CAR unit unless the transfer arm or transfer hose has been assigned under a 40 CFR part 63 subpart to a process unit that is not a SOCMI CAR unit. In these cases, the transfer arm or transfer hose shall be assigned as specified in the 40 CFR part 63 subpart. If a transfer arm or transfer hose is shared among more than one SOCMI CAR unit, the owner or operator may assign the transfer arm or transfer hose to any of the SOCMI CAR units.

(iv) If the predominant use of a transfer arm or transfer hose varies from year to year, then the assignment of the transfer arm or transfer hose shall be determined based on the utilization that occurred during the year preceding the date of the Title V permit establishing the implementation schedule specified in paragraph (f)(1) of this section, or the date of the initial notification of part 65 Applicability specified in paragraph (f)(1) of this section. This determination shall be reported as part of an operating permit application or as otherwise specified by the permitting authority.

(4) If a transfer rack that was dedicated to a single process unit or SOCMI CAR unit begins to serve another process unit or SOCMI CAR unit, or if assignment was determined under the provisions of paragraph (k)(3) of this section and there is a change so that the predominant use may reasonably have changed, the owner or operator shall reevaluate the assignment of the transfer rack, transfer arm or transfer hose, and reassign if necessary.

(l) Process vent assignment procedures. The owner or operator shall follow the procedures specified in paragraphs (l)(1) through (l)(4) of this section to determine whether the process vent(s) from a distillation unit is/are part of a SOCMI CAR unit.

(1) Where a distillation unit is dedicated to SOCMI CAR unit, the process vents from that distillation unit shall be considered part of that SOCMI CAR unit.

(2) If a distillation unit is not used by a SOCMI CAR unit, the process vents from that distillation unit can not be assigned to a SOCMI CAR unit.

(3) If a distillation unit is not dedicated to a single SOCMI CAR unit, then the assignment of the process vents from that distillation unit shall be determined according to the provisions in paragraphs (l)(3)(i) through (l)(3)(iv) of this section.

(i) If the greatest input to the distillation unit is from a SOCMI CAR unit located on the same plant site, then the process vents from that distillation unit shall be assigned to that SOCMI CAR unit.

(ii) If the greatest input to the distillation unit is not provided from a process unit or SOCMI CAR unit that is located on the same plant site, then the process vents from the distillation unit shall be assigned to the SOCMI CAR unit located at the same plant site that receives the greatest amount of material from the distillation unit, unless a non-SOCMI process unit receives the greatest amount of material from the distillation unit. In this case, the process vents from the distillation unit shall not be assigned to a SOCMI CAR unit.

(iii) If a distillation unit is shared among process units and SOCMI CAR units so that there is no single predominant use, as described in paragraphs (l)(3)(i) and (l)(3)(ii) of this section, the process vents from the distillation unit shall be considered to be part of the SOCMI CAR unit unless the distillation unit has been assigned under a 40 CFR part 63 subpart to a process unit that is not a SOCMI CAR unit. In these cases, the process vents from the distillation unit shall be assigned as specified in the 40 CFR part 63 subpart. If a distillation unit is shared among more than one SOCMI CAR unit, the owner or operator may assign the process vents from the distillation unit to any of the CAR units.

(iv) If the predominant use of a distillation unit varies from year to year, then the assignment of the distillation unit shall be determined based on the utilization that occurred during the year preceding the date of the Title V permit establishing the implementation schedule specified in paragraph (f)(1) of this section, or the date of the initial notification of part 65 Applicability specified in paragraph (f)(1) of this section. This determination shall be included as part of an operating permit application or as otherwise specified by the permitting authority.

(4) If a distillation unit begins to serve another process unit or SOCMI CAR unit, or if assignment of the distillation unit was determined under the

provisions of paragraph (l)(3) of this section and there is a change so that the predominant use may reasonably have changed, the owner or operator shall reevaluate the assignment of the process vents from the distillation unit, and reassignment if necessary.

(m) Equipment assignment procedures. If specific items of equipment (pumps, compressors, agitators, pressure relief devices, sampling connection systems, openended valves or lines, valves, connectors, instrumentation systems, surge control vessels, and bottoms receivers), that are part of a SOCMI CAR unit complying with this part, are managed by different administrative organizations (for example, different companies, affiliates, departments, divisions, etc.) those items of equipment may be aggregated with any SOCMI CAR unit within the plant site.

§65.2 Definitions.

All terms used in this part shall have the meaning given them in the Act and in this section. If a term is defined both in this section and in other parts that reference the use of this part, the term shall have the meaning given in this section for purposes of this part.

Act means the Clean Air Act (42 U.S.C. 7401 et seq.).

Administrator means the Administrator of the United States Environmental Protection Agency (EPA) or his or her authorized representative (for example, a State that has been delegated the authority to implement the provisions of this part).

Alternative test method means any method of sampling and analyzing for an air pollutant that is not a reference test or equivalent method and that has been demonstrated to the Administrator's satisfaction, using Method 301 in Appendix A of 40 CFR part 63 or approved by the Administrator prior to [date of publication of final rule in the Federal **Register**] to produce results adequate for the Administrator's determination that it may be used in place of a test method specified in this part.

Approved permit program means a State permit program approved by the Administrator as meeting the requirements of part 70 of this chapter or a Federal permit program established in this chapter pursuant to title V of the Act (42 U.S.C. 7661).

Automated monitoring and recording system means any means of measuring values of monitored parameters and creating a hard copy or computer record of the measured values that does not require manual reading of monitoring instruments and manual transcription of data values. Automated monitoring and recording systems include, but are not limited to, computerized systems and strip charts.

Batch process means a process in which the equipment is fed intermittently or discontinuously. Processing then occurs in this equipment after which the equipment is generally emptied. Examples of industries that use batch processes include pharmaceutical production and pesticide production.

Batch product-process equipment train means the collection of equipment (for example, connectors, reactors, valves, pumps) configured to produce a specific product or intermediate by a

batch process.

Boiler means any enclosed combustion device that extracts useful energy in the form of steam and is not an incinerator or a process heater. Boiler also means any industrial furnace as defined in 40 CFR 260.10.

Bottoms receiver means a tank that collects distillation bottoms before the stream is sent for storage or for further downstream processing.

By compound means by individual stream components, not carbon equivalents.

Car-seal means a seal that is placed on a device that is used to change the position of a valve (for example, from opened to closed) in such a way that the position of the valve cannot be changed without breaking the seal.

Closed-loop system means an enclosed system that returns process fluid to the process and is not vented to the atmosphere except through a closed

vent system.

Closed-purge system means a system or combination of systems and portable containers to capture purged liquids. Containers must be covered or closed when not being filled or emptied.

Closed vent system means a system that is not open to the atmosphere and is composed of piping, ductwork, connections, and, if necessary, flow inducing devices that transport gas or vapor from an emission point to a control device. A closed vent system does not include the vapor collection system that is part of any tank truck or railcar or the loading arm or hose that is used for vapor return. For transfer racks, the closed vent system begins at, and includes, the first block valve on the downstream side of the loading arm or hose used to convey displaced vapors.

Closed vent system shutdown means a work practice or operational procedure that stops production from a process unit or part of a process unit during which it is technically feasible to clear

process material from a closed vent system or part of a closed vent system consistent with safety constraints and during which repairs can be effected. An unscheduled work practice or operational procedure that stops production from a process unit or part of a process unit for less than 24 hours is not a closed vent system shutdown. An unscheduled work practice or operational procedure that would stop production from a process unit or part of a process unit for a shorter period of time than would be required to clear the closed vent system or part of the closed vent system of materials and start up the unit, and would result in greater emissions than delay of repair of leaking components until the next scheduled closed vent system shutdown, is not a closed vent system shutdown. The use of spare equipment and technically feasible bypassing of equipment without stopping production are not closed vent system shutdowns.

Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or boiler, used for the combustion of

organic emissions.

Compliance date means the date by which a regulated source is required to be in compliance with a relevant standard, limitation, prohibition, or any federally enforceable requirement established by the Administrator (or a State with an approved permit program) pursuant to the Act.

Connector means flanged, screwed, or other joined fittings used to connect two pipelines or a pipeline and a piece of equipment. A common connector is a flange. Joined fittings welded completely around the circumference of the interface are not considered connectors for the purpose of this regulation. For the purpose of reporting and recordkeeping, connector means joined fittings that are not inaccessible, ceramic, or ceramic-lined (for example, porcelain, glass, or glass-lined) as described in § 65.108(e)(2) of subpart F of this part.

Continuous parameter monitoring system or CPMS means the total equipment that may be required to meet the data acquisition and availability requirements of this part used to sample, condition (if applicable), analyze, and provide a record of process or control system parameters.

Continuous record means documentation, either in hard copy or computer-readable form, of data values measured at least once every 15 minutes and recorded at the frequency specified in § 65.161(a) of subpart G of this part.

Continuous seal means a seal that is designed to form a continuous closure

that completely covers the space between the wall of the storage vessel and the edge of the floating roof. A continuous seal may be a vapormounted, liquid-mounted, or metallic shoe seal. A continuous seal may be constructed of fastened segments so as to form a continuous seal.

Control device means any combustion device, recovery device, recapture device, or any combination of these devices used to comply with this part. Such equipment or devices include, but are not limited to, absorbers, carbon adsorbers, condensers, incinerators, flares, boilers, and process heaters. For process vents (as defined in this section), recapture devices are considered control devices but recovery devices are not considered control devices except for the recovery devices specified in § 65.63(a)(2)(ii). A fuel gas system is not a control device. For a steam stripper, a primary condenser is not considered a control device.

Control System means the combination of the closed vent system and the control devices used to collect and control vapors or gases from a

regulated source.

Day means a calendar day.
Distance piece means an open or
enclosed casing through which the
piston rod travels, separating the
compressor cylinder from the crankcase.

Double block and bleed system means two block valves connected in series with a bleed valve or line that can vent the line between the two block valves.

Ductwork means a conveyance system such as those commonly used for heating and ventilation systems. It is often made of sheet metal and often has sections connected by screws or crimping. Hard-piping is not ductwork.

Emission point means an individual process vent, storage vessel, transfer rack, wastewater stream, or equipment leak.

Empty or emptying means the removal of the stored liquid from a storage vessel. Storage vessels where stored liquid is left on the walls, as bottom clingage, or in pools due to bottom irregularities are considered empty. Lowering of the stored liquid level, so that the floating roof is resting on its legs, as necessitated by normal vessel operation (for example, when changing stored material or when transferring material out of the vessel for shipment) is not considered emptying.

Equipment means each of the following that is subject to control under the referencing subpart: pump, compressor, agitator, pressure relief device, sampling connection system, open-ended valve or line, valve, connector, and instrumentation system;

and any control devices or systems used to comply with subpart F of this part.

Equivalent method means any method of sampling and analyzing for an air pollutant that has been demonstrated to the Administrator's satisfaction to have a consistent and quantitatively known relationship to the reference method under specified conditions.

External floating roof or EFR means a pontoon-type (noncontact) or double-deck-type (contact) roof that is designed to rest on the stored liquid surface in a storage vessel with no fixed roof.

Failure, EFR (referred to as EFR failure) is defined as any time the external floating roof's primary seal has holes, tears, or other openings in the shoe, seal fabric, or seal envelope; or the secondary seal has holes, tears, or other openings in the seal or the seal fabric; or the gaskets no longer close off the stored liquid surface from the atmosphere; or a slotted membrane has more than 10 percent open area.

Failure, internal floating roof type A (referred to as IFR type A failure) means any time, as determined during visual inspection through roof hatches, in which the internal floating roof is not resting on the surface of the stored liquid inside the storage vessel and is not resting on the leg supports; or there is stored liquid on the floating roof; or there are holes, tears, or other openings in the seal or seal fabric; or there are visible gaps between the seal and the wall of the storage vessel.

Failure, internal floating roof type B (referred to as IFR type B failure) means any time, as determined during internal inspections, the internal floating roof's primary seal has holes, tears, or other openings in the seal or the seal fabric; or the secondary seal (if one has been installed) has holes, tears, or other openings in the seal or the seal fabric; or the gaskets no longer close off the stored liquid surface from the atmosphere; or a slotted membrane has more than 10 percent open area.

Fill or filling means the introduction of liquids into a storage vessel, but not necessarily to complete capacity.

First attempt at repair, for the purposes of subparts F and G of this part, means to take action for the purpose of stopping or reducing leakage of organic material to the atmosphere, followed by monitoring as specified in § 65.104(b) of subpart F of this part and § 65.143(c) of subpart G of this part, as appropriate, to verify whether the leak is repaired unless the owner or operator determines by other means that the leak is not repaired.

Fixed roof means a roof that is mounted (for example, permanently affixed) on a storage vessel in a stationary manner and that does not move with fluctuations in stored liquid level.

Flame zone means the portion of the combustion chamber in a boiler or process heater occupied by the flame envelope.

Floating roof means a roof consisting of an external floating roof or an internal floating roof that is designed to rest upon and is supported by the stored liquid, and is equipped with a continuous seal.

Flow indicator means a device that indicates whether gas flow is present in a line, or whether the valve position would allow gas flow to be present in a line.

Fuel gas means gases that are combusted to derive useful work or heat.

Fuel gas system means the offsite and onsite piping and flow and pressure control system that gathers gaseous stream(s) generated by onsite operations, may blend them with other sources of gas, and transports the gaseous stream for use as fuel gas in combustion devices or in-process combustion equipment, such as furnaces and gas turbines, either singly or in combination.

Group 1 process vent means a process vent for which the flow rate is greater than or equal to 0.011 standard cubic meter per minute (0.39 cubic feet per minute); the total concentration is greater than or equal to the appropriate value in table 1 of subpart D of this part, and the total resource effectiveness index value, calculated according to § 65.64(h) of subpart D of this part is less than or equal to 1.0.

Group 2A process vent means a process vent that is not Group 1 or Group 2B for which monitoring and recordkeeping are required to demonstrate a total resource effectiveness index value greater than 1.0.

Group 2B process vent means a process vent that is not Group 1 or Group 2A for which monitoring and recordkeeping are not required to demonstrate a total resource effectiveness index value greater than 4.0, or which are exempt from control requirements due to the vent stream's flow rate, regulated material concentration, or total resource effectiveness index value.

Halogenated vent stream or halogenated stream means, for purposes of this part, a vent stream determined to be halogenated by the procedures specified in § 65.83(b)(3) of subpart E of this part for transfer racks and in § 65.64(g) of subpart D of this part for process vents, as applicable.

Halogens and hydrogen halides means hydrogen chloride (HCl), chlorine (Cl₂), hydrogen bromide (HBr), bromine (Br₂), and hydrogen fluoride (HF).

Hard-piping means pipe or tubing that is manufactured and installed using good engineering judgment and standards, such as American National Standards Institute (ANSI) B31–3.

In food/medical service means that a piece of equipment in regulated material service contacts a process stream used to manufacture a Food and Drug Administration-regulated product where leakage of a barrier fluid into the process stream would cause any of the following:

(1) A dilution of product quality so that the product would not meet written specifications;

(2) An exothermic reaction that is a safety hazard;

(3) The intended reaction to be slowed down or stopped; or

(4) An undesired side reaction to occur.

In gas/vapor service means that a piece of equipment in regulated material service contains a gas or vapor when in operation.

In heavy liquid service means that a piece of equipment in regulated material service is not in gas/vapor service or in light liquid service.

In light liquid service means that a piece of equipment in regulated material service contains a liquid that meets the following conditions:

(1) The vapor pressure of one or more of the organic compounds is greater than 0.3 kilopascals at 20 °C (0.04 pounds per square inch at 68 °F);

(2) The total concentration of the pure organic compound constituents having a vapor pressure greater than 0.3 kilopascals at 20 °C (0.04 pounds per square inch at 68 °F) is equal to or greater than 20 percent by weight of the total process stream; and

(3) The fluid is a liquid at operating conditions. (Note: Vapor pressures may be determined by standard reference texts or American Society for Testing and Materials (ASTM) D–2879.)

In liquid service means that a piece of equipment in regulated material service is not in gas/vapor service.

In regulated material service means, for the purposes of the equipment leak provisions of subpart F of this part, equipment which meets the definition of "in volatile organic compound service", "in volatile hazardous air pollutant service", "in benzene service", "in vinyl chloride service", or "in organic hazardous air pollutant service" as defined in the referencing subpart.

In-situ sampling systems means nonextractive samplers or in-line samplers.

In vacuum service means that equipment is operating at an internal pressure that is at least 5 kilopascals (0.7 pounds per square inch) below ambient pressure.

Incinerator means an enclosed combustion device that is used for destroying organic compounds. Auxiliary fuel may be used to heat waste gas to combustion temperatures. Any energy recovery section present is not physically formed into one manufactured or assembled unit with the combustion section; rather, the energy recovery section is a separate section following the combustion section and the two are joined by ducts or connections carrying flue gas. This energy recovery section limitation does not apply to an energy recovery section used solely to preheat the incoming vent stream or combustion air.

Initial startup means, for new or reconstructed sources, the first time the source begins production. For additions or changes not defined as a new source by an applicable referencing subpart, initial startup means the first time additional or changed equipment is put into operation. Initial startup does not include operation solely for testing equipment. Initial startup does not include subsequent startup (as defined in this section) of process units following malfunctions or process unit shutdowns. Except for equipment leaks, initial startup also does not include subsequent startups (as defined in this section) of process units following changes in product for flexible operation units or following recharging of equipment in batch operation.

Instrumentation system means a group of equipment components used to condition and convey a sample of the process fluid to analyzers and instruments for the purpose of determining process operating conditions (for example, composition, pressure, flow). Valves and connectors are the predominant type of equipment used in instrumentation systems; however, other types of equipment may also be included in these systems. Only valves nominally 0.5 inches and smaller in diameter, and connectors nominally 0.75 inches and smaller in diameter are considered instrumentation systems for the purposes of subpart F of this part.

Internal floating roof or IFR means a roof that is designed to rest or float on the stored liquid surface (but not necessarily in complete contact with it) inside a storage vessel that has a fixed roof.

Liquid-mounted seal means a foam-or liquid-filled continuous seal mounted in contact with the stored liquid.

Liquids dripping means any visible leakage from a seal including dripping, spraying, misting, clouding, and ice formation. Indications of liquids dripping include puddling or new stains that are indicative of an existing evaporated drip.

evaporated drip.

Loading cycle means the time period from the beginning of filling a tank truck or railcar until flow to the control device ceases as determined by the flow indicator.

Low-throughput transfer racks means those transfer racks that transfer less than a total of 11.8 million liters per year (3.12 million gallons per year) of liquid containing regulated material.

Malfunction means any sudden, infrequent, and not reasonably preventable failure of air pollution control equipment, monitoring equipment, process equipment, or a process to operate in a normal or usual manner. Failures that are caused in part by poor maintenance or careless operation are not malfunctions. Malfunctions that do not affect a regulated source or compliance with this part are not malfunctions for purposes of this part.

Metallic shoe seal or mechanical shoe seal means metal sheets that are held vertically against the wall of the storage vessel by springs, weighted levers, or other mechanisms and connected to the floating roof by braces or other means. A flexible coated fabric (envelope) spans the annular space between the metal sheet and the floating roof.

Nonautomated monitoring and recording system means manual reading of values measured by monitoring instruments and manual transcription of those values to create a record.

Nonautomated systems do not include strip charts.

Nonrepairable means that it is technically infeasible to repair a piece of equipment from which a leak has been detected without a process unit shutdown.

One-hour period means the 60-minute period commencing on the hour.

Onsite or on-site means, with respect to records required to be maintained by this part, that the records are stored at a location within a plant site that encompasses the regulated source. Onsite includes, but is not limited to, storage at the regulated source to which the records pertain, or storage in central files elsewhere at the plant site.

Open-ended valve or line means any valve except relief valves having one side of the valve seat in contact with process fluid and one side open to the atmosphere, either directly or through open piping.

Organic monitoring device means a device used to indicate the concentration level of organic compounds based on a detection principle such as infrared, photo ionization, or thermal conductivity.

Owner or operator means any person who owns, leases, operates, controls, or supervises a regulated source or a stationary source of which a regulated source is a part.

Part 70 permit means any permit issued, renewed, or revised pursuant to part 70 of this chapter.

Performance test means the collection of data resulting from the execution of a test method (usually three emission test runs) used to demonstrate compliance with a relevant emission standard as specified in the performance test section of the relevant standard.

Permit program means a comprehensive State operating permit system established pursuant to title V of the Act (42 U.S.C. 7661) and regulations codified in part 70 of this chapter and applicable State regulations, or a comprehensive Federal operating permit system established pursuant to title V of the Act and regulations codified in part 71 of this chapter.

Permitting authority means one of the following:

(1) The State air pollution control agency, local agency, other State agency, or other agency authorized by the Administrator to carry out a permit program under part 70 of this chapter;

(2) The Administrator, in the case of EPA-implemented permit programs under title V of the Act (42 U.S.C. 7661) and part 71 of this chapter.

Plant site means all contiguous or adjoining property that is under common control, including properties that are separated only by a road or other public right-of-way. Common control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, or any combination thereof.

Polymerizing monomer means for purposes of this part, a compound which may form polymer buildup in pump mechanical seals resulting in rapid mechanical seal failure.

Pressure release means the emission of materials resulting from the system pressure being greater than the set pressure of the relief device. This release can be one release or a series of releases over a short time period.

Pressure relief device or valve means a device used to prevent operating pressures from exceeding the maximum allowable working pressure of the process equipment. A common pressure relief device is a spring-loaded pressure relief valve. Devices that are actuated either by a pressure of less than or equal to 2.5 pounds per square inch gauge or by a vacuum are not pressure relief devices.

Primary fuel means the fuel that provides the principal heat input to the device. To be considered primary, the fuel must be able to sustain operation without the addition of other fuels.

Process heater means an enclosed combustion device that transfers heat liberated by burning fuel directly to process streams or to heat transfer liquids other than water. A process heater may, as a secondary function, heat water in unfired heat recovery sections.

Process unit means the equipment specified in the definitions of process unit or chemical manufacturing process unit in the applicable referencing subpart. If the referencing subpart does not define process unit, then, for the purposes of this part, process unit means the equipment assembled and connected by pipes or ducts to process raw materials and to manufacture an intended product.

Process unit shutdown means a work practice or operational procedure that stops production from a process unit or part of a process unit during which it is technically feasible to clear process material from a process unit or part of a process unit consistent with safety constraints and during which repairs can be effected. An unscheduled work practice or operational procedure that stops production from a process unit or part of a process unit for less than 24 hours is not a process unit shutdown. An unscheduled work practice or operational procedure that would stop production from a process unit or part of a process unit for a shorter period of time than would be required to clear the process unit or part of the process unit of materials and start up the unit, and would result in greater emissions than delay of repair of leaking components until the next scheduled process unit shutdown is not a process unit shutdown. The use of spare equipment and technically feasible bypassing of equipment without stopping production are not process unit shutdowns.

Process vent means a process vent or vent stream as they are defined in the referencing subpart.

Recapture device means an individual unit of equipment capable of and used for the purpose of recovering chemicals, but not normally for use, reuse, or sale. For example, a recapture device may recover chemicals primarily for disposal. Recapture devices include, but

are not limited to, absorbers, carbon adsorbers, and condensers. For purposes of the monitoring, recordkeeping, and reporting requirements of this part, recapture devices are considered recovery devices.

Recovery device means an individual unit of equipment capable of and normally used for the purpose of recovering chemicals for fuel value (i.e., net positive heating value), use, reuse, or for sale for fuel value, use, or reuse. Examples of equipment that may be recovery devices include absorbers, carbon adsorbers, condensers, oil-water separators or organic-water separators, or organic removal devices such as decanters, strippers, or thin-film evaporation units. For purposes of the monitoring, recordkeeping, and reporting requirements of this part, recapture devices are considered recovery devices.

Reference method means any method of sampling and analyzing for an air pollutant as specified in an applicable subpart, the appendices to 40 CFR part 60 or 63, or in appendix B of 40 CFR part 61.

Referencing subpart means 40 CFR part 60, subparts Ka, Kb, VV, DDD, III, NNN, and RRR; 40 CFR part 61, subparts V, Y, and B; and 40 CFR part 63, subparts G and H.

Regulated material, means for purposes of this part, the material regulated by the specific referencing subpart, including volatile organic liquids (VOL), volatile organic compounds (VOC), organic hazardous air pollutants (HAP's), benzene, vinyl chloride, or other chemicals or groups of chemicals.

Regulated source, for the purposes of this part, means the stationary source, the group of stationary sources, or the portion of a stationary source that is regulated by a relevant standard or other requirement established pursuant to this part, or 40 CFR part 60, 61, or 63.

Relief device or valve means a device or valve used only to release an unplanned, nonroutine discharge. A relief device or valve discharge can result from an operator error, a malfunction such as a power failure or equipment failure, or other unexpected cause that requires immediate venting of gas from process equipment in order to avoid safety hazards or equipment damage.

Repaired, for the purposes of subparts F and G of this part, means that equipment meets the following conditions:

(1) Is adjusted, or otherwise altered, to eliminate a leak as defined in the applicable section of this part; and (2) Unless otherwise specified in applicable provisions of this part, is monitored as specified in § 65.104(b) of subpart F of this part and § 65.143(c) of subpart G of this part, to verify that emissions from the equipment are below the applicable leak definition.

Routed to a process or route to a process means the emissions are conveyed to any enclosed portion of a process unit where the emissions are predominantly recycled and/or consumed in the same manner as a material that fulfills the same function in the process and/or transformed by chemical reaction into materials that are not regulated materials and/or incorporated into a product; and/or recovered.

Run means one of a series of emission or other measurements needed to determine emissions for a representative operating period or cycle as specified in this part. Unless otherwise specified, a run may be either intermittent or continuous within the limits of good engineering practice.

Sampling connection system means an assembly of equipment within a process unit used during periods of representative operation to take samples of the process fluid. Equipment used to take nonroutine grab samples is not considered a sampling connection system.

Screwed (threaded) connector means a threaded pipe fitting where the threads are cut on the pipe wall and the fitting requires only two pieces to make the connection (i.e., the pipe and the fitting).

Secondary fuel means a fuel fired through a burner other than the primary fuel burner that provides supplementary heat in addition to the heat provided by the primary fuel.

Sensor means a device that measures a physical quantity or the change in a physical quantity, such as temperature, pressure, flow rate, pH, or liquid level.

Set pressure means, for the purposes of subparts F and G of this part, the pressure at which a properly operating pressure relief device begins to open to relieve atypical process system operating pressure.

Shutdown means the cessation of operation of a regulated source (for example, chemical manufacturing process unit or a reactor, air oxidation reactor, distillation unit) and equipment required or used to comply with this part, or the emptying and degassing of a storage vessel. Shutdown is defined here for purposes including, but not limited to, periodic maintenance, replacement of equipment, or repair. Shutdown does not include the routine

rinsing or washing of equipment in batch operation between batches.

Simultaneous loading means, for a shared control device, loading of regulated materials from more than one transfer arm at the same time so that the beginning and ending times of loading cycles coincide or overlap and there is no interruption in vapor flow to the shared control device.

Single-seal system means, for purposes of subpart C of this part, a floating roof having one continuous seal. This seal may be a vapor-mounted, liquid mounted, or metallic shoe seal.

Specific gravity monitoring device means a unit of equipment used to monitor specific gravity and having a minimum accuracy of ± 0.02 specific

gravity units.

Startup means the setting into operation of a regulated source (for example, chemical manufacturing process unit or a reactor, air oxidation reactor, distillation unit, a storage vessel after emptying and degassing) and/or equipment required or used to comply with this part. Startup includes initial startup, operation solely for testing equipment, the recharging of equipment in batch operation, and transitional conditions due to changes in product for flexible operation units.

State means all non-Federal authorities, including local agencies, interstate associations, and statewide programs, that have delegated authority to implement the provisions of this part; the referencing subparts; and/or the permit program established under part 70 of this chapter. The term State shall have its conventional meaning where clear from the context.

Steam jet ejector means a steam nozzle that discharges a high-velocity jet across a suction chamber that is connected to the equipment to be evacuated.

Stuffing box pressure means the fluid (liquid or gas) pressure inside the casing or housing of a piece of equipment, on the process side of the inboard seal.

Surge control vessel means feed drums, recycle drums, and intermediate vessels. Surge control vessels are used within a process unit (as defined in the specific subpart that references this part) when in-process storage, mixing, or management of flow rates or volumes is needed to assist in production of a product.

Synthetic organic chemical manufacturing industry consolidated air regulation unit or SOCMI CAR unit means the equipment assembled and connected by pipes or ducts to process raw materials, and to manufacture intended products defined in 40 CFR part 60, subparts VV, III, NNN, and RRR,

and in 40 CFR part 63, subpart F. A SOCMI CAR unit defines the boundary of equipment potentially subject to this part. A SOCMI CAR unit may consist of one or more unit operations. For the purpose of this subpart, SOCMI CAR unit includes air oxidation reactors and their associated product separators and recovery devices; reactors and their associated product separators and recovery devices; distillation units and their associated distillate receivers and recovery devices; associated unit operations; associated recovery devices; and any feed, intermediate and product storage vessels, product transfer racks, and connected ducts and piping. A SOCMI CAR unit includes pumps, compressors, agitators, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, instrumentation systems, and control devices or systems. Except as provided in § 65.1(i), procedures for assigning storage vessels, transfer racks, distillation units and equipment to SOCMI CAR units are specified in § 65.1(j), (k), (l), and (m), respectively. A SOCMI CAR unit is identified by its primary product. If a SOCMI CAR unit is subject to both HON and an NSPS for VOC emissions from SOCMI, the SOCMI CAR unit shall be defined as the HON chemical manufacturing process unit. To be considered a SOCMI CAR unit one of the following must occur:

(1) It must include a process vent subject to 40 CFR part 60, subparts III, NNN, or RRR, or equipment subject to

40 CFR part 60 subpart VV;

(2) It must include a process vent that would be subject to 40 CFR part 60 subparts III, NNN, or RRR or equipment that would be subject to 40 CFR part 60 subpart VV if construction of the regulated source had commenced after the applicability date of the applicable SOCMI New Source Performance Standards: or

(3) It must be a chemical manufacturing process unit subject to 40 CFR 63.100 of subpart F, the Hazardous Organic National Emissions Standard for Hazardous Air Pollutants (HON).

Temperature monitoring device means a unit of equipment used to monitor temperature and having a minimum accuracy of ± 1 percent of the temperature being monitored expressed in degrees Celsius or ± 1.2 degrees Celsius (°C), whichever is greater.

Title V permit means any permit issued, renewed, or revised pursuant to Federal or State regulations established under 40 CFR part 70 or 71 to implement title V of the Act (42 U.S.C. 7661).

Total organic compounds or *TOC* means those compounds measured

according to the procedures specified in § 65.64(c) of subpart D of this part, and § 65.158(b)(3)(ii)(A) of subpart G of this part, as applicable. Those compounds that the Administrator has determined do not contribute appreciably to the formation of ozone and that are specifically excluded from the definition of volatile organic compound at 40 CFR 51.100(s), are to be excluded for the purposes of measuring the hourly emission rate as required in § 65.64(f) of subpart D of this part for process vents subject to subpart III, NNN, or RRR of part 60.

Total resource effectiveness index value or TRE index value means a calculated value used to determine whether control is required for a process vent. It is based on process vent flow rate, emission rate of regulated material, net heating value, and corrosion properties (halogenated compound content), as quantified by the equations given under § 65.64(h) of subpart D of this part

Vapor balancing system means a piping system that is designed to collect regulated material vapors displaced from tank trucks or railcars during loading and to route the collected regulated material vapors to the storage vessel from which the liquid being loaded originated, or to another storage vessel connected by a common header; or to compress and route to a process or a fuel gas system the collected regulated material vapors.

Vapor-mounted seal means a continuous seal that is mounted so that there is a vapor space between the stored liquid and the bottom of the seal.

Visible emission means the observation of an emission of opacity or optical density above the threshold of vision.

§ 65.3 Compliance with standards and operation and maintenance requirements.

(a) Requirements. (1) Except as provided in paragraph (a)(2) of this section, the emission standards and established parameter ranges of this part shall apply at all times except during periods of startup, shutdown (as defined in § 65.2), malfunction, or nonoperation of the regulated source (or specific portion thereof) resulting in cessation of the emissions to which this part applies. However, if a startup, shutdown, malfunction, or period of nonoperation of one portion of a regulated source does not affect the ability of a particular emission point to comply with the specific provisions to which it is subject, then that emission point shall still be required to comply with the applicable provisions of this part during the startup, shutdown, malfunction, or

period of nonoperation. For example, if there is an over pressure in the reactor area, a storage vessel in a chemical manufacturing process unit would still be required to be controlled in accordance with subpart C of this part. Similarly, the degassing of a storage vessel would not affect the ability of a process vent to meet the requirements of subpart D or G of this part.

(2) Subpart F of this part shall apply at all times except during periods of startup or shutdown (as defined in § 65.2), malfunction, process unit shutdown (as defined in § 65.2), or nonoperation of the regulated source (or specific portion thereof) in which the lines are drained and depressurized resulting in cessation of the emissions to which subpart F of this part applies.

(3) The owner or operator shall not shut down items of equipment that are required or utilized for compliance with requirements of this part during times when emissions are being routed to such items of equipment, if the shutdown would contravene requirements of this part applicable to such items of equipment. The owner or operator shall not shut down CPMS during times when emissions are being routed to the equipment that are being monitored by the CPMS. Paragraph (a)(3) of this section does not apply if the item of equipment or CPMS is malfunctioning or if the owner or operator must shut down the equipment to avoid damage due to a contemporaneous startup, shutdown, or malfunction of the regulated source or portion thereof.

(4) During startups, shutdowns, and malfunctions when the emission standards of this part do not apply pursuant to paragraphs (a)(1) through (a)(3) of this section, the owner or operator shall implement, to the extent reasonably available, measures to prevent or minimize excess emissions. For purposes of paragraph (a)(4) of this section, the term "excess emissions" means emissions in excess of those that would have occurred if there were no startup, shutdown, or malfunction and the owner or operator complied with the relevant provisions of this part. The measures to be taken shall be identified in the applicable startup, shutdown, and malfunction plan and may include, but are not limited to, air pollution control technologies, recovery technologies, work practices, pollution prevention, monitoring, and/or changes in the manner of operation of the regulated source. Backup control devices are not required but may be used if available. Paragraph (a)(4) of this section does not apply to Group 2A or Group 2B process vents.

- (5) Malfunctions shall be corrected as soon as practical after their occurrence in accordance with the startup, shutdown, and malfunction plan required in § 65.6(a). Paragraph (a)(5) of this section does not apply to Group 2A or Group 2B process vents.
- (6) Operation and maintenance requirements established pursuant to section 112 of the Act are enforceable independent of emissions limitations or other requirements in relevant standards.
- (b) Compliance determination procedures. (1) Parameter monitoring: compliance with operating conditions. The parameter monitoring data for emission points that are required to perform continuous monitoring shall be used to determine compliance with the required operating conditions for the monitored control devices or recovery devices. For each excursion except for excused excursions, and as provided for in paragraph (b)(4)(iii)(B) of this section the owner or operator shall be deemed to have failed to have applied the control in a manner that achieves the required operating conditions.
- (2) Parameter monitoring: Excursions. An excursion is not a violation and in cases where continuous monitoring is required the excursion does not count toward the number of excused excursions, if the conditions of paragraphs (b)(2)(i) or (b)(2)(ii) of this section are met. Nothing in paragraph (b)(2) of this section shall be construed to allow or excuse a monitoring parameter excursion caused by any activity that violates other applicable provisions of this part.
- (i) During periods of startup, shutdown, or malfunction [and the source is operated during such periods in accordance with the source's startup, shutdown, and malfunction plan as required by § 65.6(a)], a monitoring parameter is outside its established range or monitoring data cannot be collected; or
- (ii) During periods of nonoperation of the regulated source or portion thereof (resulting in cessation of the emissions to which the monitoring applies).
- (3) Operation and maintenance procedures. Determination of whether acceptable operation and maintenance procedures are being used will be based on information available to the Administrator that may include, but is not limited to, monitoring results, review of operation and maintenance procedures (including the startup, shutdown, and malfunction plan, if applicable, required in § 65.6(a), as applicable), review of operation and maintenance records, inspection of the

regulated source, and alternatives approved as specified in § 65.7.

(4) Emissions standards. Paragraphs (b)(4)(i) through (b)(4)(iii) of this section shall govern the use of data, tests, and requirements to determine compliance with emissions standards. Paragraphs (b)(4)(i) through (b)(4)(iii) do not apply to Group 2A or Group 2B process vents. Compliance with design, equipment, work practice, and operating standards, including those for equipment leaks, shall be determined according to paragraph (a)(3) of this section.

(i) Performance test. The Administrator will determine compliance with emission standards of this part based on the results of performance tests conducted according to the procedures specified in subpart G of this part, unless otherwise specified

in a subpart of this part.

(ii) Operation and maintenance requirements. The Administrator will determine compliance with emission standards of this part by evaluation of an owner or operator's conformance with operation and maintenance requirements, including the evaluation of monitoring data, as specified in subparts of this part.

(5) Design, equipment, work practice, or operational standards. Paragraphs (b)(5)(i) and (b)(5)(ii) do not apply to Group 2A or Group 2B process vents.

(i) Records and inspection. The Administrator will determine compliance with design, equipment, work practice, or operational emission standards requirements by review of records, inspection of the regulated source, and other procedures specified in this part.

(ii) Operation and maintenance. The Administrator will determine compliance with design, equipment, work practice, or operational standards by evaluation of an owner or operator's conformance with operation and maintenance requirements as specified in paragraph (a) of this section, in other subparts of this part, and in applicable provisions of 8.65.6(b)

provisions of § 65.6(b).

(c) Finding of compliance. The Administrator will make a finding concerning a regulated source's compliance with an emission standard or operating and maintenance requirement as specified in paragraphs (a) and (b) of this section upon obtaining all the compliance information required by the relevant standard (including the written reports of performance test results, monitoring results, and other information, if applicable) and any information available to the Administrator needed to determine whether proper operation and maintenance practices are being used.

Standards in this part and methods of determining compliance are given in metric units followed by the equivalents in English units. The Administrator will make findings of compliance with the standards of this part using metric units.

(d) Compliance times. All terms that define a period of time for completion of required tasks (for example, weekly, monthly, quarterly, annually) unless specified otherwise in the section or paragraph that imposes the requirement refer to the standard calendar periods.

(1) Notwithstanding time periods specified for completion of required tasks, time periods may be changed by mutual agreement between the owner or operator and the Administrator as specified in § 65.5(h)(5) (for example, a period could begin on the compliance date or another date, rather than on the first day of the standard calendar period). For each time period that is changed by agreement, the revised period shall remain in effect until it is changed. A new request is not necessary for each recurring period.

(2) When the period specified for compliance is a standard calendar period, if the initial compliance date occurs after the beginning of the period, compliance shall be required according to the schedule specified in paragraphs (d)(2)(i) or (d)(2)(ii) of this section, as

appropriate.

(i) Compliance shall be required before the end of the standard calendar period within which the compliance deadline occurs if there remain at least 3 days for tasks that must be performed weekly, at least 2 weeks for tasks that must be performed monthly, at least 1 month for tasks that must be performed each quarter, or at least 3 months for tasks that must be performed annually;

(ii) In all other cases, compliance shall be required before the end of the first full standard calendar period after the period within which the initial compliance deadline occurs.

(3) In all instances where a provision requires completion of a task during each of multiple successive periods, an owner or operator may perform the required task at any time during the specified period provided the task is conducted at a reasonable interval after completion of the task during the previous period.

§65.4 Recordkeeping.

(a) Maintaining notifications, records, and reports. Except as provided in paragraph (b) of this section, the owner or operator of each regulated source subject to this part shall keep copies of notifications, reports, and records required by this part for the length of

time specified in paragraphs (a)(1) or (a)(2) of this section, as applicable.

- (1) If an owner or operator is required to operate under a title V permit, then all applicable notifications, reports, and records shall be maintained for at least 5 years, unless a subpart of this part specifies a longer period.
- (2) If an owner or operator is not required to operate under a title V permit, then all notifications, reports, and records required by this part shall be maintained for at least 2 years. If a subpart of this part specifies records to be maintained for a period different than 2 years, then those records shall be kept for that period.
- (b) Copies of reports. If an owner or operator submits reports to the applicable EPA Regional Office, the owner or operator is not required to maintain copies of those reports. If the EPA Regional Office has waived the requirement of § 65.5(g)(1) for submittal of copies of reports, the owner or operator is not required to maintain copies of the waived reports. Paragraph (b) of this section applies only to reports and not the underlying records which must be maintained as specified throughout this part.
- (c) Availability of records. All applicable records shall be maintained in such a manner that they can be readily accessed and are suitable for inspection as specified in paragraph (c)(1) or (c)(2) of this section.
- (1) Except as specified in paragraph (c)(2) of this section, records of the most recent 2 years shall be retained onsite or shall be accessible to an inspector while onsite. The records of the remaining 3 years, where required, may be retained offsite.
- (2) For sources referenced to this part from 40 CFR part 63, subpart G or H, the most recent 6 months of records shall be retained on site or shall be accessible to an inspector while onsite from a central location by computer or other means that provides access within 2 hours after a request. The remaining 4 and one-half years of records, where required, may be retained offsite.
- (3) Records specified in paragraph (c)(1) or (c)(2) of this section may be maintained in hard copy or computer-readable form including, but not limited to, on paper, microfilm, computer, computer disk, magnetic tape, or microfiche.

§65.5 Reporting requirements.

(a) Required reports. Each owner or operator of a regulated source subject to this subpart shall submit the reports listed in paragraphs (a)(1) through (a)(6) of this section, as applicable.

- (1) A *Notification of Initial Startup* described in paragraph (b) of this section.
- (2) An *Initial Notification for Part 65 Applicability* described in paragraph (c) of this section.
- (3) An *Initial Compliance Status Report* described in paragraph (d) of this section.
- (4) *Periodic reports* described in paragraph (e) of this section.
- (5) Other reports. Other reports shall be submitted as specified elsewhere in this part.
- (6) Startup, shutdown, and malfunction reports described in § 65.6(c) of this subpart.
- (b) Notification of Initial Startup—(1) Contents. Any owner or operator of a regulated source which elects to comply with this part at initial startup shall send the Administrator written notification of the actual date of initial startup of a regulated source.

(2) *Due date.* The notification of the actual date of initial startup shall be postmarked within 15 days after such date

date.

- (c) Initial Notification for Part 65
 Applicability. Owners or operators of regulated sources that have been subject to a 40 CFR part 60, 61, or 63 standard and who have chosen to comply with this part and who are not operating the regulated source under an approved title V permit shall notify the Administrator. The notice shall include the information specified in paragraphs (c)(1) through (c)(7) of this section, as applicable, and may accompany the application for a construction permit for the regulated source. This notification may be waived by the Administrator.
- (1) Identification of the storage vessels subject to subpart C of this part.
- (2) Identification of the process vents subject to subpart D of this part, including process vent group status as specified in § 65.62(a) of subpart D of this part.
- (3) Identification of the process vents subject to 40 CFR part 60, subpart DDD complying with requirements of subpart G of this part.
- (4) Identification of the transfer racks subject to subpart E of this part.
- (5) For equipment leaks, identification of the process units subject to subpart F of this part.
- (6) The proposed implementation schedule specified in § 65.1(f)(1) for sources identified in paragraphs (c)(1) through (c)(5) of this section, with the implementation schedule extending no longer than 3 years.
- (7) *Process unit identification.* As an alternative to requirements specified in paragraphs (c)(1) through (c)(4), and (c)(6) of this section, the process units

- can be identified instead of the individual pieces of equipment. For this alternative, the kind of emission point in the process unit that will comply must also be identified.
- (d) Initial Compliance Status Report—
 (1) Contents. The owner or operator shall submit an Initial Compliance
 Status Report for each regulated source subject to this part containing the information specified in the subparts of this part. Unless the required information has already been submitted under requirements of the applicable referencing subpart, this information can be submitted as part of a title V permit application or amendment.
- (2) Due date. The owner or operator shall submit the Initial Compliance
 Status Report for each regulated source
 240 days after the applicable compliance date specified in the referencing subparts, or 60 days after the completion of the initial performance test or initial compliance determination, whichever is earlier. Initial compliance Status Reports may be combined for multiple regulated sources as long as the due date requirements for all sources covered in the combined report are met.
- (e) *Periodic reports.* The owner or operator of a source subject to monitoring requirements of this part or to other requirements of this part where periodic reporting is specified, shall submit a periodic report.
- Contents. Periodic reports shall include all information specified in subparts of this part.
- (2) Due date. The periodic report shall be submitted semiannually no later than 60 calendar days after the end of each 6-month period. The first report shall be submitted no later than the last day of the month that includes the date 8 months after the date the source became subject to this rule or since the last part 60, part 61, or part 63 periodic report was submitted for the applicable requirement, whichever is earlier.
- (3) Overlap with title V reports. Information required by this part, which is submitted with a title V periodic report, need not also be included in a subsequent periodic report required by this part. The title V report shall be referenced in the periodic report required by this part.
- (f) General report content. All reports and notifications submitted pursuant to this part, including reports that combine information from this part and a referencing subpart, shall include the information specified in paragraphs (f)(1) through (f)(4) of this section.
- (1) The name, address, and telephone number (fax number may also be provided) of the owner or operator.

- (2) The name, address and telephone number of the person to whom inquiries should be addressed, if different than the owner/operator.
- (3) The address (physical location) of the reporting facility.
- (4) Identification of each regulated source covered in the submission and identification of which subparts (referencing and part 65) options from this part are applicable to that regulated source. Summaries and groupings of this information are permitted.
- (g) Report and notification submission—(1) Submission. All reports and notifications required under this part shall be sent to the Administrator at the appropriate EPA Regional Office and to the delegated State authority, except that requests for permission to use an alternative means of emission limitation as provided for in §65.8(a) shall be submitted to the Director of the EPA Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, MD-10, Research Triangle Park, North Carolina, 27711. The EPA Regional Office may waive the requirement to receive a copy of any reports or notifications at its discretion.
- (2) Submission of copies. If any State requires a notice that contains all the information required in a report or notification listed in this part, an owner or operator may send the appropriate EPA Regional Office a copy of the report or notification sent to the State to satisfy the requirements of this part for that report or notification.
- (3) Method of submission. Wherever this subpart specifies "postmark" dates, submittals may be sent by methods other than the U.S. Mail (for example, by fax or courier). Submittals shall be sent on or before the specified date.
- (4) Submission by electronic media. If acceptable to both the Administrator and the owner or operator of a source, reports may be submitted on electronic media.
- (h) Adjustment to timing of submittals and review of required communications—(1) Alignment with title V submission. An owner or operator may submit periodic reports required by this part on the same schedule as the title V periodic report for the facility. The owner or operator using this option need not obtain prior approval, but must assure no reporting gaps from the last periodic report for the relevant standards. The owner or operator shall clearly identify the change in reporting schedule in the first report filed under paragraph (h) of this section. The requirements of paragraph (e) of this section are not waived when implementing this change.

- (2) Request for adjustment. An owner or operator may arrange by mutual agreement (which may be a standing agreement) with the Administrator a common schedule on which periodic reports required by this part shall be submitted throughout the year as long as the reporting period is not extended. An owner or operator who wishes to request a change in a time period or postmark deadline for a particular requirement shall request the adjustment in writing as soon as practical before the subject activity is required to take place. The owner or operator shall include in the request whatever information he or she considers useful to convince the Administrator that an adjustment is warranted. A request for a change to the periodic reporting schedule need only be made once for every schedule change and not once for every semiannual report submitted.
- (3) Approval of request for adjustment. If, in the Administrator's judgment, an owner or operator's request for an adjustment to a particular time period or postmark deadline is warranted, the Administrator will approve the adjustment. The Administrator will notify the owner or operator in writing of approval or disapproval of the request for an adjustment within 15 calendar days of receiving sufficient information to evaluate the request.
- (4) Notification of delay. If the Administrator is unable to meet a specified deadline, the owner or operator will be notified of any significant delay and informed of the amended schedule.
- (i) An owner or operator shall report in a title V permit application or as otherwise specified by the permitting authority, the information listed in paragraphs (i)(1) through (i)(5) of this section.
- (1) A list designating each emission point complying with subparts C through G of this part and whether each process vent is Group 1, Group 2A, or Group 2B.
- (2) The control technology or method of compliance that will be applied to each emission point.
- (3) A statement that the compliance demonstration, monitoring, inspection, recordkeeping, and reporting provisions in subparts C through G of this part that are applicable to each emission point will be implemented beginning on the date of compliance as specified in the referencing subpart.
- (4) The monitoring information in § 65.162(e) of subpart G of this part if, for any emission point, the owner or operator of a source seeks to comply

through use of a control technique other than those for which monitoring parameters are specified in §§ 65.148 through 65.154 of subpart G of this part.

(5) Any requests for alternatives to the continuous operating parameter monitoring and recordkeeping provisions, as specified in § 65.162(d) of subpart G of this part.

§ 65.6 Startup, shutdown, and malfunction plan and procedures.

(a) Paragraphs (b) and (c) of this section do not apply to Group 2A or Group 2B process vents.

- (b) Startup, shutdown, and malfunction plan—(1) Description and purpose of plan. The owner or operator of a regulated source shall develop and implement a written startup, shutdown, and malfunction plan that describes, in detail, procedures for operating and maintaining the regulated source during periods of startup, shutdown, and malfunction and a program of corrective action for malfunctioning process and air pollution control equipment used to comply with the relevant standard. The plan shall also address routine or otherwise predictable CPMS malfunctions. This plan shall be developed by the owner or operator by the regulated source's implementation date as specified in § 65.1(f), or, for sources referenced from 40 CFR part 63, subpart F, by the compliance date specified in that subpart. The requirement to develop and implement this plan shall be incorporated into the source's title V permit. This requirement is optional for equipment that must comply with subpart F of this part. It is not optional for equipment equipped with a closed vent system and control device subject to subpart G of this part. The purpose of the startup, shutdown, and malfunction plan is described in paragraphs (b)(1)(i) and (b)(1)(ii) of this section.
- (i) To ensure that owners or operators are prepared to correct malfunctions as soon as practical after their occurrence in order to minimize excess emissions of regulated material; and

(ii) To reduce the reporting burden associated with periods of startup, shutdown, and malfunction (including corrective action taken to restore malfunctioning process and air pollution control equipment to its normal or usual manner of operation).

(2) Operation of source. During periods of startup, shutdown, and malfunction, the owner or operator of a regulated source shall operate and maintain such source (including associated air pollution control equipment and CPMS) in accordance with the procedures specified in the

startup, shutdown, and malfunction plan developed under paragraph (b)(1) of this section.

(3) Use of additional procedures. To satisfy the requirements of this section to develop a startup, shutdown, and malfunction plan, the owner or operator may use the regulated source's standard operating procedures (SOP) manual, or an Occupational Safety and Health Administration (OSHA) or other plan, provided the alternative plans meet all the requirements of this section and are made available for inspection when requested by the Administrator.

(4) Revisions to the plan. Based on the results of a determination made under § 65.3(b)(3), the Administrator may require that an owner or operator of a regulated source make changes to the startup, shutdown, and malfunction plan for that source. The Administrator may require reasonable revisions to a startup, shutdown, and malfunction plan, if the Administrator finds that the plan is inadequate as specified in paragraphs (b)(4)(i) through (b)(4)(iv) of this section:

(i) Does not address a startup, shutdown, and malfunction event of the CPMS, the air pollution control equipment, or the regulated source that has occurred; or

(ii) Fails to provide for the operation of the regulated source (including associated air pollution control equipment and CPMS) during a startup, shutdown, and malfunction event in a manner consistent with good air pollution control practices for minimizing emissions to the extent practical: or

(iii) Does not provide adequate procedures for correcting malfunctioning process and/or air pollution control equipment as quickly as practicable; or

(iv) Does not provide adequate measures to prevent or minimize excess emissions to the extent practical as specified in § 65.3(a)(4).

(5) Additional malfunction plan requirements. If the startup, shutdown, and malfunction plan fails to address or inadequately addresses an event that meets the characteristics of a malfunction but was not included in the startup, shutdown, and malfunction plan at the time the owner or operator developed the plan, the owner or operator shall revise the startup, shutdown, and malfunction plan within 45 days after the event to include detailed procedures for operating and maintaining the regulated source during similar malfunction events and a program of corrective action for similar malfunctions of process or air pollution control equipment or CPMS.

(c) Startup, shutdown, and malfunction reporting requirements—(1) Periodic startup, shutdown, and malfunction reports. If actions taken by an owner or operator during a startup, shutdown, and malfunction of a regulated source, or of a control device or monitoring system required for compliance (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup, shutdown, and malfunction plan, then the owner or operator shall state such information in a startup, shutdown, and malfunction report. During the reporting period, reports shall only be required for startup, shutdown, and malfunction during which excess emissions occur. A startup, shutdown, and malfunction report can be submitted as part of a periodic report required under § 65.5(e), or on a more frequent basis if specified otherwise in a relevant standard or as established otherwise by the permitting authority in the source's title V permit. The startup, shutdown, and malfunction report shall be delivered or postmarked by the 30th day following the end of each calendar half (or other calendar reporting period, as appropriate), unless the information is submitted with the periodic report. The report shall include the information specified in paragraphs (c)(1)(i) and (c)(1)(ii) of this section.

(i) The name, title, and signature of the owner or operator or other responsible official certifying its

accuracy.

(ii) The number of startup, shutdown, malfunction events and the total duration of all periods of startup, shutdown, and malfunction for the reporting period if the total duration amounts to either of the durations in paragraphs (c)(1)(ii)(A) or (c)(1)(ii)(B) of this section.

(A) Total duration of periods of inoperation or malfunctioning of a CPMS, as recorded in § 65.162(a)(2)(iii) of subpart G of this part, equal to or greater than 5 percent of that CPMS operating time for the reporting period; or

(B) Total duration of periods of startup, shutdown, and malfunction for a regulated source during which excess emission occur equal to or greater than 1 percent of that regulated source operating time for the reporting period.

(2) Immediate startup, shutdown, and malfunction reports. Notwithstanding the allowance to reduce the frequency of reporting for startup, shutdown, and malfunction reports under paragraph (c)(1) of this section, any time an action taken by an owner or operator during a startup, shutdown, or malfunction (including actions taken to correct a

malfunction) during which excess emissions occur is not consistent with the procedures specified in the regulated source's startup, shutdown, and malfunction plan, the owner or operator shall report the actions taken for that event within 2 working days after commencing actions inconsistent with the plan followed by a letter delivered or postmarked within 7 working days after the end of the event. The immediate report required under this paragraph (c)(2) of this section shall contain the name, title, and signature of the owner or operator or other responsible official who is certifying its accuracy, explaining the circumstances of the event, the reasons for not following the startup, shutdown, and malfunction plan, and whether any excess emissions and/or parameter monitoring exceedances are believed to have occurred. Not withstanding the requirements of the previous sentence, after the effective date of an approved permit program in the State in which a regulated source is located, the owner or operator may make alternative reporting arrangements, in advance, with the permitting authority in that State. Procedures governing the arrangement of alternative reporting requirements under paragraph (c)(2) of this section are specified in §65.5(h).

§65.7 Monitoring, recordkeeping, and reporting waivers and alternatives.

- (a) Waiver of recordkeeping or reporting requirements—(1) Waiver application. The owner or operator may apply for a waiver from recordkeeping or reporting requirements if the regulated source is achieving the relevant standard(s), or the source is operating under an extension of compliance, under 40 CFR 63.6(i) or a waiver of compliance under 40 CFR 61.10(b), or the owner or operator has requested an extension or waiver of compliance and the Administrator is still considering that request. The waiver application shall be submitted in writing to the Administrator.
- (2) Extension of compliance request. If an application for a waiver of recordkeeping or reporting is made, the application shall accompany the request for an extension of compliance under 40 CFR 63.6(i) or the request for a waiver of compliance under 40 CFR 61.10(b), any required compliance progress report or compliance status report required in the source's title V permit application or a permit modification application, or a periodic report required under this part, whichever is applicable. The application shall include whatever information the owner or operator considers useful to convince the

Administrator that a waiver of recordkeeping or reporting is warranted.

- (3) Approval or denial of waiver. The Administrator will approve or deny a request for a waiver of recordkeeping or reporting requirements when performing one of the actions described in paragraphs (a)(3)(i) through (a)(3)(iii) of this section:
- (i) Approves or denies an extension of compliance under 40 CFR 63.6(i) or a waiver of compliance under 40 CFR 61.10(b); or
- (ii) Makes a determination of compliance following the submission of a required compliance status report or periodic report; or
- (iii) Makes a determination of suitable progress towards compliance following the submission of a compliance progress report, whichever is applicable.
- (4) Waiver conditions. A waiver of any recordkeeping or reporting requirement granted under paragraph (a) of this section may be conditioned on other recordkeeping or reporting requirements deemed necessary by the Administrator.
- (5) Waiver cancellation. Approval of any waiver granted under this section shall not abrogate the Administrator's authority under the Act or in any way prohibit the Administrator from later canceling the waiver. The cancellation will be made only after notice is given to the owner or operator of the regulated source.
- (b) Requests for approval of alternative monitoring or recordkeeping. An owner or operator may submit a written request for approval to use alternatives to the monitoring or recordkeeping provisions of this part. For process vents and transfer racks, except low-throughput transfer racks, the provisions in paragraph (c) of this section shall govern the review and approval of requests. In addition, the application shall include information justifying the owner or operator's request for an alternative monitoring or recordkeeping method, such as the technical or economic infeasibility, or the impracticality, of the regulated source using the required method. For storage vessels and low throughput transfer racks, owners and operators shall comply with the requirements of § 65.145(b) of subpart G of this part for preparing and submitting a design evaluation. For equipment leaks, owners and operators shall comply with the recordkeeping requirements of § 65.163(d) of subpart G of this part.
- (c) Approval or denial of request to use alternative monitoring or recordkeeping. The Administrator will notify the owner or operator of approval or intention to deny approval of the request to use an alternative monitoring

- or recordkeeping method within 90 calendar days after receipt of the original request and within 30 calendar days after receipt of any supplementary information that is submitted. Before disapproving any request to use an alternative method, the Administrator will notify the applicant of the Administrator's intention to disapprove the request together with the items specified in paragraphs (c)(1) and (c)(2) of this section:
- (1) Notice of the information and findings on which the intended disapproval is based; and
- (2) Notice of opportunity for the owner or operator to present additional information to the Administrator before final action on the request. At the time the Administrator notifies the applicant of the intention to disapprove the request, the Administrator will specify how much time the owner or operator will have after being notified of the intended disapproval to submit the additional information.
- (d) Use of an alternative monitoring or recordkeeping method. (1) The owner or operator of a regulated source is subject to the monitoring and recordkeeping requirements of the relevant standard unless permission to use an alternative monitoring or recordkeeping method requested under paragraph (b) of this section or §65.162(d) of subpart G of this part has been granted by the Administrator. Once an alternative is approved, the owner or operator shall use the alternative for the emission points or regulated sources cited in the approval and shall meet the monitoring and recordkeeping requirements of the relevant standard for all other emission points or regulated sources.
- (2) If the Administrator approves the use of an alternative monitoring or recordkeeping method for a regulated source under paragraph (c) of this section, the owner or operator of such source shall continue to use the alternative monitoring or recordkeeping method unless he or she receives approval from the Administrator to use another method.
- (3) If the Administrator finds reasonable grounds to dispute the results obtained by an alternative monitoring or recordkeeping method, requirement, or procedure, the Administrator may require the use of a method, requirement, or procedure specified in the relevant standard. If the results of the specified and alternative methods, requirements, or procedures do not agree, the results obtained by the specified method, requirement, or procedure shall prevail.

§ 65.8 Procedures for approval of alternative means of emission limitation.

(a) Alternative means of emission limitation. An owner or operator may request a determination of equivalence for an alternative means of emission limitation to the requirements of design, equipment, work practice, or operational standards of this part. If, in the judgment of the Administrator, an alternative means of emission limitation will achieve a reduction in regulated material emissions at least equivalent to the reduction in emissions from that source achieved under any design, equipment, work practice, or operational standards (but not performance standards) in this part, the Administrator will publish in the Federal Register a notice permitting the use of the alternative means for purposes of compliance with that requirement.

(1) The notice may condition the permission on requirements related to the operation and maintenance of the alternative means.

(2) Any such notice shall be published only after public notice and an opportunity for a hearing.

(b) Content of submittal. (1) In order to obtain approval, any person seeking permission to use an alternative means of compliance under this section shall collect, verify, and submit to the Administrator information showing that the alternative means achieves equivalent emission reductions. An owner or operator seeking permission to use an alternative means of compliance who has not previously performed testing shall also submit a proposed test plan. If the owner or operator seeks permission to use an alternative means of compliance based on previously performed testing, they shall submit the results of that testing, a description of the procedures followed in testing or monitoring, and a description of pertinent conditions during testing or monitoring.

(2) The owner or operator who requests an alternative means of emission limitation shall submit a description of the proposed testing, monitoring, recordkeeping, and reporting that will be used and the proposed basis for demonstrating compliance.

(3) For storage vessels, the owner or operator shall include the results of actual emissions tests using full-size or scale-model storage vessels that accurately collect and measure all regulated material emissions using a given control technique, and that accurately simulate wind and account for other emission variables such as temperature and barometric pressure, or

an engineering analysis that the Administrator determines is an accurate method of determining equivalence.

(4) For proposed alternatives to equipment leak requirements, the owner or operator shall also submit the information and meet the requirements for alternative means of emission limitation specified in § 65.102(b) of subpart F of this part (alternative means of emission limitation).

(c) Manufacturers of equipment used to control equipment leaks of a regulated material may request a determination of equivalence for an alternative means of emission limitation for equipment leaks, as specified in § 65.102(c) of this part.

(d) Compliance. If the Administrator makes a determination that a means of emission limitation is a permissible alternative to the requirements of design, equipment, work practice, or operational standards of this part, the owner or operator shall either comply with the alternative or comply with the requirements of this part.

§ 65.9 Availability of information and confidentiality.

(a) Availability of information. The availability to the public of information provided to, or otherwise obtained by, the Administrator under this part shall be governed by part 2 of this chapter. With the exception of information protected under part 2 of this chapter, all reports, records, and other information collected by the Administrator under this part are available to the public. In addition, a copy of each permit application, compliance plan (including the schedule of compliance), initial compliance status report, periodic report, and title V permit is available to the public, consistent with protections recognized in section 503(e) of the Act.

(b) Confidentiality. (1) If an owner or operator is required to submit information entitled to protection from disclosure under section 114(c) of the Act, the owner or operator may submit such information separately. The requirements of section 114(c) shall apply to such information.

(2) The contents of a title V permit shall not be entitled to protection under section 114(c) of the Act; however, information submitted as part of an application for a title V permit may be entitled to protection from disclosure.

§ 65.10 State authority.

(a) The provisions of this part shall not be construed in any manner to preclude any State or political subdivision thereof from adopting and enforcing any emission standard or limitation applicable to a regulated source, provided that such standard, limitation, prohibition, or other regulation is not less stringent than the standard applicable to such a regulated source.

(b) The provisions of this part shall not be construed in any manner to preclude any State or political subdivision thereof from requiring the owner or operator of a regulated source to obtain permits, licenses, or approvals prior to initiating construction, modification, or operation of such a regulated source.

§ 65.11 Circumvention.

- (a) No owner or operator subject to the provisions of this part shall build, erect, install, or use any article, machine, equipment, or process to conceal an emission that would otherwise constitute noncompliance with a relevant standard. Such concealment includes, but is not limited to those listed in paragraphs (a)(1) and (a)(2) of this section.
- (1) The use of diluents to achieve compliance with a relevant standard based on the concentration of a pollutant in the effluent discharged to the atmosphere and;
- (2) The fragmentation of an operation for the purpose of avoiding regulation by a relevant standard.
- (b) *Prohibited activities*. (1) No owner or operator subject to the provisions of this part shall operate any regulated source in violation of the requirements of this part except under the provisions specified in paragraphs (b)(1)(i) through (b)(1)(iii):
- (i) An extension or waiver of compliance granted by the Administrator under an applicable part;
- (ii) An extension of compliance granted under an applicable part by a State with an approved permit program; or
- (iii) An exemption from compliance granted by the President under section 112(i)(4) of the Act.
- (2) After the effective date of an approved permit program in a State, no owner or operator of a regulated source in that State who is required under an applicable part to obtain a title V permit shall operate such source except in compliance with the provisions of this part and the applicable requirements of the permit program in that State.

(3) An owner or operator of a regulated source who is subject to an emission standard promulgated under this part or a referencing part shall comply with the requirements of that standard by the date(s) established in the applicable subpart(s) (including this

- subpart) regardless of whether the criteria specified in paragraph (b)(3)(i) or (b)(3)(ii) are met:
- (i) A title V permit has been issued to that source; or
- (ii) If a title V permit has been issued to that source, whether such permit has been revised or modified to incorporate the emission standard.
- (c) Severability. Notwithstanding any requirement incorporated into a title V permit obtained by an owner or operator subject to the provisions of this part, the provisions of this part are federally enforceable.

§65.12 Delegation of authority.

- (a) In delegating implementation and enforcement authority to a State under sections 111(c) and 112(l) of the Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State.
- (b) Authorities that will not be delegated to States: § 65.8, § 65.46 of subpart C of this part, and § 65.102 of subpart F of this part.

§65.13 Incorporation by reference.

- (a) The materials listed in this section are incorporated by reference in the corresponding sections noted. These incorporations by reference were approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. These materials are incorporated as they exist on the date of the approval, and notice of any change in these materials will be published in the **Federal Register**. The materials are available for purchase at the corresponding addresses noted below, and all are available for inspection at the Office of the Federal Register, 800 North Capital Street, NW, suite 700, Washington, DC, at the Air and Radiation Docket and Information Center, U.S. EPA, 401 M Street, SW., Washington, DC, and at the EPA Library (MD-35), U.S. EPA, Research Triangle Park, North Carolina.
- (b) The materials listed below are available for purchase from at least one of the following addresses: American Society for Testing and Materials (ASTM), 1916 Race Street, Philadelphia, Pennsylvania 19103; or University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106.
- (1) ANSI B31.3—1996, Process Piping, IBR approved [Insert Effective Date of Final Rule] for § 65.2.
- (2) ASTM D1946-77, 90, 94, Standard Method for Analysis of Reformed Gas by Gas Chromatography, IBR approved [Insert Effective Date of Final Rule] for § 65.64(e)(2), § 65.147(b)(3)(ii).

- (3) ASTM D2382–76, 88, Heat of Combustion of Hydrocarbon Fuels by Bomb Calorimeter [High-Precision Method]. IBR approved [Insert Effective Date of Final Rule] for § 65.64(e)(1), § 65.147(b)(3)(ii).
- (4) ASTM D2879–93, 96, Vapor Pressure-Temperature Relationship and Initial Decomposition Temperature of Liquids by Isoteniscope, IBR approved [Insert Effective Date of Final Rule] for § 65.2.

§65.14 Addresses.

- (a) All requests, reports, applications, notifications, and other communications submitted pursuant to this part, except as specified under § 65.5(g)(1) of this part, shall be sent to the Administrator at the appropriate EPA Regional Office indicated in the following list:
- Region I (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont), Director, Air Management Division, U.S. Environmental Protection Agency, John F. Kennedy Federal Building, Boston, Massachusetts 02203.
- Region II (New Jersey, New York, Puerto Rico, Virgin Islands), Director, Air and Waste Management Division, U.S. Environmental Protection Agency, 290 Broadway, New York, New York 10007.
- Region III (Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia), Director, Air and Waste Management Division, U.S. Environmental Protection Agency, 841 Chestnut Building, Philadelphia, Pennsylvania 19107.
- Region IV (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee), Director, Air and Waste Management Division, U.S. Environmental Protection Agency, 61 Forsyth Street, Atlanta, Georgia 30303.
- Region V (Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin), Director, Air Management Division, U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, Illinois 60604–3507.
- Region VI (Arkansas, Louisiana, New Mexico, Oklahoma, Texas); Director; Air, Pesticides, and Toxics Division; U.S. Environmental Protection Agency, 1445 Ross Avenue, Dallas, Texas 75202.
- Region VII (Iowa, Kansas, Missouri, Nebraska), Director, Air and Toxics Division, U.S. Environmental Protection Agency, 726 Minnesota Avenue, Kansas City, Kansas 66101.
- Region VIII (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming), Director, Air and Waste Management Division, U.S. Environmental Protection Agency, 999 18th Street, Suite 500, Denver, Colorado 80295.
- Region IX (American Samoa, Arizona, California, Guam, Hawaii, Nevada), Director, Air and Waste Management Division, U.S. Environmental Protection Agency, 75 Hawthorne Street, San Francisco, California 94105.

- Region X (Alaska, Oregon, Idaho, Washington), Director, Air and Waste Management Division, U.S. Environmental Protection Agency, 1200 Sixth Avenue, Seattle, Washington 98101
- (b) All information required to be submitted to the Administrator under this part also shall also be submitted to the appropriate State agency of any State to which authority has been delegated under section 112(l) of the Act. The mailing addresses for State agencies are listed below:
- State of Alabama, Air Pollution Control Division, Air Pollution Control Commission, 645 S. McDonough Street, Montgomery, Alabama 36104.
- State of Alaska, Department of Environmental Conservation, 3220 Hospital Drive, Juneau, Alaska 99811.
- Arizona Department of Health Services, 1740 West Adams Street, Phoenix, Arizona 85007.
- State of Arkansas: Chief, Division of Air Pollution Control, Arkansas Department of Pollution Control and Ecology, 8001 National Drive, P.O. Box 9583, Little Rock, Arkansas 72209.

California

- Amador County Air Pollution Control District, P.O. Box 430, 810 Court Street, Jackson, California 95642.
- Bay Area Air Pollution Control District, 939 Ellis Street, San Francisco, California 94109.
- Butte County Air Pollution Control District, P.O. Box 1229, 316 Nelson Avenue, Oroville, California 95965.
- Calaveras County Air Pollution Control District, Government Center, El Dorado Road, San Andreas, California 95249.
- Colusa County Air Pollution Control District, 751 Fremont Street, Colusa, California 95952.
- El Dorado Air Pollution Control District, 330 Fair Lane, Placerville, California 95667.
- Fresno County Air Pollution Control District, 1221 Fulton Mall, Fresno, California 93721.
- Glenn County Air Pollution Control District, P.O. Box 351, 720 North Colusa Street, Willows, California 95988.
- Great Basin Unified Air Pollution Control District, 157 Short Street, suite 6, Bishop, California 93514.
- Imperial County Air Pollution Control District, County Services Building, 939 West Main Street, El Centro, California 92243.
- Kern County Air Pollution Control District, 1601 H Street, suite 250, Bakersfield, California 93301.
- Kings County Air Pollution Control District, 330 Campus Drive, Hanford, California 93230.
- Lake County Air Pollution Control District, 255 North Forbes Street, Lakeport, California 95453.
- Lassen County Air Pollution Control District, 175 Russell Avenue, Susanville, California 96130.

- Madera County Air Pollution Control District, 135 West Yosemite Avenue, Madera, California 93637.
- Mariposa County Air Pollution Control District, Box 5, Mariposa, California 95338.
- Mendocino County Air Pollution Control District, County Courthouse, Ukiah, California 94582.
- Merced County Air Pollution Control District, P.O. Box 471, 240 East 15th Street, Merced, California 95340.
- Modoc County Air Pollution Control District, 202 West 4th Street, Alturas, California 96101.
- Monterey Bay Unified Air Pollution Control, 1164 Monroe Street, Suite 10, Salinas, California 93906.
- Nevada County Air Pollution Control District, H.E.W. Complex, Nevada City, California 95959.
- North Coast Unified Air Quality Management District, 5630 South Broadway, Eureka California 95501.
- Northern Sonoma County Air Pollution Control District, 134 "A" Avenue, Auburn, California 95448.
- Placer County Air Pollution Control District, 11491 "B" Avenue, Auburn, California 95603.
- Camino del Rimedio, Santa Barbara, California 93110.
- Shasta County Air Pollution Control District, 2650 Hospital Lane, Redding, California 96001.
- Sierra County Air Pollution Control District, P.O. Box 286, Downieville, California 95936
- Siskiyou County Air Pollution Control District, 525 South Foothill Drive, Yreka, California 96097.
- South Coast Air Quality Management District, 9150 Flair Drive, El Monte, California 91731.
- Stanislaus County Air Pollution Control District, 1030 Scenic Drive, Modesto, California 95350.
- Sutter County Air Pollution Control District, Sutter County Office Building, 142 Garden Highway, Yuba City, California 95991.
- Tehama County Air Pollution Control District, P.O. Box 38, 1760 Walnut Street, Red Bluff, California 96080.
- Tulare County Air Pollution Control District, County Civic Center, Visalia, California 93277.
- Tuolumne County Air Pollution Control District, 9 North Washington Street, Sonora, California 95370.
- Ventura County Air Pollution Control District, 800 South Victoria Avenue, Ventura, California 93009.
- Yolo-Solano Air Pollution Control District, P.O. Box 1006, 323 First Street, i5, Woodland, California 95695.
- State of Colorado, Department of Health, Air Pollution Control Division, 4210 East 11th Avenue, Denver, Colorado 80220.
- State of Connecticut, Bureau of Air Management, Department of Environmental Protection, State Office Building, 165 Capitol Avenue, Hartford, Connecticut 06106.

- State of Delaware, Delaware Department of Natural Resources and Environmental Control, Tatnall Building, P.O. Box 1401, Dover, Delaware 19901.
- Florida Bureau of Air Quality Management, Department of Environmental Regulation, Twin Towers Office Building, 2600 Blair Stone Road, Tallahassee, Florida 32301.
- State of Georgia, Environmental Protection Division, Department of Natural Resources, 270 Washington Street, SW., Atlanta, Georgia 30334.
- Hawaii Department of Health, 1250 Punchbowl Street, Honolulu, Hawaii 96813.
- Hawaii Department of Health (mailing address), Post Office Box 3378, Honolulu, Hawaii 96801.
- Idaho Division of Environmental Quality, 601 Pole Line Rd. Ste. # 2 Twin Falls Idaho 83301.
- Illinois Environmental Protection Agency— Bureau of Air, 1340 North Ninth St. Springfield, Illinois 62702, 1021 North Grand Avenue East (mailing address), P.O. Box 19276, 62794–9276.
- State of Indiana, Indiana Department of Environmental Management, 105 South Meridian Street, P.O. Box 6015, Indianapolis, Indiana 46206.
- State of Iowa: Iowa Department of Natural Resources, Environmental Protection Division, Henry A. Wallace Building, 900 East Grand, Des Moines, Iowa 50319.
- State of Kansas: Kansas Department of Health and Environment, Bureau of Air Quality and Radiation Control, Forbes Field, Topeka, Kansas 66620.
- Kentucky Division of Air Pollution Control, Department for Natural Resources and Environmental Protection, U.S. 127, Frankfort, Kentucky 40601.
- State of Louisiana: Program Administrator, Air Quality Division, Louisiana Department of Environmental Quality, P.O. Box 44096, Baton Rouge, Louisiana 70804.
- State of Maine, Bureau of Air Quality Control, Department of Environmental Protection, State House, Station No. 17, Augusta, Maine 04333.
- State of Maryland, Bureau of Air Quality and Noise Control, Maryland State Department of Health and Mental Hygiene, 201 West Preston Street, Baltimore, Maryland 21201.
- Commonwealth of Massachusetts, Division of Air Quality Control, Department of Environmental Protection, One Winter Street, 7th floor, Boston, Massachusetts 02108.
- State of Michigan, Air Pollution Control Division, Michigan Department of Natural Resources, Stevens T. Mason Building, 8th Floor, Lansing, Michigan 48926
- Minnesota Pollution Control Agency, Division of Air Quality, 520 Lafayette Road, St. Paul, Minnesota 55155.
- Bureau of Pollution Control, Department of Natural Resources, P.O. Box 10385, Jackson, Mississippi 39209.

- State of Missouri: Missouri Department of Natural Resources, Division of Environmental Quality, P.O. Box 176, Jefferson City, Missouri 65102.
- State of Montana, Department of Health and Environmental Services, Air Quality Bureau, Cogswell Building, Helena, Montana 59601.
- State of Nebraska, Nebraska Department of Environmental Control, P.O. Box 94877, State House Station, Lincoln, Nebraska 68509
- Nevada Department of Conservation and Natural Resources, Division of Environmental Protection, 201 South Fall Street, Carson City, Nevada 89710.
- State of New Hampshire, Air Resources Division, Department of Environmental Services, 64 North Main Street, Caller Box 2033, Concord, New Hampshire 03302–2033.
- State of New Jersey: New Jersey Department of Environmental Protection, John Fitch Plaza, P.O. Box 2807, Trenton, New Jersey 08625.
- State of New Mexico: Director, New Mexico Environmental Improvement Division, Health and Environment Department, 1190 St. Francis Drive, Santa Fe, New Mexico 87503.
- New York: New York State Department of Environmental Conservation, 50 Wolf Road, Albany, New York 12233, Attention: Division of Air Resources.
- North Carolina Environmental Management Commission, Department of Environment and Natural Resources, Division of Air Quality, P.O. Box 29580, Raleigh, North Carolina 27626–0580.
- State of North Dakota, State Department of Health and Consolidated Laboratories, Division of Environmental Engineering, State Capitol, Bismarck, North Dakota 58505.
- State of Ohio, Ohio Environmental Protection Agency, Central District Office, Air Pollution Unit, P.O. Box 1049, Columbus, Ohio 43266–0149.
- State of Oklahoma, Oklahoma State Department of Health, Air Quality Service, P.O. Box 53551, Oklahoma City, Oklahoma 73152.
- State of Oregon, Department of Environmental Quality, Yeon Building, 522 SW. Fifth, Portland, Oregon 97204.
- Commonwealth of Pennsylvania: Department of Environmental Resources, Post Office Box 2063, Harrisburg, Pennsylvania 17120.
- State of Rhode Island, Division of Air and Hazardous Materials, Department of Environmental Management, 291 Promenade Street, Providence, Rhode Island 02908.
- State of South Carolina, Office of Environmental Quality Control, Department of Health and Environmental Control, 2600 Bull Street, Columbia, South Carolina 29201.
- State of South Dakota, Department of Water and Natural Resources, Office of Air Quality and Solid Waste, Joe Foss Building, 523 East Capitol, Pierre, South Dakota 57501–3181.

- Division of Air Pollution Control, Tennessee Department of Public Health, 256 Capitol Hill Building, Nashville, Tennessee 37219.
- State of Texas, Texas Air Control Board, 6330 Highway 290 East, Austin, Texas 78723.
- State of Utah, Department of Health, Bureau of Air Quality, 288 North 1460 West, P.O. Box 16690, Salt Lake City, Utah 84116–0690.
- State of Vermont, Air Pollution Control Division, Agency of Natural Resources, Building 3 South, 103 South Main Street, Waterbury, Vermont 05676.
- Commonwealth of Virginia, Virginia State Air Pollution Control Board, Room 1106, Ninth Street Office Building, Richmond, Virginia 23219.
- State of Washington, Department of Ecology, Olympia, Washington 98504.
- State of West Virginia: Air Pollution Control Commission, 1558 Washington Street, East, Charleston, West Virginia 25311.
- Wisconsin Department of Natural Resources, P.O. Box 7921, Madison, Wisconsin 53707
- Wyoming Department of Environmental Quality Air Division, 122 West 25th St.– 4th Floor Cheyenne, Wyoming 82002.

§§ 65.15—65.19 [Reserved]

Table 1 To Subpart A—Applicable 40 CFR Parts 60, 61, and 63 General Provisions

40 CFR part 60 subpart A provisions for referencing subparts Ka, Kb, VV, DDD, III, NNN, and RRR	40 CFR part 61 subpart A provisions for referencing subparts Y, V, and BB	40 CFR part 63 subpart A provisions for referencing subparts G and H
§ 60.1	§ 61.01 § 61.02 § 61.05 § 61.06 § 61.07 § 61.08 § 61.10 (b) and (c) § 61.15	$\S 63.5$ (a)(1), (a)(2), (b), (d)(1)(ii), (d)(3)(i)^a, (d)(3)(iii),^a (d)(3)(iv)^a, (d)(3)(v), (d)(3)(vi)^a, (d)(4), (e), (f)(1), and (f)(2). \\ \S 63.6 (a) (b)(3), (c)(5), (i)(1), (i)(2), (i)(4)(i)(A), (i)(5) through (i)(14), (i)(16) and (j). \\ \S 63.9(a)(2), (b)(4)(i)^b, (b)(4)(ii), (b)(4)(iii), (b)(5)^b, (c) and (d) \S 63.10 (d)(4) \S 63.12(b).

^aThese provisions do not apply to equipment leaks.

Subpart B—[Reserved]

Subpart C—Storage Vessels

§ 65.40 Applicability.

- (a) The provisions of this subpart and of subpart A of this part apply to control of regulated material emissions from storage vessels where a referencing subpart references the use of this subpart for such emissions control.
- (b) If a physical or process change is made that causes a storage vessel to fall outside the criteria in the referencing subpart that required the storage vessel to control emissions of regulated material, the owner or operator may elect to no longer comply with the provisions of this subpart. Instead, the owner or operator shall comply with any applicable provisions of the referencing subpart.

§ 65.41 Definitions.

All terms used in this subpart shall have the meaning given them in the Act and in subpart A of this part. If a term is defined in both subpart A of this part and in other subparts that reference the use of this subpart, the term shall have the meaning given in subpart A of this part for purposes of this subpart.

§ 65.42 Control requirements.

- (a) For each storage vessel to which this subpart applies, the owner or operator shall comply with the requirements of paragraphs (b) or (c) of this section.
- (b) For each storage vessel storing a liquid for which the maximum true vapor pressure of the total regulated material in the liquid is less than 76.6 kilopascals (10.9 pounds per square inch), the owner or operator shall reduce regulated material emissions to the atmosphere as provided in paragraphs (b)(1), (b)(2), (b)(3), (b)(4), (b)(5), (b)(6), or (b)(7) of this section.
- (1) Internal floating roof (IFR). Operate and maintain a fixed roof and internal floating roof meeting the requirements of § 65.43.
- (2) External floating roof (EFR). Operate and maintain an external floating roof meeting the requirements of § 65.44.
- (3) *EFR converted to IFR*. Operate and maintain an external floating roof converted to an internal floating roof meeting the requirements of § 65.45.
- (4) Closed vent system and flare. Operate and maintain a closed vent system and flare as specified in § 65.142(a)(1) of subpart G of this part. Periods of planned routine maintenance

- of the flare during which the flare does not meet the specifications of § 65.147 of subpart G of this part shall not exceed 240 hours per year. The specifications and requirements in § 65.147 of subpart G of this part for flares do not apply during periods of planned routine maintenance or during a control system malfunction. The owner or operator shall report the periods of planned routine maintenance as specified in § 65.166(d) of subpart G of this part.
- (5) Closed vent system and control device. Operate and maintain a closed vent system and control device as specified in paragraphs (b)(5)(i) through (b)(5)(iv) of this section and § 65.142(a)(2) of subpart G of this part.
- (i) Except as provided in paragraph (a)(1)(ii) of this section, the control device shall be designed and operated to reduce inlet emissions of regulated material by 95 percent or greater.
- (ii) For owners or operators referenced to this part from 40 CFR part 63, subpart G, and if the owner or operator of a storage vessel can demonstrate that a control device installed on the storage vessel on or before December 31, 1992 is designed to reduce inlet emissions of total organic HAP by greater than or equal to 90 percent but less than 95 percent, then the control device is

The notifications specified in §§ 63.9(b)(4)(i) and 63.9(b)(5) shall be submitted at the times specified in 40 CFR part 65.

required to be operated to reduce inlet emissions of total organic HAP by 90

percent or greater.

(iii) Periods of planned routine maintenance of the control device, during which the control device does not meet the specifications of paragraph (b)(5)(i) of this section, shall not exceed 240 hours per year. The owner or operator shall report the periods of planned routine maintenance as specified in § 65.166(b) of subpart G of this part.

(iv) The requirements in paragraph (b)(5)(i) of this section for control devices do not apply during periods of planned routine maintenance or during

a control system malfunction.

- (6) Route to process or fuel gas system. Route the emissions to a process or a fuel gas system as specified in § 65.142(a)(3) of subpart G of this part. Whenever the owner or operator bypasses the fuel gas system or process, the owner or operator shall comply with the recordkeeping requirement in § 65.163(b)(3) of subpart G of this part. Bypassing is permitted if the owner or operator complies with one or more of the conditions specified in paragraphs (b)(6)(i) through (b)(6)(iii) of this section
- (i) The liquid level in the storage vessel is not increased;
- (ii) The emissions are routed through a closed vent system to a control device complying with paragraph (b)(4) or (b)(5) of subpart C of this part; or
- (iii) The total aggregate amount of time during which the emissions bypass the fuel gas system or process during the calendar year without being routed to a control device, for all reasons (except startups/shutdowns/malfunctions or product changeovers of flexible operation units and periods when the storage vessel has been emptied and degassed), does not exceed 240 hours.

(7) Equivalent requirements. Comply with an equivalent to the requirements in paragraph (b)(1), (b)(2), (b)(3), (b)(4), (b)(5), or (b)(6) of this section, as

provided in § 65.46.

(c) For each storage vessel storing a liquid for which the maximum true vapor pressure of the total regulated material in the liquid is greater than or equal to 76.6 kilopascals (10.9 pounds per square inch), the owner or operator shall meet the requirements in paragraph (b)(4), (b)(5), or (b)(6) of this section, or equivalent as provided in § 65.46.

§ 65.43 Fixed roof with an internal floating roof (IFR).

(a) *IFR design requirements.* The owner or operator who elects to control storage vessel regulated material

emissions by using a fixed roof and an internal floating roof shall comply with the design requirements in paragraphs (a)(1) through (a)(4) of this section.

(1) The internal floating roof shall be designed to float on the stored liquid surface except when the floating roof must be supported by the leg supports.

- (2) Except as provided in paragraph (a)(3) of this section, the internal floating roof shall be equipped with a closure device between the wall of the storage vessel and the floating roof edge and shall consist of one of the devices listed in paragraph (a)(2)(i), (a)(2)(ii), or (a)(2)(iii) of this section.
 - (i) A liquid-mounted seal.
 - (ii) A metallic shoe seal.
- (iii) Two continuous seals mounted one above the other. The lower seal may be vapor-mounted.
- (3) If the internal floating roof is equipped with a vapor-mounted seal as of December 31, 1992, paragraph (a)(2) of this section does not apply until the next time the storage vessel is emptied and degassed or by April 22, 2004, whichever occurs first.
- (4) Except as provided in paragraph (a)(4)(viii) of this section, each internal floating roof shall meet the specifications listed in paragraphs (a)(4)(i) through (a)(4)(vii) of this section.
- (i) Each opening in a noncontact internal floating roof except for automatic bleeder vents (vacuum breaker vents) and rim space vents is to provide a projection below the stored liquid surface.
- (ii) Except for leg sleeves, automatic bleeder vents, rim space vents, column wells, ladder wells, sample wells, and stub drains, each opening shall be equipped with a gasketed cover or gasketed lid.
- (iii) Each penetration of the internal floating roof shall be a sample well. Each sample well shall have a slit fabric cover that covers at least 90 percent of the opening.
- (iv) Each automatic bleeder vent and rim space vent shall be gasketed.
- (v) Each penetration of the internal floating roof that allows for passage of a ladder shall have a gasketed sliding cover.
- (vi) Each penetration of the internal floating roof that allows for passage of a column supporting the fixed roof shall have a flexible fabric sleeve seal or a gasketed sliding cover.

(vii) Covers on each access hatch and each gauge float well shall be designed to be bolted or fastened when they are closed.

(viii) If the internal floating roof does not meet any one of the specifications listed in paragraphs (a)(4)(i) through

- (a)(4)(vii) of this section as of December 31, 1992, the requirement for meeting those specifications does not apply until the next time the storage vessel is emptied and degassed or by April 22, 2004, whichever occurs first.
- (b) *IFR operational requirements*. The owner or operator using a fixed roof and an internal floating roof shall comply with the operational requirements in paragraphs (b)(1) through (b)(4) of this section.
- (1) The internal floating roof shall float on the stored liquid surface at all times except when the floating roof must be supported by the leg supports.
- (2) When the floating roof is resting on the leg supports, the process of filling or refilling shall be continuous and shall be accomplished as soon as practical and the owner or operator shall maintain the record specified in § 65.47(e).

(3) Automatic bleeder vents are to be set to be closed at all times when the roof is floating except when the roof is being floated off or is being landed on the roof leg supports.

- (4) Each cover, access hatch, gauge float well, or lid on any opening in the internal floating roof shall be maintained in a closed position at all times (i.e., no visible gaps) except when the device is in actual use. Prior to filling the storage vessel, rim space vents are to be set to open only when the internal floating roof is not floating or when the pressure beneath the rim seal exceeds the manufacturer's recommended setting.
- (c) *IFR inspection requirements*. To demonstrate compliance, the owner or operator shall visually inspect the internal floating roof, the primary seal, and the secondary seal (if one is in service) according to paragraphs (c)(1) through (c)(4) of this section and maintain records of the IFR inspection results as specified in § 65.47(c)(1).
- (1) Single seal. For vessels equipped with a single-seal system, the owner or operator shall perform the inspections specified in paragraphs (c)(1)(i) and (c)(1)(ii) of this section.
- (i) Visually inspect for IFR type A failures the internal floating roof and the seal through manholes and roof hatches on the fixed roof no less frequently than once every 12 months.
- (ii) Visually inspect for IFR type B failures the internal floating roof, the seal, gaskets, slotted membranes, and sleeve seals (if any) each time the storage vessel is emptied, but no less frequently than once every 10 years.
- (2) Double seal. For vessels equipped with two continuous seals mounted one above the other, the owner or operator shall perform either the inspection

- required in paragraph (c)(2)(i) of this section or the inspections required in paragraph (c)(2)(ii) of this section.
- (i) Visually inspect for IFR type B failures the internal floating roof, the primary seal, the secondary seal, gaskets, slotted membranes, and sleeve seals (if any) each time the storage vessel is emptied, but no less frequently than once every 5 years; or
- (ii) Visually inspect the internal floating roof and the other components as specified in paragraphs (c)(2)(ii)(A) and (c)(2)(ii)(B) of this section.
- (A) For IFR type A failures, inspect the secondary seal through manholes and roof hatches on the fixed roof no less frequently than once every 12 months; and
- (B) For IFR type B failures, inspect the primary seal, the secondary seal, gaskets, slotted membranes, and sleeve seals (if any) each time the vessel is emptied, but no less frequently than once every 10 years.
- (3) For inspections to determine if any IFR type B failures are present as required by paragraphs (c)(1)(ii), (c)(2)(i), and (c)(2)(ii)(B) of this section, the owner or operator shall comply with the refilling notification requirements specified in § 65.48(c)(1).
- (4) After installing the control equipment required to comply with § 65.42(b)(1) or (b)(3), visually inspect the internal floating roof, the primary seal, and the secondary seal (if one is in service) prior to filling the storage vessel with regulated material. If there are holes, tears, or other openings in the primary seal, the secondary seal, or the seal fabric, or defects in the internal floating roof, the owner or operator shall repair the items before filling the storage vessel.
- (d) *IFR repair requirements*. The owner or operator shall repair any observed or determined failures, according to paragraphs (d)(1) and (d)(2) of this section.
- (1) If an IFR type A failure is observed, the owner or operator shall repair the items or empty and remove the storage vessel from service within 45 calendar days. If the failure cannot be repaired within 45 calendar days or if the vessel cannot be emptied within 45 calendar days, the owner or operator may utilize up to two extensions of up to 30 additional calendar days each and keep the records specified in § 65.47(d).
- (2) If an IFR type B failure is determined, the owner or operator shall repair the items and comply with the refilling notification requirements of § 65.48(c)(1) before refilling the storage vessel with regulated material.

§ 65.44 External floating roof (EFR).

- (a) *EFR design requirements*. The owner or operator who elects to control storage vessel regulated material emissions by using an external floating roof shall comply with the design requirements listed in paragraphs (a)(1) through (a)(3) of this section.
- (1) The external floating roof shall be designed to float on the stored liquid surface except when the floating roof must be supported by the leg supports.
- (2) The external floating roof shall be equipped with a closure device between the wall of the storage vessel and the roof edge.
- (i) Except as provided in paragraph (a)(2)(iii) of this section, the closure device is to consist of two continuous seals, one above the other. The lower seal is referred to as the primary seal and the upper seal is referred to as the secondary seal.
- (ii) Except as provided in paragraph (a)(2)(iv) of this section, the primary seal shall be either a metallic shoe seal or a liquid-mounted seal.
- (iii) If the external floating roof is equipped with a liquid-mounted or metallic shoe primary seal as of December 31, 1992, the requirement for a secondary seal in paragraph (a)(2)(i) of this section does not apply until the next time the storage vessel is emptied and degassed or by April 22, 2004 whichever occurs first.
- (iv) If the external floating roof is equipped with a vapor-mounted primary seal and a secondary seal as of December 31, 1992 the requirement for a liquid-mounted or metallic shoe primary seal in paragraph (a)(2)(ii) of this section does not apply until the next time the storage vessel is emptied and degassed or by April 22, 2004, whichever occurs first.
- (3) The external floating roof shall meet the specifications listed in paragraphs (a)(3)(i) through (a)(3)(xiii) of this section.
- (i) Except for automatic bleeder vents (vacuum breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a projection below the stored liquid surface except as provided in paragraph (a)(3)(xiii) of this section.
- (ii) Covers on each access hatch and each gauge float well shall be designed to be bolted or fastened when they are closed.
- (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg sleeves, each opening shall be equipped with a gasketed cover, seal, or lid.
- (iv) Automatic bleeder vents and rim space vents shall be equipped with a gasket.

- (v) Each roof drain that empties into the stored liquid shall be equipped with a slotted membrane fabric cover that covers at least 90 percent of the area of the opening.
- (vi) Each unslotted and slotted guide pole well shall be equipped with a gasketed sliding cover or a flexible fabric sleeve seal.
- (vii) Except for antirotational devices equipped with a welded cap, each unslotted guide pole shall be equipped with a gasketed cap on the end of the pole.
- (viii) Each slotted guide pole shall be equipped with a gasketed float or other device that closes off the stored liquid surface from the atmosphere.
- (ix) Each gauge hatch/sample well shall be equipped with a gasketed cover.
- (x) Where a metallic shoe seal is in use as the primary seal, one end of the metallic shoe shall be designed to extend into the stored liquid and the other end shall extend a minimum vertical distance of 61 centimeters (24 inches) above the stored liquid surface.
- (xi) The secondary seal shall be designed to be installed above the primary seal so that it completely covers the space between the roof edge and the vessel wall.
- (xii) For the primary and secondary seals, there shall be no holes, tears, or other openings in the shoe, seal fabric, or seal envelope.
- (xiii) If each opening in a noncontact external floating roof except for automatic bleeder vents (vacuum breaker vents) and rim space vents does not provide a projection below the liquid surface as of December 31, 1992 the requirement for providing these projections below the liquid surface does not apply until the next time the storage vessel is emptied and degassed or by April 22, 2004, whichever occurs first.
- (b) *EFR operational requirements.* The owner or operator using an external floating roof shall comply with the operational requirements in paragraphs (b)(1) through (b)(9) of this section.
- (1) The external floating roof shall float on the stored liquid surface at all times except when the floating roof must be supported by the leg supports.
- (2) When the floating roof is resting on the leg supports, the process of filling or refilling shall be continuous and shall be accomplished as soon as practical and the owner or operator shall maintain the record specified in § 65.47(e).
- (3) Except for automatic bleeder vents, rim space vents, roof drains, and leg sleeves, each opening shall be maintained in a closed position (i.e., no

visible gap) at all times except when the device is in actual use.

(4) Covers on each access hatch and each gauge float well shall be bolted or fastened when they are closed.

(5) Automatic bleeder vents are to be set to be closed at all times when the roof is floating except when the roof is being floated off or is being landed on the roof leg supports.

(6) Rim space vents are to be set to open only when the roof is being floated off the roof leg supports or when the pressure beneath the rim seal exceeds the manufacturer's recommended setting.

(7) The cap on the end of each unslotted guide pole shall be closed at all times except when gauging the stored liquid level or taking samples of the stored liquid.

(8) The cover on each gauge hatch/sample well shall be closed at all times except when the hatch or well must be open for access.

- (9) Except during the inspections required by paragraph (c) of this section, both the primary seal and the secondary seal shall completely cover the annular space between the external floating roof and the wall of the storage vessel in a continuous fashion.
- (c) *EFR inspection requirements*. To demonstrate compliance for an external floating roof vessel, the owner or operator shall use the procedures in paragraphs (c)(4) through (c)(9) of this section for seal gaps according to the frequency specified in paragraphs (c)(1) through (c)(3) of this section and meet the requirements of (c)(10).
- (1) Measurements of gaps between the vessel wall and the primary seal shall be performed no less frequently than once every 5 years and at the times specified in paragraphs (c)(1)(i) and (c)(1)(ii) of this section. The owner or operator shall maintain records of the EFR seal gap measurements as specified in § 65.47(c)(2).
- (i) During the hydrostatic testing of the vessel, by initial startup, or within 90 days of the initial fill with regulated material.
- (ii) For an external floating roof vessel equipped with a liquid-mounted or metallic shoe primary seal and without a secondary seal as provided for in paragraph (a)(2)(iii) of this section, measurements of gaps between the vessel wall and the primary seal shall be performed at least once per year until a secondary seal is installed. When a secondary seal is installed above the primary seal, measurements of gaps between the vessel wall and both the primary and secondary seals shall be performed within 90 calendar days of installation of the secondary seal and

according to the frequency specified in paragraphs (c)(1) through (c)(3) of this section thereafter.

- (2) Measurements of gaps between the vessel wall and the secondary seal shall be performed no less frequently than once per year and within 90 days of the initial fill with regulated material, within 90 days of installation of the secondary seal, or by initial startup. The owner or operator shall maintain records of the EFR seal gap measurements as specified in $\S 65.47(c)(2)$.
- (3) If any storage vessel ceases to store regulated material for a period of 1 year or more, measurements of gaps between the vessel wall and the primary seal, and gaps between the vessel wall and the secondary seal shall be performed within 90 days of the vessel being refilled with regulated material. The owner or operator shall maintain records of the EFR seal gap measurements as specified in § 65.47(c)(2).
- (4) If the tank contains regulated material, all primary seal inspections or gap measurements that require the removal or dislodging of the secondary seal shall be accomplished as soon as possible, and the secondary seal shall be replaced as soon as possible.

(5) The owner or operator shall notify the Administrator 30 days before any EFR seal gap measurement as specified in § 65.48(c)(2).

III § 05.48(C)(2).

(6) Except as provided in paragraph (d) of this section, the owner or operator shall determine gap widths and gap areas in the primary and secondary seals (seal gaps) individually by the procedures described in paragraphs (c)(6)(i) through (c)(6)(iii) of this section.

(i) Seal gaps, if any, shall be measured at one or more floating roof levels when the roof is not resting on the roof leg

supports.

- (ii) Seal gaps, if any, shall be measured around the entire circumference of the vessel in each place where a 0.32 centimeter (1/8 inch) diameter uniform probe passes freely (without forcing or binding against the seal) between the seal and the wall of the storage vessel. The circumferential distance of each such location shall also be measured.
- (iii) The total surface area of each gap described in paragraph (c)(6)(ii) of this section shall be determined by using probes of various widths to measure accurately the actual distance from the vessel wall to the seal and multiplying each such width by its respective circumferential distance.
- (7) The owner or operator shall add the gap surface area of each gap location for the primary seal and divide the sum

by the nominal diameter of the vessel. The owner or operator shall include the calculations in the record of the seal gap measurement as specified in § 65.47(c)(2). For metallic shoe primary seals or liquid-mounted primary seals, the accumulated area of gaps between the vessel wall and the primary seal shall not exceed 212 square centimeters per meter of vessel diameter (10.0 square inches per foot of vessel diameter) and the width of any portion of any gap shall not exceed 3.81 centimeters (1.50 inches).

(8) The owner or operator shall add the gap surface area of each gap location for the secondary seal and divide the sum by the nominal diameter of the vessel. The owner or operator shall include the calculations in the record of the seal gap measurement as specified in $\S 65.47(c)(2)$. The accumulated area of gaps between the vessel wall and the secondary seal used in combination with a metallic shoe seal or liquidmounted primary seal shall not exceed 21.2 square centimeters per meter of vessel diameter (1.00 square inch per foot of vessel diameter) and the width of any portion of any gap shall not exceed 1.27 centimeters (0.50 inch). The secondary seal gap requirements may be exceeded during the measurement of primary seal gaps as required by paragraph (c)(1) of this section.

(9) If the owner or operator determines that it is unsafe to perform the seal gap measurements or to inspect the vessel to determine compliance because the floating roof appears to be structurally unsound and poses an imminent or potential danger to inspecting personnel, the owner or operator shall comply with the requirements in either paragraph (c)(9)(i) or (c)(9)(ii) of this section.

(i) The owner or operator shall measure the seal gaps or inspect the storage vessel no later than 30 calendar days after the determination that the roof is unsafe; or

(ii) The owner or operator shall empty and remove the storage vessel from service no later than 45 calendar days after determining that the roof is unsafe. If the vessel cannot be emptied within 45 calendar days, the owner or operator may utilize up to two extensions of up to 30 additional calendar days each and comply with the recordkeeping requirements in § 65.47(d).

(10) The owner or operator shall visually inspect for EFR failures of the external floating roof, the primary seal, secondary seal, and fittings prior to initial filling and each time the vessel is emptied (including initially before the vessel is filled with regulated material), shall maintain records of the EFR

inspection results as specified in § 65.47(c)(1), and shall comply with the refilling notification requirements

specified in $\S 65.48(c)(1)$.

(d) EFR repair requirements. (1) The owner or operator shall repair conditions that do not meet seal gap specifications listed in paragraphs (c)(7) and (c)(8) of this section or any EFR failure observed by the inspection required by paragraph (c)(10) of this section no later than 45 calendar days after identification, or shall empty and remove the storage vessel from service no later than 45 calendar days after identification. If the vessel cannot be repaired or emptied within 45 calendar days, the owner or operator may utilize up to two extensions of up to 30 additional calendar days each and comply with the recordkeeping requirements in § 65.47(d).

(2) If an EFR failure is observed by the inspection required by paragraph (c)(10) of this section, the owner or operator shall repair the items as necessary so that none of the conditions specified in that paragraph exist before filling or refilling the storage vessel with

regulated material.

§ 65.45 External floating roof converted into an internal floating roof.

The owner or operator who elects to control storage vessel regulated material emissions by using an external floating roof converted into an internal floating roof shall comply with the internal floating roof requirements of § 65.43 except § 65.43(a)(3), (b)(2), and (b)(3) and the external floating roof deck fitting requirements of § 65.44 except § 65.44(a)(1), (a)(2), (b)(1), (b)(8), (b)(9), (c), and (d), including the recordkeeping and reporting provisions referenced therein.

§ 65.46 Alternative means of emission limitation.

Any person seeking permission to use an alternative means of compliance under this section shall use the procedures of § 65.8 of subpart A of this part.

§ 65.47 Recordkeeping provisions.

(a) Retention time. Each owner or operator of a storage vessel subject to this subpart shall meet the requirements of § 65.4 of subpart A of this part, except the record specified in paragraph (b) of this section shall be kept as long as the storage vessel is in operation.

(b) Vessel dimensions and capacity. Each owner or operator of a storage vessel subject to this subpart shall keep readily accessible records showing the dimensions of the storage vessel and an analysis of the capacity of the storage

analysis of the cap vessel.

- (c) *Inspection results*. The owner or operator shall keep the following records as specified in paragraphs (c)(1) and (c)(2) of this section.
- (1) For each IFR or EFR inspection required by \S 65.43(c)(1) and (c)(2) or \S 65.44(c)(10), respectively, a record containing the information listed in paragraph (c)(1)(i) or (c)(1)(ii) of this section, as appropriate.
- (i) In the event that no IFR type A failure, IFR type B failure, or EFR failure is observed, a record showing that the inspection was performed. The record shall identify the storage vessel on which the inspection was performed, the date the storage vessel was inspected, and references indicating which items were inspected.
- (ii) In the event that an IFR type A failure, IFR type B failure, or EFR failure is observed, a record that identifies the storage vessel on which the inspection was performed, the date the storage vessel was inspected, a description of the failure and of the repair made, the date the vessel was emptied (if applicable), and the date that the repair was made. As specified in § 65.48(b)(1), the owner or operator shall include this record in the periodic report.
- (2) For each EFR seal gap measurement required by § 65.44(c)(1), (c)(2) or (c)(3), a record describing the results of the measurement. The record shall identify the vessel on which the measurement was performed, shall include the date of the measurement, the raw data obtained in the measurement, and the calculations described in § 65.44(c)(7) and (c)(8), and shall meet any additional requirements in paragraph (c)(2)(i) or (c)(2)(ii) of this section, as appropriate.
- (i) In the event that the seal gap measurements do conform to the specifications in § 65.44(c)(7) and (c)(8), the owner or operator shall submit the information specified in § 65.48(b)(2)(i) in the periodic report.
- (ii) In the event that the seal gap measurements do not conform to the specifications in § 65.44(c)(7) and (c)(8), the owner or operator shall also keep a description of the repairs that were made, the date the repairs were made, and the date the storage vessel was emptied and shall include a report of the seal gap measurement results in the periodic report as specified in § 65.48(b)(2)(ii).
- (d) Emptying and repairing extension. The owner or operator who elects to utilize an extension in emptying a storage vessel for purposes of repair shall prepare by the initiation of the extension the documentation as specified in paragraph (d)(1) or (d)(2) of

this section, as appropriate, of the decision to utilize an extension.

(1) For an extension pursuant to $\S 65.43(d)(1)$ or $\S 65.44(d)(1)$, a description of the failure, documentation that alternative storage capacity is unavailable, and a schedule of actions that will ensure that the control equipment will be repaired or the vessel will be emptied as soon as practical. As specified in $\S 65.48(b)(1)(i)$, the owner or operator shall include this information in the periodic report.

(2) For an extension pursuant to § 65.44(c)(9), an explanation of why it was unsafe to perform the inspection or seal gap measurement, documentation that alternate storage capacity is unavailable, and a schedule of actions that will ensure that the vessel will be emptied as soon as practical. As specified in § 65.48(b)(3), the owner or operator shall include this information

in the periodic report.

(e) Floating roof set on its legs. The owner or operator shall maintain a record for each storage vessel subject to §§ 65.43(b)(2) and 65.44(b)(2) identifying the date when the floating roof was set on its legs and the date when the roof was refloated. The record shall also indicate whether this was a continuous operation.

§ 65.48 Reporting provisions.

(a) Notification of initial startup. If § 65.5(b) of subpart A of this part requires that a notification of initial startup be filed, then the content of the notification of initial startup shall at least include the information specified in § 65.5(b) of subpart A of this part and the identification of each storage vessel, its capacity, and the types of regulated material stored in the storage vessel.

(b) *Periodic reports.* Report the information specified in paragraphs (b)(1) through (b)(3) of this section, as applicable, in the periodic report specified in § 65.5(e) of subpart A of this

part.

(1) Inspection results. Report the information specified in paragraphs (b)(1)(i) and (b)(1)(ii) of this section for each inspection conducted in accordance with §§ 65.43(c) and 65.44(c) in which an IFR or EFR failure is detected in the control equipment.

(i) If an IFR type A failure or an EFR failure is observed for vessels for which inspections are required under § 65.43(c)(1)(i), § 65.43(c)(2)(ii)(A), or § 65.44(c)(10), each report shall include a copy of the inspection results record listed in § 65.47(c)(1)(ii). If an extension is utilized in accordance with § 65.43(d)(1) or § 65.44(d)(1), the report shall include the copy of the records listed in § 65.47(c)(1)(ii) plus the

documentation specified in § 65.47(d)(1).

(ii) If an IFR type B failure is observed for vessels for which inspections are required under $\S 65.43(c)(1)(ii)$, (c)(2)(i), or (c)(2)(ii)(B), each report shall include a copy of the records listed in $\S 65.47(c)(1)(ii)$.

(2) Seal gap measurements results. (i) For each vessel whose seal gaps are measured during the reporting period, identify each seal gap measurement made in accordance with § 65.44(c) in which the requirements of § 65.44(c)(7)

or (c)(8) are met.

(ii) For each seal gap measurement made in accordance with \S 65.44(c) in which the requirements of \S 65.44(c)(7) or (c)(8) are not met, from the records kept pursuant to \S 65.47(c)(2) report the date of the measurements, results of the calculations, and note which seal gap measurements did not conform to the specifications in \S 65.44(c)(7) and (c)(8).

(3) Extension documentation. If an extension is utilized in accordance with § 65.44(c)(9), the owner or operator shall include the documentation specified in § 65.47(d)(2) in the next report required by § 65.5(e) of subpart A of this part.

(c) Special notifications. An owner or operator who elects to comply with § 65.43, § 65.44, or § 65.45 shall submit, as applicable, the reports specified in paragraphs (c)(1) and (c)(2) of this section except as specified in paragraph (c)(3) of this section. Each written notification or report shall also include the information specified in § 65.5(f) of subpart A of this part.

(1) Refilling notification. In order to afford the Administrator the opportunity to have an observer present, notify the Administrator prior to refilling of a storage vessel that has been emptied. If the storage vessel is equipped with an internal floating roof as specified in § 65.43, an external floating roof as specified in § 65.44, or an external floating roof converted to an internal floating roof as specified in § 65.45, the notification shall meet the requirements of either paragraph (c)(1)(i) or (c)(1)(ii) of this section, as applicable.

(i) Notify the Administrator in writing at least 30 calendar days prior to the refilling of each storage vessel; or

(ii) If the inspection is not planned and the owner or operator could not have known about the inspection 30 calendar days in advance of refilling the vessel, the owner or operator shall notify the Administrator as soon as practical, but no later than 7 calendar days prior to the refilling of the storage vessel. Notification may be made by telephone and immediately followed by written documentation demonstrating

why the inspection was unplanned. Alternatively, the notification including the written documentation may be made in writing and sent so that it is received by the Administrator at least 7 calendar days prior to refilling.

- (2) Seal gap measurement notification. In order to afford the Administrator the opportunity to have an observer present, the owner or operator of a storage vessel equipped with an external floating roof as specified in § 65.44 shall notify the Administrator in writing 30 calendar days in advance of any seal gap measurements.
- (3) Notification waiver. Where a notification required by paragraph (c)(1) or (c)(2) of this section is sent to a delegated State or local agency, a copy of the notification to the Administrator is not required. A delegated State or local agency may waive the requirements for these notifications.
- (d) Compliance certification. For sources subject to the compliance certification provisions of title V, a recertification of continuous compliance with §§ 65.43(b)(1) and 65.44(b)(1) shall be based on the annual inspections required by § 65.43(c)(1)(i) and (c)(2)(ii)(A) and at other times when the roof is viewed.

§§ 65.49-65.59 [Reserved]

Subpart D—Process Vents

§65.60 Applicability.

The provisions of this subpart and of subpart A of this part apply to control of regulated material emissions from process vents where a referencing subpart references the use of this subpart for such emissions control.

§ 65.61 Definitions.

All terms used in this subpart shall have the meaning given them in the Act and in subpart A of this part. If a term is defined in both subpart A of this part and in other subparts that reference the use of this subpart, the term shall have the meaning given in subpart A of this part for purposes of this subpart.

§ 65.62 Process vent group determination.

(a) *Group status*. The owner or operator of a process vent shall determine the group status (i.e., Group 1, Group 2A, or Group 2B) for each process vent. Group 1 process vents require control, and Group 2A and 2B process vents do not. Group 2A process vents require parameter monitoring, and Group 2B process vents do not. The owner or operator shall report the group status of each process vent as specified in § 65.5(c)(2) of subpart A of this part.

- (b) *Group 1*. A process vent is considered Group 1 if it meets at least one of the specifications listed in paragraph (b)(1) or (b)(2) of this section.
- (1) The owner or operator designates the process vent as Group 1.
- (2) At representative conditions for the process vent, the TRE index value is less than or equal to 1.0, the flow rate is greater than or equal to 0.011 standard cubic meter per minute (0.40 standard cubic foot per minute), and the concentration is greater than or equal to the applicable table 1 criterion. Procedures for determining the TRE index value, flow rate, and concentration are specified in § 65.64.
- (c) *Group 2A*. A process vent is considered Group 2A if, at representative conditions, it has a TRE index value of greater than 1.0 and less than or equal to 4.0, a flow rate of greater than or equal to 0.011 standard cubic meter per minute (0.40 standard cubic foot per minute), and a concentration greater than or equal to the applicable table 1 criterion. Procedures for determining the TRE index value, flow rate, and concentration are specified in § 65.64.
- (d) *Group 2B*. A process vent is considered Group 2B if, at representative conditions, it has a TRE index value of greater than 4.0; or a flow rate of less than 0.011 standard cubic meter per minute (0.40 standard cubic foot per minute); or a concentration less than the applicable table 1 criterion. Procedures for determining the TRE index value, flow rate, and concentration are specified in § 65.64.

§ 65.63 Performance and group status change requirements.

- (a) *Group 1 performance* requirements. Except for the additional requirement for halogenated vent streams as provided in paragraph (b) of this section, the owner or operator of a Group 1 process vent shall comply with the requirements of either paragraph (a)(1), (a)(2), or (a)(3) of this section.
- (1) Flare. Reduce emissions of regulated material using a flare meeting the applicable requirements of § 65.142(b) of subpart G of this part.
- (2) 98 percent or 20 parts per million by volume standard. Reduce emissions of regulated material or TOC by at least 98 weight-percent or to a concentration of less than 20 parts per million by volume, whichever is less stringent. For combustion devices, the emission reduction or concentration shall be calculated on a dry basis, and corrected to 3 percent oxygen. The owner or operator shall meet the requirements in § 65.142(b) of subpart G of this part and

paragraphs (a)(2)(i) and/or (a)(2)(ii) of this section.

(i) Compliance with paragraph (a)(2) of this section may be achieved by using any combination of combustion, recovery, and/or recapture devices except that a recovery device may not be used to comply with paragraph (a)(2) of this section by reducing emissions of total regulated material by 98 weightpercent, except as provided in paragraph (a)(2)(ii) of this section.

(ii) An owner or operator may use a recovery device alone or in combination with one or more combustion or recapture devices to reduce emissions of total regulated material by 98 weightpercent if all the conditions of paragraphs (a)(2)(ii)(A) through (a)(2)(ii)(C) of this section are met.

(A) For process vents referenced to this part by 40 CFR part 63, subpart G, the recovery device (and any combustion device or recapture device that operates in combination with the recovery device to reduce emissions of total regulated material by 98 weightpercent) was installed before December 31, 1992.

(B) The recovery device that will be used to reduce emissions of total regulated material by 98 weight-percent is the last recovery device before emission to the atmosphere.

(C) The recovery device alone or in combination with one or more combustion or recapture devices is capable of reducing emissions of total regulated material by 98 weight-percent but is not capable of reliably reducing emissions of total regulated material to a concentration of 20 parts per million

(D) If the owner or operator disposed of the recovered material, the recovery device would be considered a recapture device and comply with the requirements of this subpart and § 65.142(b) of subpart G for control devices.

(3) TRE index value. Achieve and maintain a TRE index value greater than 1.0 at the outlet of the final recovery device, or prior to release from the process vent to the atmosphere if no recovery device is present. If the TRE index value is greater than 1.0, the process vent shall meet the provisions for a Group 2A or 2B process vent specified in either paragraph (c), (d), (e), or (f) of this section, whichever is applicable.

(b) Halogenated Group 1 performance requirement. Halogenated Group 1 process vents that are combusted shall be controlled according to paragraph (b)(1) or (b)(2) of this section. Determination of whether a vent stream is halogenated shall be made using the

procedures specified in §65.64(g) and the halogen concentration in the vent stream shall be recorded and reported in the Initial Compliance Status Report as specified in § 65.160(d) of subpart G of this part.

(1) Halogen reduction device following combustion. If a combustion device is used to comply with paragraph (a)(2) of this section for a halogenated process vent, then the process vent exiting the combustion device shall be ducted to a halogen reduction device including, but not limited to, a scrubber before it is discharged to the atmosphere and the halogen reduction device shall meet the requirements of paragraph (b)(1)(i) or (b)(1)(ii) of this section, as applicable. The halogenated process vent shall not be combusted using a flare.

(i) Except as provided in paragraph (b)(1)(ii) of this section, the halogen reduction device shall reduce overall emissions of hydrogen halides and halogens by 99 percent or shall reduce the outlet mass of total hydrogen halides and halogens to less than 0.45 kilogram per hour (0.99 pound per hour), whichever is less stringent. The owner or operator shall meet the requirements in §65.142(b) of subpart G of this part.

(ii) If a scrubber or other halogen reduction device was installed prior to December 31, 1992, the device shall reduce overall emissions of hydrogen halides and halogens by 95 percent or shall reduce the outlet mass of total hydrogen halides and halogens to less than 0.45 kilogram per hour (0.99 pound per hour), whichever is less stringent. The owner or operator shall meet the requirements in § 65.142(b) of subpart G of this part.

(2) Halogen reduction device prior to combustion. A halogen reduction device, such as a scrubber, or other technique may be used to reduce the process vent halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any combustion control device and thus make the process vent nonhalogenated; the process vent must comply with the requirements of paragraph (a)(1) or (a)(2) of this section. The halogen atom mass emission rate prior to the combustor shall be determined according to the procedures in §65.64(g). The owner or operator shall meet the requirements in § 65.142(b) of subpart G of this part.

(c) Performance requirements for group 2A process vents with recovery devices. For Group 2A process vents, where the owner or operator is using a recovery device to maintain a TRE index value greater than 1.0, the owner or operator shall maintain a TRE index value greater than 1.0 and comply with

the requirements for recovery devices in § 65.142(b) of subpart G of this part.

(d) Performance requirements for group 2A process vents without recovery devices. For Group 2A process vents where the owner or operator is not using a recovery device to maintain a TRE index value greater than 1.0, determine the appropriate parameters to be monitored and submit the information as specified in paragraphs (d)(1), (d)(2), and (d)(3) of this section. Such information shall be submitted for approval to the Administrator as part of a title V permit application or by separate notice. The owner or operator shall monitor as specified in § 65.65(a), maintain the record specified in § 65.66(e), and submit reports as specified in §65.67(c).

(1) Parameter monitoring. A description of the parameter(s) to be monitored to ensure the owner or operator of a process vent achieves and maintains the TRE above 1.0. and an explanation of the criteria used to select

the parameter(s).

(2) Demonstration methods and procedures. A description of the methods and procedures that will be used to demonstrate that the parameter indicates proper operation of the process, the schedule for this demonstration, and a statement that the owner or operator will establish a range for the monitored parameter as part of the Initial Compliance Status Report required in §65.5(d) of subpart A of this part, unless this information has already been included in the operating permit application.

(3) Monitoring, recordkeeping, and reporting frequency. The frequency and content of monitoring, recording, and reporting if monitoring and recordkeeping are not continuous, or if reports of daily average values when the monitored parameter value is outside the range established in the operating permit or Initial Compliance Status Report will not be included in periodic reports required under § 65.5(e) of subpart A of this part. The rationale for the proposed monitoring, recording, and reporting system shall be included.

(e) Group 2B performance requirements. For Group 2B process vents, the owner or operator shall maintain a TRE index greater than 4.0, a flow rate less than 0.011 scmm, or a concentration less than the applicable criteria in table 1 of this subpart.

(f) Group 2A or 2B process change requirements. Whenever process changes are made that could reasonably be expected to change a Group 2A or 2B process vent to a Group 1 vent, the owner or operator shall recalculate the TRE index value, flow, or TOC or

organic hazardous air pollutant (HAP) concentration according to paragraph (f)(1), (f)(2), or (f)(3) of this section as specified for each process vent as necessary to determine whether the process vent is Group 1, Group 2A, or Group 2B and shall maintain the applicable records specified in § 65.66(d). Examples of process changes include, but are not limited to, changes in production capacity, production rate, feedstock type, or catalyst type, or whenever there is replacement, removal, or addition of recovery equipment. For purposes of paragraph (f) of this section, process changes do not include process upsets; unintentional, temporary process changes; and changes that are within the range on which the original TRE index value calculation was based.

(1) Flow rate. The flow rate shall be determined as specified in the sampling site and flow rate determination procedures in § 65.64 (b) and (d) or by using best engineering assessment of the effects of the change. Engineering assessments shall meet the specifications in § 65.64(i);

(2) Concentration. The TOC or organic HAP concentration shall be determined as specified in § 65.64 (b) and (c) or by using best engineering assessment of the effects of the change. Engineering assessments shall meet the specifications in § 65.64(i); or

(3) TRE index value. The TRE index value shall be recalculated based on measurements of process vent flow rate, TOC, and/or organic HAP concentrations, and heating values as specified in § 65.64 (b), (c), (d), (e), (f), (g), and (h) as applicable, or based on best engineering assessment of the effects of the change. Engineering assessments shall meet the specifications in § 65.64(i).

(4) Group status change to Group 1. Where the process change causes the group status to change to Group 1, the owner or operator shall comply with the Group 1 process vent provisions in paragraph (a) of this section and, if they apply, the halogenated Group 1 process vent provisions in paragraph (b) of this section upon initial startup unless the owner or operator demonstrates to the Administrator that achieving compliance will take longer than making the process change. If this demonstration is made to the Administrator's satisfaction, the owner or operator shall comply as expeditiously as practical, but in no event later than 3 years after the emission point becomes Group 1, and shall follow the procedures in paragraphs (f)(4)(i) through (f)(4)(iii) of this section to establish a compliance date.

(i) The owner or operator shall submit to the Administrator for approval a compliance schedule, along with a justification for the schedule.

(ii) The compliance schedule shall be submitted with the operating permit application or amendment or by other

appropriate means.

(iii) The Administrator shall approve the compliance schedule or request changes within 120 calendar days of receipt of the compliance schedule and justification.

(5) Group status change to Group 2A. Whenever a process change causes the process vent group status to change to Group 2A, the owner or operator shall comply with the provisions of paragraph (c) or (d) of this section upon completion of the group status determination of the process vent. The owner or operator shall perform the group status determination as soon as practical after the process change and within 180 days after the process change.

(6) Group status change to Group 2B. Whenever a process change causes the process vent group status to change to Group 2B, the owner or operator shall comply with the provisions of paragraph (e) of this section as soon as practical after the process change.

§ 65.64 Group determination procedures.

(a) *General*. The provisions of this section provide calculation and measurement methods for parameters that are used to determine group status.

(b)(1) Sampling site. For purposes of determining total organic TOC or HAP concentration, process vent volumetric flow rate, heating value, or TRE index value as specified under paragraph (c), (d), (e), (f), or (h) of this section, the sampling site shall be located after the last recovery device (if any recovery devices are present) but prior to the inlet of any control device that is present, and prior to release to the atmosphere.

(2) Sampling site when a halogen reduction device is used prior to a combustion device. An owner or operator using a scrubber or other halogen reduction device to reduce the process vent halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to a combustion control device in compliance with § 65.63(b)(2) shall determine the halogen atom mass emission rate prior to the combustor according to the procedures in paragraph (g) of this section.

(3) Sampling Site Selection Method. Method 1 or 1A of 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the sampling site. No traverse site selection method is needed for process vents smaller than 0.10 meter (4 inches) in nominal inside diameter.

(c) TOC or HAP concentration. The TOC or HAP concentrations used for TRE index value calculations in paragraph (h) of this section shall be determined based on paragraph (c)(1) of this section, or any other method or data that have been validated according to the protocol in Method 301 of appendix A of part 63. For concentrations needed for comparison with the appropriate concentration in table 1 of this subpart, TOC or HAP concentration shall be determined based on paragraph (c)(1), (c)(2), or (i) of this section or any other method or data that have been validated according to the protocol in Method 301 of appendix A of part 63. The owner or operator shall record the TOC or HAP concentration as specified in § 65.66(c).

(1) Method 18. The procedures specified in paragraphs (c)(1)(i) and (c)(1)(ii) of this section shall be used to calculate parts per million by volume concentration using Method 18 of 40 CFR part 60, appendix A.

(i) The minimum sampling time for each run shall be 1 hour in which either an integrated sample or four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time, such as 15-minute intervals during the run.

(ii) The concentration of either TOC (minus methane and ethane) or organic HAP emissions shall be calculated according to paragraph (c)(1)(ii)(A) or (c)(1)(ii)(B) of this section, as applicable.

(A) The TOC concentration (C_{TOC}) is the sum of the concentrations of the individual components and shall be computed for each run using the following equation:

$$C_{\text{TOC}} = \frac{\sum_{i=1}^{x} \left(\sum_{j=1}^{n} C_{ji}\right)}{x}$$
 (64-1)

Where:

C_{TOC}=Concentration of TOC (minus methane and ethane), dry basis, parts per million by volume.

x=Number of samples in the sample run.

n=Number of components in the sample.

 C_{ji} =Concentration of sample component j of the sample i, dry basis, parts per million by volume.

(B) The total organic HAP concentration (CHAP) shall be computed according to the equation in paragraph (c)(1)(ii)(A) of this section

except that only the organic HAP species shall be summed.

(2) *Method 25A*. The procedures specified in paragraphs (c)(2)(i) through (c)(2)(vi) of this section shall be used to calculate parts per million by volume concentration using Method 25A of 40 CFR part 60, appendix A.

(i) Method 25A of 40 CFR part 60, appendix A, shall be used only if a single organic compound of regulated material is greater than 50 percent of total organic HAP or TOC, by volume,

in the process vent.

(ii) The process vent composition may be determined by either process knowledge, test data collected using an appropriate EPA method, or a method or data validated according to the protocol in Method 301 of appendix A of part 63. Examples of information that could constitute process knowledge include calculations based on material balances, process stoichiometry, or previous test results provided the results are still relevant to the current process vent conditions.

(iii) The organic compound used as the calibration gas for method 25A of 40 CFR part 60, appendix A, shall be the single organic compound of regulated material present at greater than 50 percent of the total organic HAP or TOC by volume.

(iv) The span value for Method 25A of 40 CFR part 60, appendix A shall be equal to the appropriate concentration value in table 1 of this subpart.

(v) Use of Method 25A of 40 CFR part 60, appendix A, is acceptable if the response from the high-level calibration gas is at least 20 times the standard deviation of the response from the zero calibration gas when the instrument is zeroed on the most sensitive scale.

(vi) The owner or operator shall demonstrate that the concentration of TOC including methane and ethane measured by Method 25A of 40 CFR part 60 of this subpart, appendix A is below one-half the appropriate value in table 1 to be considered a Group 2B vent with an organic HAP or TOC concentration below the appropriate value in table 1 of this subpart.

(d) Volumetric flow rate. The process vent volumetric flow rate (QS) in standard cubic meters per minute at 20 °C (68 F) shall be determined as specified in paragraph (d)(1) or (d)(2) of this section and shall be recorded as specified in § 65.66(b).

(1) Use Method 2, 2A, 2C, or 2D of 40 CFR part 60, appendix A, as appropriate. If the process vent tested passes through a final steam jet ejector and is not condensed, the stream volumetric flow shall be corrected to 2.3 percent moisture; or

(2) The engineering assessment procedures in paragraph (i) of this section can be used for determining volumetric flow rates.

(e) Heating value. The net heating value shall be determined as specified in paragraphs (e)(1) and (e)(2) of this section or by using the engineering assessment procedures in paragraph (i) of this section.

(1) The net heating value of the process vent shall be calculated using the following equation:

$$\mathbf{H}_{\mathrm{T}} = \mathbf{K}_{\mathrm{l}} \left(\sum_{j=1}^{n} \mathbf{D}_{j} \mathbf{H}_{j} \right) \tag{64-2}$$

Where:

 $H_T \!\!=\!\! Net$ heating value of the sample, megajoule per standard cubic meter, where the net enthalpy per mole of process vent is based on combustion at 25 °C and 760 millimeters of mercury, but the standard temperature for determining the volume corresponding to 1 mole is 20 °C as in the definition of Q_s (process vent volumetric flow rate).

$$\begin{split} &K_1\text{=}\text{Constant, } 1.740 \times 10^{-7} \text{ parts per} \\ &\text{million})^{-1} \text{ (gram-mole per standard} \\ &\text{cubic meter) (megajoule per kilocalorie),} \\ &\text{where standard temperature for (grammole per standard cubic meter) is } 20\,^{\circ}\text{C}. \end{split}$$

n=Number of components in the sample.
D_j=Concentration on a wet basis of
compound j in parts per million as
measured by procedures indicated in
paragraph (e)(2) of this section. For
process vents that pass through a final
steam jet and are not condensed, the
moisture is assumed to be 2.3 percent by

olume.

H_j=Net heat of combustion of compound j, kilocalorie per gram-mole, based on combustion at 25 °C and 760 millimeters of mercury. The heat of combustion of process vent components shall be determined using American Society for Testing and Materials (ASTM) D2382–76 incorporated by reference as specified in § 65.13 if published values are not available or cannot be calculated.

- (2) The molar composition of the process vent (Dj) shall be determined using the methods specified in paragraphs (e)(2)(i) through (e)(2)(iii) of this section:
- (i) Method 18 of 40 CFR part 60, appendix A to measure the concentration of each organic compound.

(ii) American Society for Testing and Materials (ASTM) D1946–77 incorporated by reference as specified in § 65.13 to measure the concentration of carbon monoxide and hydrogen.

(iii) Method 4 of 40 CFR part 60, appendix A, to measure the moisture content of the stack gas.

(f) *TOC* or *HAP* emission rate. The emission rate of TOC (minus methane and ethane) (E_{TOC}) and/or the emission

rate of total organic HAP (E_{HAP}) in the process vent as required by the TRE index value equation specified in paragraph (h) of this section, shall be calculated using the following equation:

$$E = K_2 \left(\sum_{j=1}^n C_j M_j \right) Q_s$$
 (64-3)

Where

E=Emission rate of TOC (minus methane and ethane) ($E_{\rm TOC}$) or emission rate of total organic HAP ($E_{\rm HAP}$) in the sample, kilograms per hour.

 K_2 =Constant, 2.494 x 10^{-6} (parts per million)

1 (gram-mole per standard cubic meter) (kilogram per gram) (minutes per hour), where standard temperature for (gram-mole per standard cubic meter) is 20°C.

n=Number of components in the sample. C_j =Concentration on a dry basis of organic compound j in parts per million as measured by Method 18 of 40 CFR part 60, appendix A, as indicated in paragraph (c) of this section. If the TOC emission rate is being calculated, C_j includes all organic compounds measured minus methane and ethane; if the total organic HAP emission rate is being calculated, only organic HAP compounds are included.

M_j=Molecular weight of organic compound j, gram/gram-mole.

- Q_s =Process vent flow rate, dry standard cubic meter per minute, at a temperature of 20 $^{\circ}$ C.
- (g) Halogenated vent determination. In order to determine whether a process vent is halogenated, the mass emission rate of halogen atoms contained in organic compounds shall be calculated according to the procedures specified in paragraphs (g)(1) and (g)(2) of this section. A process vent is considered halogenated if the mass emission rate of halogen atoms contained in the organic compounds is equal to or greater than 0.45 kilogram per hour (0.99 pound per hour).
- (1) The process vent concentration of each organic compound containing halogen atoms (parts per million by volume, by compound) shall be determined based on one of the procedures specified in paragraphs (g)(1)(i) through (g)(1)(iv) of this section:

(i) Process knowledge that no halogen or hydrogen halides are present in the process vent; or

- (ii) Applicable engineering assessment as discussed in paragraph (i)(3) of this section; or
- (iii) Concentration of organic compounds containing halogens measured by Method 18 of 40 CFR part 60, appendix A; or
- (iv) Any other method or data that have been validated according to the

applicable procedures in Method 301 of appendix A of this part.

(2) The following equation shall be used to calculate the mass emission rate of halogen atoms:

$$E = K_2 Q \left(\sum_{j=1}^n \sum_{i=1}^m C_j * L_{j,i} * M_{j,i} \right)$$
 (64-4)

Where:

E=Mass of halogen atoms, dry basis, kilogram per hour.

 K_2 =Constant, 2.494×10^{-6} (parts per million) $^{-1}$ (kilogram-mole per standard cubic meter) (minute per hour), where standard temperature is 20 °C.

Q=Flow rate of gas stream, dry standard cubic meters per minute, determined according to paragraph (d) or (i) of this section.

n=Number of halogenated compounds j in the gas stream.

j=Halogenated compound j in the gas stream. m=Number of different halogens i in each compound j of the gas stream.

i=Halogen atom i in compound j of the gas stream.

C_j=Concentration of halogenated compound j in the gas stream, dry basis, parts per million by volume.

L_{ji}=Number of atoms of halogen i in compound j of the gas stream.

M_{ji}=Molecular weight of halogen atom i in compound j of the gas stream, kilogram per kilogram-mole.

(h) *TRE index value*. The owner or operator shall calculate the TRE index value of the process vent using the equations and procedures specified in paragraphs (h)(1) through (h)(3) of this section, as applicable, and shall maintain the records specified in § 65.66(a) or § 65.66(d)(4), as applicable.

(1) TRE index value equation. The equation for calculating the TRE index is as follows:

TRE=A * [B + C + D + E + F] (64 – 5)

TRE=TRE index value.

A, B, C, D, E, and F=Parameters presented in tables 2 and 3 of this subpart that include the following variables:

Q=Process vent flow rate, standard cubic meters per minute, at a standard temperature of 20 °C, as calculated according to paragraph (d) or (i) of this section

H=Process vent net heating value, megajoules per standard cubic meter, as calculated according to paragraph (e) or (i) of this section.

E_{TOC}=Emission rate of TOC (minus methane and ethane), kilograms per hour, as calculated according to paragraph (f) or (i) of this section.

E_{HAP}=Emission rate of total organic HAP, kilograms per hour, as calculated according to paragraph (f) or (i) of this

(2) Nonhalogenated process vents. The owner or operator of a nonhalogenated process vent shall calculate the TRE index value based on either paragraph (h)(2)(i) or (h)(2)(ii) of this section, as applicable.

(i) TRE calculations: Part 60 regulated sources. Use the parameters in table 2 of this subpart and calculate the TRE index value twice, once using the appropriate equation (depending on the heating value and flow rate of the process vent) in equations 15 through 30 and once using the appropriate equation (depending on the heating value of the process vent) in equations 31 and 32. Select the lowest TRE index value.

(ii) *TRE calculations: Part 63* regulated sources. Use the equation and parameters in table 3 of this subpart and calculate the TRE index value using equations 34, 35, and 36 for process vents at existing sources; or equations 38, 39, and 40 for process vents at new sources. Select the lowest TRE index value.

(3) Halogenated process vents. The owner or operator of a halogenated process vent stream as determined according to procedures specified in paragraph (g) of this section shall calculate the TRE index value based on either paragraph (h)(3)(i) or (h)(3)(ii) of this section, as applicable.

(i) TRE Calculations: Part 60 regulated sources. Use the parameters in table 2 of this subpart and calculate the TRE index value using the appropriate equation chosen from equations 1 through 14 depending on the heating value and flow rate of the process vent.

(ii) TRE calculations: Part 63 regulated sources. Use the appropriate parameters in table 3 of this subpart and calculate the TRE index value using equation 33 or 37 depending on whether the process vent is at a new or existing source.

(i) Engineering assessment. For purposes of TRE index value determination, engineering assessment may be used to determine process vent flow rate, net heating value, TOC emission rate, and total organic HAP emission rate for the representative operating condition expected to yield the lowest TRE index value. Engineering assessments shall meet the requirements of paragraphs (i)(1) through (i)(4) of this section. If process vent flow rate or process vent organic HAP or TOC concentration is being determined for comparison with the 0.011 scmm (0.40 standard cubic foot) flow rate or the applicable concentration value in table 1 of this subpart, engineering assessment may be used to determine the flow rate or concentration for the representative operating condition expected to yield the highest flow rate or concentration.

(1) If the TRE index value calculated using such engineering assessment and the TRE index value equation in paragraph (h) of this section is greater than 4.0, then the owner or operator is not required to perform the measurements specified in paragraphs (c) through (g) of this section.

(2) If the TRE index value calculated using such engineering assessment and the TRE index value equation in paragraph (h) of this section is less than or equal to 4.0, then the owner or operator is required either to perform the measurements specified in paragraphs (c) through (g) of this section for group determination or to consider the process vent a Group 1 process vent and comply with the requirement (or standard) specified in § 65.63(a) and, if applicable, § 65.63(b).

(3) Engineering assessment includes, but is not limited to, the examples specified in paragraphs (i)(3)(i) through (i)(3)(iv) of this section:

(i) Previous test results provided the tests are representative of current operating practices at the process unit.

(ii) Bench-scale or pilot-scale test data representative of the process under representative operating conditions.

(iii) Maximum flow rate, TOC emission rate, organic HAP emission rate, organic HAP or TOC concentration, or net heating value limit specified or implied within a permit limit applicable to the process vent.

(iv) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. Examples of analytical methods include, but are not limited to those specified in paragraphs (i)(3)(iv)(A) through (i)(3)(iv)(D) of this section:

(A) Use of material balances based on process stoichiometry to estimate maximum TOC or organic HAP concentrations;

(B) Estimation of maximum flow rate based on physical equipment design such as pump or blower capacities;

(C) Estimation of TOC or organic HAP concentrations based on saturation conditions; and

(D) Estimation of maximum expected net heating value based on the stream concentration of each organic compound or, alternatively, as if all TOC in the stream were the compound with the highest heating value.

(4) All data, assumptions, and procedures used in the engineering assessment shall be documented. The owner or operator shall maintain the records specified in § 65.66(a), (b), (c), or (d), as applicable.

§ 65.65 Monitoring.

- (a) An owner or operator of a Group 2A process vent maintaining a TRE index value greater than 1.0 without a recovery device shall monitor based on the approved plan as specified in § 65.63(d).
- (b) As required in § 65.63(a) and (c), an owner or operator of a Group 2A process vent maintaining a TRE index value greater than 1.0 with a recovery device or a Group 1 process vent shall comply with § 65.142(b) of subpart G of this part.

§65.66 Recordkeeping provisions.

- (a) TRE index value records. The owner or operator shall maintain records of measurements, engineering assessments, and calculations performed to determine the TRE index value of the process vent according to the procedures of § 65.64(h), including those records associated with halogen vent stream determination. Documentation of engineering assessments shall include all data, assumptions, and procedures used for the engineering assessments, as specified in § 65.64(i). As specified in § 65.67(a), the owner or operator shall include this information in the Initial Compliance Status Report.
- (b) Flow rate records. The owner or operator shall record the flow rate as measured using the sampling site and flow rate determination procedures specified in § 65.64(b) and (d) or determined through engineering assessment as specified in § 65.64(i). As specified in § 65.67(a), the owner or operator shall include this information in the Initial Compliance Status Report.
- (c) Concentration records. The owner or operator shall record the organic HAP or TOC concentration as measurement using the sampling site and HAP or TOC concentration determination procedures specified in § 65.64(b) and (c) or determined through engineering assessment as specified in § 65.64(i). As specified in § 65.67(a), the owner or operator shall include this information in the Initial Compliance Status Report.
- (d) *Process change records.* The owner or operator shall keep up-to-date, readily accessible records as specified in paragraphs (d)(1) through (d)(4) of this section and shall report this information as specified in § 65.67(b).
- (1) If the process vent is Group 2B on the basis of flow rate being less than 0.011 scmm (0.40 standard cubic foot), then the owner or operator shall keep records of any process changes as defined in § 65.63(f) that increase the process vent flow rate and any

- recalculation or measurement of the flow rate pursuant to § 65.63(f).
- (2) If the process vent is Group 2B on the basis of organic HAP or TOC concentration being less than the applicable value in table 1 of this subpart, then the owner or operator shall keep records of any process changes as defined in § 65.63(f) that increase the organic HAP or TOC concentration of the process vent and any recalculation or measurement of the concentration pursuant to § 65.63(f).
- (3) If the process vent is Group 2A or Group 2B on the basis of the TRE index value being greater than 1.0, then the owner or operator shall keep records of any process changes as defined in § 65.63(f) and any recalculation of the TRE index value pursuant to § 65.63(f).
- (4) As a result of a process change, if a process vent that was Group 2B on any basis becomes a Group 2B process vent only on the basis of having a TRE greater than 4.0, then the owner or operator shall keep records of the TRE index value determination performed according to the sample site and TRE index value determination procedures of § 65.64(b)(1) and (h) or determined through engineering assessment as specified in § 65.64(i).
- (e) Other Group 2A records. An owner or operator of a Group 2A process vent maintaining a TRE index value greater than 1.0 without a recovery device shall record the parameters monitored based on the approved plan as specified in § 65.63(d).

§65.67 Reporting provisions.

- (a) *Initial compliance status report.* The owner or operator shall submit as part of the Initial Compliance Status Report specified in § 65.5(d) of subpart A of this part the information recorded in § 65.66(a), (b), and (c).
- (b) Process change. (1) Whenever a process change, as described in § 65.63(f) is made that causes a Group 2A or 2B process vent to become a Group 1 process vent or a Group 2B process vent to become a Group 2A process vent, the owner or operator shall submit a report within 60 days after the performance test or group determination. The report may be submitted as part of the next periodic report. The report shall include the information specified in paragraphs (b)(1)(i) through (b)(1)(iii) of this section.
- (i) A description of the process change;
- (ii) The results of the recalculation of the flow rate, organic HAP or TOC concentration, and/or TRE index value

- required under § 65.63(f) and recorded under § 65.66(d); and
- (iii) A statement that the owner or operator will comply with the provisions of § 65.63 by the schedules specified in § 65.63(f)(4) through (f)(6).
- (2) For process vents that become Group 1 process vents after a process change requiring a performance test to be conducted for the control device being used as specified in subpart G of this part, the owner or operator shall specify that the performance test has become necessary due to a process change. This specification shall be made in the notification to the Administrator of the intent to conduct a performance test as provided in § 65.164(b)(1) of subpart G of this part.
- (3) Whenever a process change as described in § 65.63(f) is made that changes the group status of a process vent from Group 1 to Group 2A, or from Group 1 to Group 2B, or from Group 2A to Group 2B, the owner or operator shall include a statement in the next periodic report after the process change that a process change has been made and the new group status of the process vents.
- (4) The owner or operator is not required to submit a report of a process change if one of the conditions listed in paragraph (b)(4)(i), (b)(4)(ii), (b)(4)(iii), or (b)(4)(iv) of this section is met.
- (i) The change does not meet the definition of a process change in § 65.63(f) of this subpart, or
- (ii) For a Group 2B process vent, the vent stream flow rate is recalculated according to § 65.63(f) of this subpart and the recalculated value is less than 0.011 standard cubic meter per minute (0.40 standard cubic foot per minute), or
- (iii) For a Group 2B process vent, the organic HAP or TOC concentration of the vent stream is recalculated according to § 65.63(f) of this subpart, and the recalculated value is less than the applicable value in table 1 of this subpart, or
- (iv) For a Group 2B process vent, the TRE index value is recalculated according to § 65.63(f) of this subpart and the recalculated value is greater than 4.0.
- (c) Parameters for Group 2A without a recovery device. An owner or operator of a Group 2A process vent maintaining a TRE index value greater than 1.0 without using a recovery device shall report the information specified in the approved plan under § 65.63(d).

§§ 65.68-65.79 [Reserved]

TABLE 1 TO SUBPART D.—CONCENTRATION FOR GROUP DETERMINATION

Referencing subpart	Concentration	
Subpart III of Part 60	NA.1 300 ppmv of TOC. 300 ppmv of TOC. 50 ppmv of HAP.2	

¹ Process vents subject to subpart III of Part 60 are not eligible for the low concentration exemption provisions of this part.

TABLE 2.—TO SUBPART D.—TRE PARAMETERS FOR NSPS REFERENCING SUBPARTS a

Halogenated vent stream?	Net heating value (MJ/ scm)	Vent stream flow rate (scm/min)	Values of terms for TRE equation: TRE=A * [B+C+D+E+F]						
			А	В	С	D	E	F	Equation No.
Yes	0≤ H ≤3.5	Q <14.2	1/E _{TOC}	30.96334	0	0	-0.13064QH	0	1
		14.2≤ Q ≤18.8	1/E _{TOC}	19.18370	0.27580Q	0.757620Q ^{0.88}	-0.13064QH	0.01025Q _{0.5}	2
		18.8< Q ≤699	1/E _{TOC}	20.00563	0.27580Q	0.303870Q ^{0.88}	-0.13064QH	0.01025Q ^{0.5}	3
		699< Q ≤1400	1/E _{TOC}	39.87022	0.29973Q	0.303870Q ^{0.88}	-0.13064QH	0.01449Q ^{0.5}	4
		1400< Q ≤2100	$1/E_{TOC}$	59.73481	0.31467Q	0.303870Q ^{0.88}	-0.13064QH	0.01775Q ^{0.5}	5
		2100< Q ≤2800	1/E _{TOC}	79.59941	0.32572Q	0.303870Q ^{0.88}	-0.13064QH	0.02049Q ^{0.5}	6
		2800< Q ≤3500	1/E _{TOC}	99.46400	0.33456Q	0.303870Q ^{0.88}	-0.13064QH	0.02291Q ^{0.5}	7
	H >3.5	Q <14.2	$1/E_{TOC}$	20.61052	0	0	0	0	8
		14.2≤ Q ≤18.8	1/E _{TOC}	18.84466	0.26742Q	- 0.200440Q ^{0.88}	0	0.01025Q ^{0.5}	9
		18.8< Q ≤699	$1/E_{TOC}$	19.66658	0.26742Q	-0.253320Q ^{0.88}	0	0.01025Q ^{0.5}	10
		699< Q ≤1400	1/E _{TOC}	39.19213	0.29062Q	- 0.253320Q ^{0.88}	0	0.01449Q ^{0.5}	11
		1400< Q ≤2100	1/E _{TOC}	58.71768	0.30511Q	-0.253320Q ^{0.88}	0	0.01775Q ^{0.5}	12
		2100< Q ≤2800	1/E _{TOC}	78.24323	0.31582Q	- 0.253320Q ^{0.88}	0	0.02049Q ^{0.5}	13
		2800< Q ≤3500	1/E _{TOC}	97.76879	0.32439Q	- 0.253320Q ^{0.88}	0	0.02291Q ^{0.5}	14
No	0≤ H ≤0.48	Q <14.2	$1/E_{TOC}$	11.01250	0	0	-0.17109QH	0	15
		14.2≤ Q ≤1340	1/E _{TOC}	8.54245	0.10555Q	0.090300Q ^{0.88}	-0.17109QH	0.01025Q ^{0.5}	16
		1340< Q ≤2690	1/E _{TOC}	16.94386	0.11470Q	0.090300Q ^{0.88}	-0.17109QH	0.01449Q ^{0.5}	17
		2690< Q ≤4040	1/E _{TOC}	25.34528	0.12042Q	0.090300Q ^{0.88}	-0.17109QH	0.01775Q ^{0.5}	18
	0.48< H ≤1.9.	Q <14.2	1/E _{TOC}	13.45630	0	0	-0.16181QH	0	19
		14.2≤ Q ≤1340	1/E _{TOC}	9.25233	0.06105Q	0.319370Q ^{0.88}	-0.16181QH	0.01025Q ^{0.5}	20
		1340< Q ≤2690	$1/E_{TOC}$	18.36363	0.06635Q	0.319370Q ^{0.88}	-0.16181QH	0.01449Q ^{0.5}	21
		2690< Q ≤4040	$1/E_{TOC}$	27.47492	0.06965Q	0.319370Q ^{0.88}	-0.16181QH	0.01775Q ^{0.5}	22
	1.9< H ≤3.6	Q <14.2	$1/E_{TOC}$	7.96988	0	0	0	0	23
		14.2≤ Q ≤1180	$1/E_{TOC}$	6.67868	0.06943Q	0.025820Q ^{0.88}	0	0.01025Q ^{0.5}	24
		1180< Q ≤2370	$1/E_{TOC}$	13.21633	0.07546Q	0.025820Q ^{0.88}	0	0.01449Q ^{0.5}	25
		2370< Q ≤3550	$1/E_{TOC}$	19.75398	0.07922Q	0.025820Q ^{0.88}	0	0.01775Q ^{0.5}	26
	H >3.6	Q <14.2	$1/E_{TOC}$	6.67868	0	0.02220Q ^{0.88} H ^{0.88}	-0.00707QH	0.02036H ^{0.5}	27
		Q ≥14.2 and 14.2≤ Q* (H/3.6) ≤1180.	1/E _{TOC}	6.67868	0	0.02220Q ^{0.88} H ^{0.88}	-0.00707QH	0.00540Q ^{0.5} H ^{0.5}	28
		Q ≥14.2 and 1180< Q* (H/3.6) ≤2370.	1/E _{TOC}	13.21633	0	0.02412Q ^{0.88} H ^{0.88}	-0.00707QH	0.00764Q ^{0.5} H ^{0.5}	29
		Q ≥14.2 and 2370< Q* (H/3.6) ≤3550.	1/E _{TOC}	19.75398	0	0.02533Q ^{0.88} H ^{0.88}	-0.00707QH	0.00936Q ^{0.5} H ^{0.5}	30
No	0≤ H ≥11.2	All	$1/E_{TOC}$	2.08	2.25Q	0.288Q ^{0.8}	-0.193QH	-0.0051E _{TOC}	31
	H ≤11.2	All	1/E _{TOC}	2.08	0.309Q	0.0619Q ^{0.8}	-0.0043QH	$-0.0043E_{TOC}$	32

 $^{^{\}rm a}\text{Use}$ according to procedures outlined in §65.64(h).

TABLE 3 TO SUBPART D.—TRE PARAMETERS FOR HON REFERENCING SUBPARTS^a

Existing or New?	Halogenated vent stream?	Values of terms for TRE equation: TRE = A * [B+C+D+E+F]							
		Α	В	С	D	Е	F	No.	
Existing	Yes		3.995		0	-0.001769H	0.0009700E _{TOC}	33	
	No		1.935		0	-0.007687H	-0.000733E _{TOC}	34	
		1/E _{HAP}			0	0.03177H	-0.001159E _{TOC}	35	
		1/E _{HAP}	2.519		0	0.01300H	0.04790E _{TOC}	36	
New	Yes	1/E _{HAP}	1.0895		0	-0.000482H	0.0002645E _{TOC}	37	
	No	1/E _{HAP}	0.5276	0.0998Q	0	-0.002096H	$-0.0002000E_{TOC}$	38	
		1/E _{HAP}	0.4068	0.00171Q	0	0.008664H	-0.000316E _{TOC}	39	
		1/E _{HAP}	0.6868	0.00321Q	0	0.003546H	0.01306E _{TOC}	40	

^a Use according to procedures outlined in §65.64(h).

² For process vents subject to subpart G of part 63, the owner or operator may measure HAP or TOC concentration with regard to the low concentration exemption provisions of this part.

MJ/scm = mega Joules per standard cubic meter; scm/min = standard cubic meters per minute.

MJ/scm = mega Joules per standard cubic meter; scm/min = standard cubic meters per minute.

Subpart E—Transfer Racks

§65.80 Applicability.

(a) The provisions of this subpart and of subpart A of this part apply to control of regulated material emissions from transfer racks where a referencing subpart references the use of this subpart for such emissions control.

(b) If a physical or process change is made that causes a transfer rack to fall outside the criteria in the referencing subpart that required the transfer rack to control emission of regulated material, the owner or operator may elect to comply with the provisions for transfer racks not subject to control contained in the referencing subpart instead of the provisions of this subpart.

§ 65.81 Definitions.

All terms used in this subpart shall have the meaning given them in the Act and in subpart A of this part. If a term is defined in both subpart A of this part and in other subparts that reference the use of this subpart, the term shall have the meaning given in subpart A of this part for purposes of this subpart.

§65.82 Design requirements.

- (a) The owner or operator shall equip each transfer rack with the equipment specified in either paragraph (a)(1) or (a)(2) of this section.
- (1) A closed vent system which routes the regulated material vapors to a control device as provided in § 65.83(a)(1) and (a)(2).
- (2) Process piping which routes the regulated material vapors to a process or a fuel gas system as provided in § 65.83(a)(4), or to a vapor balance system as provided in § 65.83(a)(3).
- (b) Each closed vent system shall be designed to collect the regulated material displaced from tank trucks or railcars during loading and to route the collected regulated material to a control device or a flare as provided in § 65.83(a)(1) and (a)(2).
- (c) Process piping shall be designed to collect the regulated material displaced from tank trucks or railcars during loading and to route the collected regulated material vapors to a process or a fuel gas system as provided in § 65.83(a)(4) or to a vapor balance system as provided in § 65.83(a)(3).
- (d) Each closed vent system shall meet the applicable requirements of § 65.143 of subpart G of this part.
- (e) If the collected regulated material vapors from a transfer rack are routed to a vapor balance system as provided in § 65.83(a)(3), then that transfer rack is exempt from the closed vent system design requirements of paragraphs (b) and (d) of this section, the halogenated

vent stream control requirements of § 65.83(b), the control device operation requirements of § 65.84(b), the monitoring requirements of § 65.86, and the requirements of subpart G of this part.

(f) If the collected regulated material vapors are routed to a process or a fuel gas system as provided in § 65.83(a)(4), then each owner or operator shall meet the applicable requirements of § 65.142(c) of subpart G of this part.

§ 65.83 Performance requirements.

- (a) The owner or operator of the transfer rack shall comply with paragraph (a)(1), (a)(2), (a)(3) or (a)(4) of this section.
- (1) 98 Percent or 20 parts per million by volume standard. Use a control device to reduce emissions of regulated material by 98 weight-percent or to an exit concentration of 20 parts per million by volume, whichever is less stringent. For combustion devices, the emission reduction or concentration shall be calculated on a dry basis, corrected to 3 percent oxygen. The owner or operator shall meet the applicable requirements of § 65.142(c) of subpart G of this part. Compliance may be achieved by using any combination of combustion, recovery, and/or recapture devices.
- (2) Flare. Reduce emissions of regulated material using a flare meeting the applicable requirements of § 65.142(c) of subpart G of this part.
- (3) Vapor balancing. Reduce emissions of regulated material using a vapor balancing system designed and operated to collect regulated material vapors displaced from tank trucks or railcars during loading; and to route the collected regulated material vapors to the storage vessel from which the liquid being loaded originated, or to another storage vessel connected to a common header, or to compress and route collected regulated material vapors to a process. Transfer racks for which the owner or operator is using a vapor balancing system are exempt from the closed vent system design requirements of paragraphs § 65.82(b) and (d), the halogenated vent stream control requirements of paragraph (b) of this section, the control device operation requirements of § 65.84(b), the monitoring requirements of § 65.86, and the requirements of subpart G of this
- (4) Route to a process or fuel gas system. Route emissions of regulated material to a process where the regulated material in the emissions shall predominantly meet one of, or a combination of, the ends specified in paragraphs (a)(4)(i) through (a)(4)(iv) of

this section or to a fuel gas system. The owner or operator shall meet the applicable requirements of § 65.142(c) of subpart G of this part.

(i) Recycled and/or consumed in the same manner as a material that fulfills the same function in that process;

- (ii) Transformed by chemical reaction into materials that are not regulated materials;
- (iii) Incorporated into a product; and/ or
 - (iv) Recovered.
- (b) Additional control requirements for halogenated vent streams.

 Halogenated vent streams from transfer racks that are combusted shall be controlled according to paragraph (b)(1) or (b)(2) of this section. Determination of whether a vent stream is halogenated shall be made using the procedures specified in § 65.85(c) and the halogen concentration in the vent stream shall be recorded and reported in the Initial Compliance Status Report as specified in § 65.160(d) of subpart G of this part.
- (1) Halogen reduction device following combustion. If a combustion device is used to comply with paragraph (a)(1) of this section for a halogenated vent stream, then the vent stream exiting the combustion device shall be ducted to a halogen reduction device including, but not limited to, a scrubber before it is discharged to the atmosphere, and the halogen reduction device shall meet the requirements of paragraph (b)(1)(i) or (b)(1)(ii) of this section, as applicable. The halogenated vent stream shall not be combusted using a flare.
- (i) Except as provided in paragraph (b)(1)(ii) of this section, the halogen reduction device shall reduce overall emissions of hydrogen halides and halogens by 99 percent or shall reduce the outlet mass emission rate of total hydrogen halides and halogens to 0.45 kilogram per hour (0.99 pound per hour) or less, whichever is less stringent. The owner or operator shall meet the applicable requirements of § 65.142(c) of subpart G of this part.
- (ii) If a scrubber or other halogen reduction device was installed prior to December 31, 1992, the halogen reduction device shall reduce overall emissions of hydrogen halides and halogens by 95 percent or shall reduce the outlet mass of total hydrogen halides and halogens to less than 0.45 kilogram per hour (0.99 pound per hour), whichever is less stringent. The owner or operator shall meet the applicable requirements of § 65.142(c) of subpart G of this part.
- (2) Halogen reduction device prior to combustion. A halogen reduction device, such as a scrubber, or other

technique may be used to make the vent stream nonhalogenated by reducing the vent stream halogen atom mass emission rate to less than 0.45 kilogram per hour (0.99 pound per hour) prior to any combustion control device used to comply with the requirements of paragraph (a)(1) or (a)(2) of this section. The halogen mass emission rate prior to the combustor shall be determined according to the procedures in § 65.85(c). The owner or operator shall meet the applicable requirements of § 65.142(c) of subpart G of this part.

§ 65.84 Operating requirements.

- (a) Closed vent systems or process piping. An owner or operator of a transfer rack shall operate the equipment specified in either paragraph (a)(1) or (a)(2) of this section.
- (1) A closed vent system which routes the regulated material vapors to a control device as provided in § 65.83(a)(1) and (a)(2).
- (2) Process piping which routes the regulated material vapors to a process or a fuel gas system as provided in § 65.83(a)(4) or to a vapor balance system as provided in § 65.83(a)(3).
- (b) Control device operation.

 Whenever regulated material emissions are vented to a control device used to comply with the provisions of this subpart, such control device shall be operating.
- (c) Tank trucks and railcars. The owner or operator shall load regulated material into only tank trucks and railcars that meet the requirements specified in paragraph (c)(1) or (c)(2) of this section and shall maintain the records specified in § 65.87.
- (1) Have a current certification in accordance with the U.S. Department of Transportation (DOT) pressure test requirements of 49 CFR part 180 for tank trucks and 49 CFR 173.31 for railcars; or
- (2) Have been demonstrated to be vapor-tight within the preceding 12 months as determined by the procedures in § 65.85(a). Vapor-tight means that the pressure in a truck or railcar tank will not drop more than 750 pascals (0.11 pound per square inch) within 5 minutes after it is pressurized to a minimum of 4,500 pascals (0.65 pound per square inch).
- (d) Pressure relief device. The owner or operator of a transfer rack subject to the provisions of this subpart shall ensure that no pressure relief device in the loading equipment of each tank truck or railcar shall begin to open to the atmosphere during loading. Pressure relief devices needed for safety purposes are not subject to paragraph (d) of this section.

- (e) Compatible system. The owner or operator of a transfer rack subject to the provisions of this subpart shall load regulated material only to tank trucks or railcars equipped with a vapor collection system that is compatible with the transfer rack's closed vent system or process piping.
- (f) Loading while systems connected. The owner or operator of a transfer rack subject to this subpart shall load regulated material only to tank trucks or railcars whose collection systems are connected to the transfer rack's closed vent systems or process piping.

§65.85 Procedures.

- (a) Vapor tightness. For the purposes of demonstrating vapor tightness to determine compliance with § 65.84(c)(2), the procedures and equipment specified in paragraphs (a)(1) and (a)(2) of this section shall be used.
- (1) The pressure test procedures specified in Method 27 of 40 CFR part 60, appendix A; and
- (2) A pressure measurement device that has a precision of ± 2.5 millimeters of mercury (0.10 inch) or better and that is capable of measuring above the pressure at which the tank truck or railcar is to be tested for vapor tightness.
- (b) Engineering assessment.
 Engineering assessment to determine if a vent stream is halogenated or flow rate of a gas stream includes, but is not limited to, the examples specified in paragraphs (b)(1) through (b)(5) of this section.
- (1) Previous test results, provided the tests are representative of current operating practices at the process unit.
- (2) Bench-scale or pilot-scale test data representative of the process under representative operating conditions.
- (3) Maximum flow rate or halogen emission rate specified or implied within a permit limit applicable to the process vent.
- (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties.
- (5) All data, assumptions, and procedures used in the engineering assessment shall be documented.
- (c) Halogenated vent stream determination. In order to determine whether a vent stream is halogenated, the mass emission rate of halogen atoms contained in organic compounds shall be calculated as specified in paragraphs (c)(1) and (c)(2) of this section.
- (1) The vent stream concentration of each organic compound containing halogen atoms (parts per million by volume by compound) shall be determined based on any of the

- procedures specified in paragraphs (c)(1)(i) through (c)(1)(iv) of this section.
- (i) Process knowledge that no halogen or hydrogen halides are present in the vent stream; or
- (ii) Applicable engineering assessment as specified in paragraph (b); or
- (iii) Concentration of organic compounds containing halogens measured by Method 18 of 40 CFR part 60, appendix A; or
- (iv) Any other method or data that have been validated according to the applicable procedures in Method 301 of 40 CFR part 63, appendix A.
- (2) The following equation shall be used to calculate the mass emission rate of halogen atoms:

$$E = K_2 V_s \left(\sum_{j=1}^{n} \sum_{i=1}^{m} C_j * L_{ji} * M_{ji} \right)$$
 (85-1)

Where:

- E = Mass of halogen atoms, dry basis, kilograms per hour.
- $$\begin{split} K_2 &= Constant, \ 2.494 \ x \ 10^{-6} \ (parts \ per \\ & million)^{-1} \ (kilogram-mole \ per \ standard \\ & cubic \ meter) \ (minute/hour), \ where \\ & standard \ temperature \ is \ 20^{\circ} \ C. \end{split}$$
- $V_s = Flow \ rate \ of \ gas \ stream, \ dry \ standard \ cubic meters per minute, \ determined \ according to Method 2, 2A, 2C, or 2D \ of \ 40 \ CFR \ part 60, \ appendix \ A, \ as \ appropriate, \ or \ determined \ using \ engineering \ assessment \ as \ specified \ in \ paragraph \ (b).$
- n = Number of halogenated compounds j in the gas stream.
- j = Halogenated compound j in the gas stream.
- m = Number of different halogens i in each compound j of the gas stream.
- i = Halogen atom i in compound j of the gas stream.
- C_j = Concentration of halogenated compound j in the gas stream, dry basis, parts per million by volume.
- L_{ji} = Number of atoms of halogen i in compound j of the gas stream.
- M_{ji} = Molecular weight of halogen atom i in compound j of the gas stream, kilogram per kilogram-mole.

§ 65.86 Monitoring.

The owner or operator of a transfer rack equipped with a closed vent system and control device pursuant to § 65.83(a)(1) or (a)(2) shall monitor the closed vent system and control device as required under the applicable paragraphs specified in § 65.142(c) of subpart G of this part.

§65.87 Recordkeeping provisions.

The owner or operator of a transfer rack shall record that the verification of U.S. Department of Transportation (DOT) tank certification or Method 27 of 40 CFR part 60, appendix A, testing required in § 65.84(c) has been

performed. Various methods for the record of verification can be used such as: a check off on a log sheet; a list of DOT serial numbers or Method 27 data or a position description for gate security showing that the security guard will not allow any trucks on-site that do not have the appropriate documentation.

§§ 65.88-65.99 [Reserved]

Subpart F—Equipment Leaks

§65.100 Applicability.

(a) Equipment subject to this subpart. The provisions of this subpart and subpart A of this part apply to equipment that contains or contacts regulated material. Compliance with this subpart instead of the referencing subpart does not alter the applicability of the referencing subpart. This subpart applies to only the equipment to which the referencing subpart applies. This part does not extend applicability to equipment that are not regulated by the referencing subpart.

(b) Equipment in vacuum service. Equipment in vacuum service is excluded from the requirements of this

subpart.

- (c) Equipment in service less than 300 hours per calendar year. Equipment intended to be in regulated material service less than 300 hours per calendar year is excluded from the requirements of §§ 65.106 through 65.115 and § 65.117 if it is identified as required in § 65.103(b)(6).
- (d) Lines and equipment not containing process fluids. Lines and equipment not containing process fluids are not subject to the provisions of this subpart. Utilities and other nonprocess lines, such as heating and cooling systems that do not combine their materials with those in the processes they serve, are not considered to be part of a process unit.

§ 65.101 Definitions.

All terms used in this subpart shall have the meaning given them in the Act and in subpart A of this part. If a term is defined in both subpart A of this part and in other subparts that reference the use of this subpart, the term shall have the meaning given in subpart A of this part for purposes of this subpart.

§ 65.102 Alternative means of emission limitation.

(a) Performance standard exemption. The provisions of paragraph (b) of this section do not apply to the performance standards of § 65.111(b) for pressure relief devices or § 65.112(f) for compressors operating under the alternative compressor standard.

- (b) Requests by owners or operators. An owner or operator may request a determination of alternative means of emission limitation to the requirements of §§ 65.106 through 65.115 as provided in paragraph (d) of this section. If the Administrator makes a determination that a means of emission limitation is a permissible alternative, the owner or operator shall either comply with the alternative or comply with the requirements of §§ 65.106 through 65.115.
- (c) Requests by manufacturers of equipment.
- (1) Manufacturers of equipment used to control equipment leaks of a regulated material may apply to the Administrator for approval of an alternative means of emission limitation that achieves a reduction in emissions of the regulated material equivalent to the reduction achieved by the equipment, design, and operational requirements of this subpart.

(2) The Administrator will grant permission according to the provisions of paragraph (d) of this section.

- (d) Permission to use an alternative means of emission limitation. Permission to use an alternative means of emission limitation shall be governed by the procedures in paragraphs (d)(1) through (d)(4) of this section.
- (1) Where the standard is an equipment, design, or operational requirement, the requirements of paragraphs (d)(1)(i) through (d)(1)(iii) of this section apply.
- (i) Each owner or operator applying for permission to use an alternative means of emission limitation shall be responsible for collecting and verifying emission performance test data for an alternative means of emission limitation.
- (ii) The Administrator will compare test data for the means of emission limitation to test data for the equipment, design, and operational requirements.
- (iii) The Administrator may condition the permission on requirements that may be necessary to ensure operation and maintenance to achieve at least the same emission reduction as the equipment, design, and operational requirements of this subpart.

(2) Where the standard is a work practice, the requirements of paragraphs (d)(2)(i) through (d)(2)(vi) of this section

apply.

(i) Each owner or operator applying for permission to use an alternative means of emission limitation shall be responsible for collecting and verifying test data for the alternative.

(ii) For each kind of equipment for which permission is requested, the emission reduction achieved by the

- required work practices shall be demonstrated for a minimum period of 12 months.
- (iii) For each kind of equipment for which permission is requested, the emission reduction achieved by the alternative means of emission limitation shall be demonstrated.
- (iv) Each owner or operator applying for such permission shall commit in writing for each kind of equipment to work practices that provide for emission reductions equal to or greater than the emission reductions achieved by the required work practices.
- (v) The Administrator will compare the demonstrated emission reduction for the alternative means of emission limitation to the demonstrated emission reduction for the required work practices and will consider the commitment in paragraph (d)(2)(iv) of this section.
- (vi) The Administrator may condition the permission on requirements that may be necessary to ensure operation and maintenance to achieve the same or greater emission reduction as the required work practices of this subpart.
- (3) An owner or operator may offer a unique approach to demonstrate the alternative means of emission limitation.
- (4) If in the judgment of the Administrator an alternative means of emission limitation will be approved, the Administrator will publish a notice of the determination in the **Federal Register** using the procedures pursuant to § 65.8(a) of subpart A.

§ 65.103 Equipment identification.

- (a) General equipment identification. Equipment subject to this subpart shall be identified. Identification of the equipment does not require physical tagging of the equipment. For example, the equipment may be identified on a plant site plan, in log entries, by designation of process unit boundaries by some form of weatherproof identification, or by other appropriate methods.
- (b) Additional equipment identification. In addition to the general identification required by paragraph (a) of this section, equipment subject to any of the provisions in §§ 65.106 through 65.115 shall be specifically identified as required in paragraphs (b)(1) through (b)(6) of this section, as applicable. Paragraph (b) of this section does not apply to an owner or operator of a batch product-process who elects to pressure test the batch product-process equipment train pursuant to § 65.117.
- (1) *Connectors.* Except for inaccessible, ceramic, or ceramic-lined connectors meeting the provisions of

- § 65.108(e)(2) and instrumentation systems identified pursuant to paragraph (b)(5) of this section, identify the connectors subject to the requirements of this subpart. Connectors need not be individually identified if all connectors in a designated area or length of pipe subject to the provisions of this subpart are identified as a group, and the number of connectors subject is indicated. With respect to connectors, the identification shall be complete no later than the completion of the initial survey required by §65.108(a).
 - (2) [Reserved]
- (3) Routed to a process or fuel gas system or equipped with a closed vent system and control device. Identify the equipment that the owner or operator elects to route to a process or fuel gas system or equip with a closed vent system and control device under the provisions of § 65.107(e)(3) (pumps in light liquid service), § 65.109(e)(3) (agitators), § 65.111(d) (pressure relief devices in gas/vapor service), § 65.112(e) (compressors), or § 65.118 (alternative means of emission limitation for enclosed-vented process units).
- (4) Pressure relief devices. Identify the pressure relief devices equipped with rupture disks under the provisions of §65.111(e).
- (5) Instrumentation systems. Identify instrumentation systems subject to the provisions of this subpart. Individual components in an instrumentation system need not be identified.
- (6) Equipment in service less than 300 hours per calendar year. Identify either by list, location (area or group), or other method, equipment in regulated material service less than 300 hours per calendar year within a process unit subject to the provisions of this subpart shall be recorded.
- (c) Special equipment designations: Equipment that is unsafe or difficult-tomonitor—(1) Designation and criteria for unsafe-to-monitor. Valves meeting the provisions of $\S 65.106(e)(1)$, pumps meeting the provisions of § 65.107(e)(6), connectors meeting the provisions of $\S 65.108(e)(1)$, and agitators meeting the provisions of $\S 65.109(e)(7)$ may be designated unsafe-to-monitor if the owner or operator determines that monitoring personnel would be exposed to an immediate danger as a consequence of complying with the monitoring requirements of this subpart.
- (2) Designation and criteria for difficult-to-monitor. Valves meeting the provisions of § 65.106(e)(2) may be designated difficult-to-monitor if the provisions of paragraphs (c)(2)(i) apply. Agitators meeting the provisions of § 65.109(e)(5) may be designated

difficult-to-monitor if the provisions of paragraph (c)(2)(ii) of this section apply.

- (i) Valves. (A) The owner or operator of the valve determines that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters (7 feet) above a support surface or it is not accessible in a safe manner when it is in regulated material service;
- (B) The process unit within which the valve is located is a regulated source for which the owner or operator commenced construction, reconstruction, or modification prior to the compliance date of the referencing subpart; or

(Č) The owner or operator designates less than 3 percent of the total number of valves within the process unit as

difficult-to-monitor.

(ii) Agitators. (A) The owner or operator determines that the agitator cannot be monitored without elevating the monitoring personnel more than 2 meters (7 feet) above a support surface or it is not accessible in a safe manner when it is in regulated material service.

(3) Identification of unsafe or difficult-to-monitor equipment. The owner or operator shall record the identity of equipment designated as unsafe-to-monitor or difficult-to-monitor according to the provisions of paragraph (c)(1) or (c)(2) of this section, the planned schedule for monitoring this equipment and an explanation why the equipment is difficult-to-monitor, if applicable.

(4) Written plan requirements. (i) The owner or operator of equipment designated as unsafe-to-monitor according to the provisions of paragraph (c)(1) of this section shall have a written plan that requires monitoring of the equipment as frequently as practical during safe-to-monitor times, but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in §65.105 if a leak is detected.

(ii) The owner or operator of equipment designated as difficult-tomonitor according to the provisions of paragraph (c)(2) of this section shall have a written plan that requires monitoring of the equipment at least once per calendar year and repair of the equipment according to the procedures in §65.105 if a leak is detected.

(d) Special equipment designations: Equipment that is unsafe to repair—(1) Designation and criteria. Connectors subject to the provisions of § 65.105(e) may be designated unsafe to repair if the owner or operator determines that repair personnel would be exposed to an immediate danger as a consequence of

- complying with the repair requirements of this subpart and if the connector will be repaired before the end of the next process unit shutdown as specified in § 63.105(e).
- (2) Identification of equipment. The identity of connectors designated as unsafe to repair and an explanation why the connector is unsafe to repair shall be recorded.
- (e) Special equipment designations: Compressors operating with an instrument reading of less than 500 parts per million. Identify the compressors that the owner or operator elects to designate as operating with an instrument reading of less than 500 parts per million under the provisions of § 65.112(f).
- (f) Special equipment designations: Equipment in heavy liquid service. The owner or operator of equipment in heavy liquid service shall comply with the requirements of either paragraph (f)(1) or (f)(2) of this section as provided in paragraph (f)(3) of this section.

(1) Retain information, data, and analyses used to determine that a piece of equipment is in heavy liquid service.

(2) When requested by the Administrator, demonstrate that the piece of equipment or process is in heavy liquid service.

(3) A determination or demonstration that a piece of equipment or process is in heavy liquid service shall include an analysis or demonstration that the process fluids do not meet the definition of "in light liquid service." Examples of information that could document this include, but are not limited to, records of chemicals purchased for the process, analyses of process stream composition, engineering calculations, or process knowledge.

§ 65.104 Instrument and sensory monitoring for leaks.

- (a) Monitoring for leaks. The owner or operator of a regulated source subject to this subpart shall monitor regulated equipment as specified in paragraph (a)(1) of this section for instrument monitoring and paragraph (a)(2) of this section for sensory monitoring
- (1) Instrument monitoring for leaks. (i) Valves in gas/vapor service and in light liquid service shall be monitored pursuant to § 65.106(b).
- (ii) Pumps in light liquid service shall be monitored pursuant to §65.107(b).
- (iii) Connectors in gas/vapor service and in light liquid service shall be monitored pursuant to § 65.108(b).
- (iv) Agitators in gas/vapor service and in light liquid service shall be monitored pursuant to § 65.109(b).
- (v) Pressure relief devices in gas/ vapor service shall be monitored pursuant to §65.111(b) and (c).

(vi) Compressors designated to operate with an instrument reading less than 500 parts per million as described in § 65.103(e) shall be monitored pursuant to § 65.112(f).

(2) Sensory monitoring for leaks. (i) Pumps in light liquid service shall be observed pursuant to § 65.107(b)(4) and

(e)(1).

(ii) Inaccessible, ceramic, or ceramiclined connectors in gas/vapor service and in light liquid service shall be observed pursuant to § 65.108(e)(2).

(iii) Agitators in gas/vapor service and in light liquid service shall be monitored pursuant to § 65.109(b)(3) or

(e)(1)(i).

- (iv) Pumps, valves, agitators, and connectors in heavy liquid service; instrumentation systems; and pressure relief devices in liquid service shall be observed pursuant to § 65.110(b)(1).
- (b) Instrument monitoring methods. Instrument monitoring as required under this subpart shall comply with the requirements specified in paragraphs (b)(1) through (b)(6) of this section.

(1) *Monitoring method.* Monitoring shall comply with Method 21 of 40 CFR part 60, appendix A, except as otherwise provided in this section.

- (2) Detection instrument performance criteria. (i) Except as provided for in paragraph (b)(2)(ii) of this section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the representative composition of the process fluid not each individual VOC in the stream. For process streams that contain nitrogen, air, or other inerts that are not organic HAP's or VOC, the representative stream response factor shall be determined on an inert-free basis. The response factor may be determined at any concentration for which monitoring for leaks will be conducted.
- (ii) If no instrument is available at the plant site that will meet the performance criteria specified in paragraph (b)(2)(i) of this section, the instrument readings may be adjusted by multiplying by the representative response factor of the process fluid calculated on an inert-free basis as described in paragraph (b)(2)(i) of this section.
- (3) Detection instrument calibration procedure. The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21 of 40 CFR part 60, appendix A.
- (4) Detection instrument calibration gas. Calibration gases shall be zero air

- (less than 10 parts per million of hydrocarbon in air); and the gases specified in paragraph (b)(4)(i) of this section except as provided in paragraph (b)(4)(ii) of this section.
- (i) Mixtures of methane in air at a concentration no more than 2,000 parts per million greater than the leak definition concentration of the equipment monitored. If the monitoring instrument's design allows for multiple calibration scales, then the lower scale shall be calibrated with a calibration gas that is no higher than 2,000 parts per million above the concentration specified as a leak, and the highest scale shall be calibrated with a calibration gas that is approximately equal to 10,000 parts per million. If only one scale on an instrument will be used during monitoring, the owner or operator need not calibrate the scales that will not be used during that day's monitoring.
- (ii) A calibration gas other than methane in air may be used if the instrument does not respond to methane or if the instrument does not meet the performance criteria specified in paragraph (b)(2)(i) of this section. In such cases, the calibration gas may be a mixture of one or more of the compounds to be measured in air.

(5) Monitoring performance. Monitoring shall be performed when the equipment is in regulated material service or is in use with any other detectable material.

(6) Monitoring data. Monitoring data obtained prior to the regulated source becoming subject to the referencing subpart that do not meet the criteria specified in paragraphs (b)(1) through (b)(5) of this section may still be used to qualify initially for less frequent monitoring under the provisions in $\S 65.106(a)(2)$, (b)(3), or (b)(4) for valves or §65.108(b)(3) for connectors provided the departures from the criteria or from the specified monitoring frequency of $\S 65.106(b)(3)$ or (b)(4) are minor and do not significantly affect the quality of the data. Examples of minor departures are monitoring at a slightly different frequency (such as every 6 weeks instead of monthly or quarterly), following the performance criteria of section 3.1.2(a) of Method 21 of appendix A of 40 CFR part 60 instead of paragraph (b)(2) of this section, or monitoring using a different leak definition if the data would indicate the presence or absence of a leak at the concentration specified in this subpart. Failure to use a calibrated instrument is not considered a minor departure.

(c) Instrument monitoring readings and background adjustments. The owner or operator may elect to adjust or not to adjust the instrument readings for

- background. If an owner or operator elects not to adjust instrument readings for background, the owner or operator shall monitor the equipment according to the procedures specified in paragraphs (b)(1) through (b)(5) of this section. In such cases, all instrument readings shall be compared directly to the applicable leak definition for the monitored equipment to determine whether there is a leak or to determine compliance with §65.111(b) (pressure relief devices) or § 65.112(f) (alternative compressor standard). If an owner or operator elects to adjust instrument readings for background, the owner or operator shall monitor the equipment according to the procedures specified in paragraphs (c)(1) through (c)(4) of this section.
- (1) The requirements of paragraphs (b)(1) through (b)(5) of this section shall apply.
- (2) The background level shall be determined using the procedures in Method 21 of 40 CFR part 60, appendix A.
- (3) The instrument probe shall be traversed around all potential leak interfaces as close to the interface as possible as described in Method 21 of 40 CFR part 60, appendix A.
- (4) The arithmetic difference between the maximum concentration indicated by the instrument and the background level shall be compared to the applicable leak definition for the monitored equipment to determine whether there is a leak or to determine compliance with § 65.111(b) (pressure relief devices) or § 65.112(f) (alternative compressor standard).
- (d) Sensory monitoring methods. Sensory monitoring consists of visual, audible, olfactory, or any other detection method used to determine a potential leak to the atmosphere.
- (e) Leaking equipment identification and records. (1) When each leak is detected, a weatherproof and readily visible identification shall be attached to the leaking equipment.
- (2) When each leak is detected, the information specified in paragraphs (e)(2)(i) and (e)(2)(ii) shall be recorded and kept pursuant to § 65.4(a) of subpart A of this part except the information for connectors complying with the 8 year monitoring period allowed under § 65.108(b)(3)(iii) shall be kept 5 years beyond the date of its last use.
- (i) The instrument and the equipment identification and the instrument operator's name, initials, or identification number if a leak is detected or confirmed by instrument monitoring.
 - (ii) The date the leak was detected.

§65.105 Leak repair.

- (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is detected except as provided in paragraph (d) of this section. A first attempt at repair as defined in subpart A of this part shall be made no later than 5 calendar days after the leak is detected. First attempt at repair for pumps includes, but is not limited to, tightening the packing gland nuts and/ or ensuring that the seal flush is operating at design pressure and temperature. First attempt at repair for valves includes, but is not limited to, tightening the bonnet bolts, and/or replacing the bonnet bolts, and/or tightening the packing gland nuts, and/ or injecting lubricant into the lubricated packing.
 - (b) [Reserved]
- (c) Leak identification removal—(1) Valves and connectors. The leak identification on a valve may be removed after it has been monitored as specified in § 65.106(d)(2) and no leak has been detected during that monitoring. The leak identification on a connector may be removed after it has been monitored as specified in § 65.108(b)(3)(iv) and no leak has been detected during that monitoring.

(2) Other equipment. The identification that has been placed pursuant to § 65.104(e)(1) on equipment determined to have a leak except for a valve or for a connector that is subject to the provisions of § 65.108(b)(4)(i)(A) may be removed after it is repaired.

- (d) *Delay of repair*. Delay of repair is allowed for any of the conditions specified in paragraphs (d)(1) through (d)(5) of this section. The owner or operator shall maintain a record of the facts that explain any delay of repairs and, where appropriate, why the repair was technically infeasible without a process unit shutdown.
- (1) Delay of repair of equipment for which leaks have been detected is allowed if repair within 15 days after a leak is detected is technically infeasible without a process unit shutdown.

 Repair of this equipment shall occur as soon as practical, but no later than the end of the next process unit shutdown, except as provided in paragraph (d)(5) of this section.
- (2) Delay of repair of equipment for which leaks have been detected is allowed for equipment that is isolated from the process and that does not remain in regulated material service.
- (3) Delay of repair for valves, connectors, and agitators is also allowed if the provisions of paragraphs (d)(3)(i) and (d)(3)(ii) of this section are met.

- (i) The owner or operator determines that emissions of purged material resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair; and
- (ii) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with § 65.115.
- (4) Delay of repair for pumps is also allowed if the provisions of paragraphs (d)(4)(i) and (d)(4)(ii) of this section are met
- (i) Repair requires replacing the existing seal design with a new system that the owner or operator has determined under the provisions of § 65.116(d) will provide better performance or one of the specifications of paragraphs (d)(4)(i)(A) through (d)(4)(i)(C) of this section are met.
- (A) A dual mechanical seal system that meets the requirements of § 65.107(e)(1) will be installed;
- (B) A pump that meets the requirements of § 65.107(e)(2) will be installed; or
- (C) A system that routes emissions to a process or a fuel gas system or a closed vent system and control device that meets the requirements of § 65.107(e)(3) will be installed; and
- (ii) Repair is completed as soon as practical but not later than 6 months after the leak was detected.
- (5) Delay of repair beyond a process unit shutdown will be allowed for a valve if valve assembly replacement is necessary during the process unit shutdown, and valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the second process unit shutdown will not be allowed unless the third process unit shutdown occurs sooner than 6 months after the first process unit shutdown.
- (e) Unsafe-to-repair: Connectors. Any connector that is designated as described in § 65.103(d) as an unsafe-to-repair connector is exempt from the requirements of § 65.108(d) and paragraph (a) of this section if the provisions of paragraphs (e)(1) and (e)(2) of this section are met.
- (1) The owner or operator determines that repair personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and
- (2) The connector will be repaired before the end of the next scheduled process unit shutdown.
- (f) Leak repair records. For each leak detected, the information specified in paragraphs (f)(1) through (f)(5) of this section shall be recorded and kept

- pursuant to § 65.4(a) of subpart A of this part.
- (1) The date of first attempt to repair the leak.
- (2) The date of successful repair of the leak.
- (3) Maximum instrument reading measured by Method 21 of 40 CFR part 60, appendix A, at the time the leak is successfully repaired or determined to be nonrepairable.
- (4) "Repair delayed" and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak as specified in paragraphs (f)(4)(i) and (f)(4)(ii) of this section.
- (i) The owner or operator may develop a written procedure that identifies the conditions that justify a delay of repair. The written procedures may be included as part of the startup/shutdown/malfunction plan required by § 65.6 of subpart A of this part for the source or may be part of a separate document that is maintained at the plant site. In such cases, reasons for delay of repair may be documented by citing the relevant sections of the written procedure.
- (ii) If delay of repair was caused by depletion of stocked parts, there must be documentation that the spare parts were sufficiently stocked onsite before depletion and the reason for depletion.
- (5) Dates of process unit shutdowns that occur while the equipment is unrepaired.

§ 65.106 Standards: Valves in gas/vapor service and in light liquid service.

- (a) Compliance schedule. (1) The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.
- (2) The use of monitoring data generated before the regulated source became subject to the referencing subpart to qualify initially for less frequent monitoring is governed by the provisions of § 65.104(b)(6) of this subpart.
- (b) Leak detection. Unless otherwise specified in §§ 65.102(b), 65.117, 65.118, or paragraph (e) of this section, the owner or operator shall monitor all valves at the intervals specified in paragraphs (b)(3) and/or (b)(4) of this section and shall comply with all other provisions of this section.
- (1) Monitoring method. The valves shall be monitored to detect leaks by the method specified in § 65.104 (b), (c), and (e).
- (2) Instrument reading that defines a leak. The instrument reading that defines a leak is 500 parts per million or greater.
- (3) *Monitoring frequency.* The owner or operator shall monitor valves for

- leaks at the intervals specified in paragraphs (b)(3)(i) through (b)(3)(v) of this section and shall keep the record specified in paragraph (b)(3)(vi) of this section.
- (i) If at least the greater of two valves or 2 percent of the valves in a process unit leak, as calculated according to paragraph (c) of this section, the owner or operator shall monitor each valve once per month.
- (ii) At process units with less than the greater of two leaking valves or 2 percent leaking valves, the owner or operator shall monitor each valve once each quarter except as provided in paragraphs (b)(3)(iii) through (b)(3)(v) of this section. Monitoring data generated before the regulated source became subject to the referencing subpart and meeting the criteria of either § 65.104 (b)(1) through (b)(5) or § 65.104(b)(6) may be used to qualify initially for less frequent monitoring under paragraphs (b)(3)(iii) through (b)(3)(v) of this section.
- (iii) At process units with less than 1 percent leaking valves, the owner or operator may elect to monitor each valve once every 2 quarters.
- (iv) At process units with less than 0.5 percent leaking valves, the owner or operator may elect to monitor each valve once every 4 quarters.
- (v) At process units with less than 0.25 percent leaking valves, the owner or operator may elect to monitor each valve once every 2 years.
- (vi) The owner or operator shall keep a record of the monitoring schedule for each process unit.
- (4) Valve subgrouping. For a process unit or a group of process units to which this subpart applies, an owner or operator may choose to subdivide the valves in the applicable process unit or group of process units and apply the provisions of paragraph (b)(3) of this section to each subgroup. If the owner or operator elects to subdivide the valves in the applicable process unit or group of process units, then the provisions of paragraphs (b)(4)(i) through (b)(4)(viii) of this section apply.
- (i) The overall performance of total valves in the applicable process unit or group of process units to be subdivided shall be less than 2 percent leaking valves, as detected according to paragraphs (b)(1) and (b)(2) of this section and as calculated according to paragraphs (c)(1)(ii) and (c)(2) of this section.
- (ii) The initial assignment or subsequent reassignment of valves to subgroups shall be governed by the provisions of paragraphs (b)(4)(ii)(A) through (b)(4)(ii)(C) of this section.

- (A) The owner or operator shall determine which valves are assigned to each subgroup. Valves with less than one year of monitoring data or valves not monitored within the last 12 months must be placed initially into the most frequently monitored subgroup until at least one year of monitoring data have been obtained.
- (B) Any valve or group of valves can be reassigned from a less frequently monitored subgroup to a more frequently monitored subgroup provided that the valves to be reassigned were monitored during the most recent monitoring period for the less frequently monitored subgroup. The monitoring results must be included with that less frequently monitored subgroup's associated percent leaking valves calculation for that monitoring event.
- (C) Any valve or group of valves can be reassigned from a more frequently monitored subgroup to a less frequently monitored subgroup provided that the valves to be reassigned have not leaked for the period of the less frequently monitored subgroup (for example, for the last 12 months, if the valve or group of valves is to be reassigned to a subgroup being monitored annually). Nonrepairable valves may not be reassigned to a less frequently monitored subgroup.
- (iii) The owner or operator shall determine every 6 months if the overall performance of total valves in the applicable process unit or group of process units is less than 2 percent leaking valves and so indicate the performance in the next periodic report. If the overall performance of total valves in the applicable process unit or group of process units is 2 percent leaking valves or greater, the owner or operator shall no longer subgroup and shall revert to the program required in paragraphs (b)(1) through (b)(3) of this section for that applicable process unit or group of process units. An owner or operator can again elect to comply with the valve subgrouping procedures of paragraph (b)(4) of this section if future overall performance of total valves in the process unit or groups of process units is again less than 2 percent. The overall performance of total valves in the applicable process unit or group of process units shall be calculated as a weighted average of the percent leaking valves of each subgroup according to the following equation:

$$\%V_{LO} = \frac{\sum_{i=1}^{n} (\%V_{Li} \times V_{i})}{\sum_{i=1}^{n} V_{i}}$$
(106-1)

where

%V_{LO}=Overall performance of total valves in the applicable process unit or group of process units %V_{Li}=Percent leaking valves in subgroup i, most recent value calculated according to the procedures in paragraphs (c)(1)(ii) and (c)(2) of this section.

 V_i =Number of valves in subgroup i. n=Number of subgroups.

- (iv) The owner or operator shall maintain records specified in paragraphs (b)(4)(iv)(A) through (b)(4)(iv)(D) of this section.
- (A) Which valves are assigned to each subgroup,
- (B) Monitoring results and calculations made for each subgroup for each monitoring period,
- (C) Which valves are reassigned, the last monitoring result prior to reassignment, and when they were reassigned, and
- (D) The results of the semiannual overall performance calculation required in paragraph (b)(4)(iii) of this section.
- (v) The owner or operator shall notify the Administrator no later than 30 days prior to the beginning of the next monitoring period of the decision to begin or end subgrouping valves. The notification shall identify the participating process units and the number of valves assigned to each subgroup, if applicable, and may be included in the next periodic report.
- (vi) The owner or operator shall submit in the periodic reports the information specified in paragraphs (b)(4)(vi)(A) and (b)(4)(vi)(B) of this section.
- (A) Total number of valves in each subgroup, and
- (B) Results of the semiannual overall performance calculation required by paragraph (b)(4)(iii) of this section.
- (vii) To determine the monitoring frequency for each subgroup, the calculation procedures of paragraph (c)(2) of this section shall be used.
- (viii) Except for the overall performance calculations required by paragraphs (b)(4)(i) and (iii) of this section, each subgroup shall be treated as if it were a separate process unit for the purposes of applying the provisions of this section.
- (c) Percent leaking valves calculation.—(1) Calculation basis and procedures. (i) The owner or operator

shall decide no later than the implementation date of this part or upon revision of an operating permit whether to calculate percent leaking valves on a process unit or group of process units basis. Once the owner or operator has decided, all subsequent percentage calculations shall be made on the same basis and this shall be the basis used for comparison with the subgrouping criteria specified in paragraph (b)(4)(i) of this section.

(ii) The percent leaking valves for each monitoring period for each process unit or valve subgroup, as provided in paragraph (b)(4) of this section, shall be calculated using the following equation:

 $%V_L = (V_L/V_T) \times 100 \quad (106-2)$ Where:

%V_I =Percent leaking valves.

- V_I =Number of valves found leaking. excluding nonrepairable valves as provided in paragraph (c)(3) of this section.
- V_T=The sum of the total number of valves monitored.
- (2) Calculation for monitoring frequency. When determining monitoring frequency for each process unit or valve subgroup subject to monthly, quarterly, or semiannual monitoring frequencies, the percent leaking valves shall be the arithmetic average of the percent leaking valves from the last two monitoring periods. When determining monitoring frequency for each process unit or valve subgroup subject to annual or biennial (once every 2 years) monitoring frequencies, the percent leaking valves shall be the arithmetic average of the percent leaking valves from the last three monitoring periods.
- (3) Nonrepairable valves. (i) Nonrepairable valves shall be included in the calculation of percent leaking valves the first time the valve is identified as leaking and nonrepairable and as required to comply with paragraph (c)(3)(ii) of this section. Otherwise, a number of nonrepairable valves (identified and included in the percent leaking valves calculation in a previous period) up to a maximum of 1 percent of the total number of valves in regulated material service at a process unit may be excluded from calculation of percent leaking valves for subsequent monitoring periods.
- (ii) If the number of nonrepairable valves exceeds 1 percent of the total number of valves in regulated material service at a process unit, the number of nonrepairable valves exceeding 1 percent of the total number of valves in regulated material service shall be

included in the calculation of percent leaking valves.

(d) Leak repair. (1) If a leak is determined pursuant to paragraph (b), (e)(1), or (e)(2) of this section, then the leak shall be repaired using the procedures in § 65.105, as applicable.

(2) When a leak has been repaired, the valve shall be monitored at least once within the first 3 months after its repair. The monitoring required by paragraph (d) of this section is in addition to the monitoring required to satisfy the definition of repair.

(i) The monitoring shall be conducted as specified in §65.104 (b) and (c), as appropriate, to determine whether the

valve has resumed leaking.

(ii) Periodic monitoring required by paragraph (b) of this section may be used to satisfy the requirements of paragraph (d) of this section if the timing of the monitoring period coincides with the time specified in paragraph (d) of this section. Alternatively, other monitoring may be performed to satisfy the requirements of paragraph (d) of this section regardless of whether the timing of the monitoring period for periodic monitoring coincides with the time specified in paragraph (d) of this section.

(iii) If a leak is detected by monitoring that is conducted pursuant to paragraph (d) of this section, the owner or operator shall follow the provisions of paragraphs (d)(2)(iii)(A) and (d)(2)(iii)(B) of this section to determine whether that valve must be counted as a leaking valve for purposes of paragraph (c)(1)(ii) of this section.

(A) If the owner or operator elected to use periodic monitoring required by paragraph (b) of this section to satisfy the requirements of paragraph (d) of this section, then the valve shall be counted

as a leaking valve.

(B) If the owner or operator elected to use other monitoring, prior to the periodic monitoring required by paragraph (b) of this section, to satisfy the requirements of paragraph (d) of this section, then the valve shall be counted as a leaking valve unless it is repaired and shown by periodic monitoring not to be leaking.

(e) Special provisions for valves—(1) Unsafe-to-monitor valves. Any valve that is designated as described in § 65.103(c)(1) as an unsafe-to-monitor valve is exempt from the requirements of paragraph (b) of this section and the owner or operator shall monitor the valve according to the written plan specified in § 65.103(c)(4).

(2) Difficult-to-monitor valves. Any valve that is designated as described in § 65.103(c)(2) as a difficult-to-monitor valve is exempt from the requirements

of paragraph (b) of this section and the owner or operator shall monitor the valve according to the written plan specified in § 65.103(c)(4).

(3) Less than 250 valves. Any equipment located at a plant site with fewer than 250 valves in regulated material service is exempt from the requirements for monthly monitoring specified in paragraph (b)(3)(i) of this section. Instead, the owner or operator shall monitor each valve in regulated material service for leaks once each quarter or comply with paragraph (b)(4)(iii), (b)(4)(iv), or (b)(4)(v) of this section except as provided in paragraphs (e)(1) and (e)(2) of this section.

§65.107 Standards: Pumps in light liquid service.

- (a) Compliance schedule. The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.
- (b) Leak detection. Unless otherwise specified in §65.102(b) or paragraphs (e)(1) through (e)(6) of this section, the owner or operator shall monitor each pump to detect leaks and shall comply with all other provisions of this section.
- (1) Monitoring method. The pumps shall be monitored monthly to detect leaks by the method specified in § 65.104(b), (c), and (e).
- (2) Instrument reading that defines a leak. The instrument reading that defines a leak is specified in paragraphs (b)(2)(i) through (b)(2)(iii) of this
- (i) 5,000 parts per million or greater for pumps handling polymerizing monomers:
- (ii) 2,000 parts per million or greater for pumps in food/medical service; and (iii) 1,000 parts per million or greater

for all other pumps.

- (3) Leak repair exception. For pumps to which a 1,000 parts per million leak definition applies, repair is not required unless an instrument reading of 2,000 parts per million or greater is detected.
- (4) Visual inspection. Each pump shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator shall document that the inspection was conducted and the date of the inspection. If there are indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator shall follow the procedure specified in either paragraph (b)(4)(i) or (b)(4)(ii) of this section.
- (i) The owner or operator shall monitor the pump as specified in § 65.104(b), (c), and (e). If the

instrument reading indicates a leak as specified in paragraph (b)(2) of this section, a leak is detected and it shall be repaired using the procedures in § 65.105, except as specified in paragraph (b)(3) of this section; or

(ii) The owner or operator shall eliminate the visual indications of

liquids dripping.

- (c) Percent leaking pumps calculation.
 (1) The owner or operator shall decide no later than the implementation date of this part or upon revision of an operating permit whether to calculate percent leaking pumps on a process unit basis or group of process units basis.

 Once the owner or operator has decided, all subsequent percentage calculations shall be made on the same basis.
- (2) If, when calculated on a 6-month rolling average, at least the greater of either 10 percent of the pumps in a process unit or three pumps in a process unit leak, the owner or operator shall implement a quality improvement program for pumps that complies with the requirements of § 65.116.
- (3) The number of pumps at a process unit shall be the sum of all the pumps in regulated material service, except that pumps found leaking in a continuous process unit within 1 month after startup of the pump shall not count in the percent leaking pumps calculation for that one monitoring period only.
- (4) Percent leaking pumps shall be determined by the following equation: $^{9}P_{L} = ((P_{L} P_{S})/(P_{T} P_{S}) * 100 (107-1)$ where:
- $%P_L$ = Percent leaking pumps.
- P_L = Number of pumps found leaking as determined through monthly monitoring as required in paragraph (b)(1) of this section.
- $P_{\rm S}$ = Number of pumps leaking within 1 month of startup during the current monitoring period.
- P_T = Total pumps in regulated material service, including those meeting the criteria in paragraphs (e)(1) and (e)(2) of this section.
- (d) Leak repair. If a leak is detected pursuant to paragraph (b) of this section, then the leak shall be repaired using the procedures in § 65.105, as applicable, unless otherwise specified in paragraphs (b)(4) of this section for leaks identified by visual indications of liquids dripping.
- (e) Special provisions for pumps—(1) Dual mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraph (b) of this section, provided the requirements specified in paragraphs (e)(1)(i) through (e)(1)(viii) of this section are met.

- (i) The owner or operator determines, based on design considerations and operating experience, criteria applicable to the presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or operator shall keep records of the design criteria and an explanation of the design criteria, and any changes to these criteria and the reasons for the changes.
- (ii) Each dual mechanical seal system shall meet the requirements specified in paragraph (e)(1)(ii)(A), (e)(1)(ii)(B), or (e)(1)(ii)(C) of this section.
- (A) Each dual mechanical seal system is operated with the barrier fluid at a pressure that is at all times (except periods of start-up, shutdown, or malfunction) greater than the pump stuffing box pressure; or
- (B) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of § 65.118; or
- (C) Equipped with a closed-loop system that purges the barrier fluid into a process stream.
- (iii) The barrier fluid is not in light liquid service.
- (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
- (v) Each pump is checked by visual inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator shall document that the inspection was conducted and the date of the inspection. If there are indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator shall follow the procedure specified in either paragraph (e)(1)(v)(A) or (e)(1)(v)(B) of this section.
- (A) The owner or operator shall monitor the pump as specified in § 65.104(b), (c), and (e) to determine if there is a leak of regulated material in the barrier fluid. If an instrument reading of 1,000 parts per million or greater is measured, a leak is detected and it shall be repaired using the procedures in § 65.105; or
- (B) The owner or operator shall eliminate the visual indications of liquids dripping.
- (vi) If indications of liquids dripping from the pump seal exceed the criteria established in paragraph (e)(1)(i) of this section, or if based on the criteria established in paragraph (e)(1)(i) of this section the sensor indicates failure of the seal system, the barrier fluid system, or both, a leak is detected.

- (vii) Each sensor as described in paragraph (e)(1)(iv) of this section is observed daily or is equipped with an alarm unless the pump is located within the boundary of an unmanned plant site.
- (viii) When a leak is detected pursuant to paragraph (e)(1)(vi) of this section, it shall be repaired as specified in § 65.105(a).
- (2) No external shaft. Any pump that is designed with no externally actuated shaft penetrating the pump housing is exempt from the monitoring requirements of paragraph (b) of this section.
- (3) Routed to a process or fuel gas system or equipped with a closed vent system. Any pump that is routed to a process or fuel gas system or equipped with a closed vent system that captures and transports leakage from the pump to a control device meeting the requirements of § 65.115 is exempt from the monitoring requirements of paragraph (b) of this section.
- (4) Unmanned plant site. Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (b)(4) and (e)(1)(v) of this section, and the daily requirements of paragraph (e)(1)(vii) of this section provided that each pump is visually inspected as often as practical and at least monthly.
- (5) Ninety percent exemption. If more than 90 percent of the pumps at a process unit meet the criteria in either paragraph (e)(1) or (e)(2) of this section, the process unit is exempt from the requirements of paragraph (b) of this section.
- (6) Unsafe-to-monitor pumps. Any pump that is designated as described in § 65.103(c)(1) as an unsafe-to-monitor pump is exempt from the monitoring requirements of paragraph (b) of this section and the repair requirements of § 65.105 and the owner or operator shall monitor the pump according to the written plan specified in § 65.103(c)(4).

§ 65.108 Standards: Connectors in gas/vapor service and in light liquid service.

(a) Compliance schedule. The owner or operator shall monitor all connectors in each process unit initially for leaks by the later of either 12 months after the implementation date as specified in § 65.1(f) of subpart A of this part or 12 months after initial startup, whichever is later. If all connectors in each process unit have been monitored for leaks prior to the implementation date specified in § 65.1(f) of subpart A of this part, no initial monitoring is required provided either no process changes have been made since the monitoring or the owner

- or operator can determine that the results of the monitoring, with or without adjustments, reliably demonstrate compliance despite process changes. If required to monitor because of a process change, the owner or operator is required to monitor only those connectors involved in the process change.
- (b) Leak detection. Except as allowed in § 65.102(b) or as specified in paragraph (e) of this section, the owner or operator shall monitor all connectors in gas/vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this section.
- (1) Monitoring method. The connectors shall be monitored to detect leaks by the method specified in § 65.104(b), (c), and (e).
- (2) Instrument reading that defines a leak. If an instrument reading greater than or equal to 500 parts per million is measured, a leak is detected.
- (3) Monitoring Periods. The owner or operator shall perform monitoring, subsequent to the initial monitoring required in paragraph (a) of this section, as specified in paragraphs (b)(3)(i) through (b)(3)(iii) of this section, and shall comply with the requirements of paragraphs (b)(3)(iv) and (b)(3)(v) of this section. The required period in which monitoring must be conducted shall be determined from paragraphs (b)(3)(i) through (b)(3)(iii) of this section using the monitoring results from the preceding monitoring period. The percent leaking connectors shall be calculated as specified in paragraph (c) of this subpart.
- (i) If the percent leaking connectors in the process unit was greater than or equal to 0.5 percent, then monitor within 12 months (1 year).
- (ii) If the percent leaking connectors in the process unit was greater than or equal to 0.25 percent but less than 0.5 percent, then monitor within 4 years. An owner or operator may comply with the requirements of paragraph (b)(3)(ii) of this section by monitoring at least 40 percent of the connectors within 2 years of the start of the monitoring period, provided all connectors have been monitored by the end of the 4 year monitoring period.
- (iii) If the percent leaking connectors in the process unit was less than 0.25 percent, then monitor as provided in paragraph (b)(3)(iii)(A) of this section and either paragraph (b)(3)(iii)(B) or (b)(3)(iii)(C) of this section, as appropriate.
- (A) An owner or operator shall monitor at least 50 percent of the connectors within 4 years of the start of the monitoring period.

- (B) If the percent leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of this section is greater than or equal to 0.35 percent of the monitored connectors, the owner or operator shall monitor as soon as practical, but within the next 6 months, all connectors that have not yet been monitored during the monitoring period. At the conclusion of monitoring, a new monitoring period shall be started pursuant to paragraph (b)(3) of this section, based on the percent leaking connectors of the total monitored connectors.
- (C) If the percent leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of this section is less than 0.35 percent of the monitored connectors, the owner or operator shall monitor all connectors that have not yet been monitored within 8 years of the start of the monitoring period.
- (iv) If, during the monitoring conducted pursuant to paragraphs (b)(3)(i) through (b)(3)(iii) of this section, a connector is found to be leaking, it shall be re-monitored once within 90 days after repair to confirm that it is not leaking.
- (v) The owner or operator shall keep a record of the start date and end date of each monitoring period under this section for each process unit.
- (c) Percent leaking connectors calculation. For use in determining the monitoring frequency as specified in paragraphs (a), and (b)(3) of this section, the percent leaking connectors as used in paragraphs (a) and (b)(3) of this section shall be calculated by using the following equation:

 $C_L = C_L / C_t * 100$ (108–1) Where:

- %C_L=Percent leaking connectors as determined through monitoring required in paragraphs (a) and (b) of this section.
- C_L =Number of connectors measured at 500 parts per million or greater by the method specified in § 65.104(b).
- C_t=Total number of monitored connectors in the process unit.
- (d) *Leak repair*. If a leak is detected pursuant to paragraphs (a) and (b) of this section, then the leak shall be repaired using the procedures in § 65.105, as applicable.
- (e) Special provisions for connectors.—(1) Unsafe-to-monitor connectors. Any connector that is designated, as described in § 65.103(c)(1), as an unsafe-to-monitor connector is exempt from the requirements of paragraphs (b)(1) through (b)(3) of this section and the owner or operator shall monitor

- according to the written plan specified in $\S 65.103(c)(4)$.
- (2) Inaccessible, ceramic, or ceramic-lined connectors. (i) Any connector that is inaccessible or that is ceramic or ceramic-lined (for example, porcelain, glass, or glass-lined), is exempt from the monitoring requirements of paragraphs (a) and (b) of this section and from the recordkeeping and reporting requirements of §§ 65.119 and 65.120. An inaccessible connector is one that meets any of the provisions specified in paragraphs (e)(2)(i)(A) through (e)(2)(i)(F), as applicable.
 - (A) Buried;
- (B) Insulated in a manner that prevents access to the connector by a monitor probe;
- (C) Obstructed by equipment or piping that prevents access to the connector by a monitor probe;
- (D) Unable to be reached from a wheeled scissor-lift or hydraulic-type scaffold that would allow access to connectors up to 7.6 meters (25 feet) above the ground.
- (E) Inaccessible because it would require elevating the monitoring personnel more than 2 meters (7 feet) above a permanent support surface or would require the erection of scaffold;
- (F) Not able to be accessed at any time in a safe manner to perform monitoring. Unsafe access includes, but is not limited to, the use of a wheeled scissor-lift on unstable or uneven terrain, the use of a motorized man-lift basket in areas where an ignition potential exists, or access would require near proximity to hazards such as electrical lines or would risk damage to equipment.
- (ii) If any inaccessible, ceramic, or ceramic-lined connector is observed by visual, audible, olfactory, or other means to be leaking, the visual, audible, olfactory, or other indications of a leak to the atmosphere shall be eliminated as soon as practical.

§ 65.109 Standards: Agitators in gas/vapor service and in light liquid service.

- (a) *Compliance schedule.* The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.
- (b) Leak detection.—(1) Monitoring method. Each agitator seal shall be monitored monthly to detect leaks by the methods specified in § 65.104(b), (c), and (e) except as provided in § 65.102(b).
- (2) Instrument reading that defines a leak. If an instrument reading of 10,000 parts per million or greater is measured, a leak is detected.
- (3) Visual inspection. Each agitator seal shall be checked by visual

inspection each calendar week for indications of liquids dripping from the agitator seal. If there are indications of liquids dripping from the agitator seal, the owner or operator shall follow the procedure specified in either paragraph (b)(3)(ii)(A) or (b)(3)(ii)(B) of this section.

(A) The owner or operator shall monitor the agitator seal as specified in § 65.104(b), (c), and (e) to determine if there is a leak of regulated material. If an instrument reading of 10,000 parts per million or greater is measured, a leak is detected, and it shall be repaired using the procedures in § 65.105;

(B) The owner or operator shall eliminate the indications of liquids dripping from the pump seal.

(c) [Reserved]

(d) *Leak repair*. If a leak is detected, then the leak shall be repaired using the

procedures in § 65.105(a).

- (e) Special provisions for agitators— (1) Dual mechanical seal. Each agitator equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraph (b) of this section provided the requirements specified in paragraphs (e)(1)(i) through (e)(1)(vi) of this section are met.
- (i) Each dual mechanical seal system shall meet the applicable requirement specified in paragraph (e)(1)(i)(A), (e)(1)(i)(B), or (e)(1)(i)(C) of this section.
- (A) Operated with the barrier fluid at a pressure that is at all times (except during periods of startup, shutdown, or malfunction) greater than the agitator stuffing box pressure; or
- (B) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system, or connected by a closed vent system to a control device that meets the requirements of § 65.115; or
- (C) Equipped with a closed-loop system that purges the barrier fluid into a process stream.
- (ii) The barrier fluid is not in light liquid service.
- (iii) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
- (iv) Each agitator seal is checked by visual inspection each calendar week for indications of liquids dripping from the agitator seal. If there are indications of liquids dripping from the agitator seal at the time of the weekly inspection, the owner or operator shall follow the procedure specified in either paragraph (e)(1)(iv)(A) or (e)(1)(iv)(B) of this section.
- (A) The owner or operator shall monitor the agitator seal as specified in § 65.104(b) (c), and (e), to determine the

presence of regulated material in the barrier fluid. If an instrument reading of 10,000 parts per million or greater is measured, a leak is detected and it shall be repaired using the procedures in § 65.105; or

(B) The owner or operator shall eliminate the visual indications of

liquids dripping.

(v) Each sensor as described in paragraph (e)(1)(iii) of this section is observed daily or is equipped with an alarm unless the agitator seal is located within the boundary of an unmanned plant site.

(vi) The owner or operator of each dual mechanical seal system shall meet the requirements specified in paragraphs (e)(1)(vi)(A) and (e)(1)(vi)(B).

- (A) The owner or operator shall determine based on design considerations and operating experience criteria that indicates failure of the seal system, the barrier fluid system, or both and that are applicable to the presence and frequency of drips. If indications of liquids dripping from the agitator seal exceed the criteria, or if based on the criteria the sensor indicates failure of the seal system, the barrier fluid system, or both, a leak is detected and shall be repaired pursuant to § 65.105, as applicable.
- (B) The owner or operator shall keep records of the design criteria and an explanation of the design criteria, and any changes to these criteria and the reasons for the changes.
- (2) No external shaft. Any agitator that is designed with no externally actuated shaft penetrating the agitator housing is exempt from paragraph (b) of this section.
- (3) Routed to a process or fuel gas system or equipped with a closed vent system. Any agitator that is routed to a process or fuel gas system or equipped with a closed vent system that captures and transports leakage from the agitator to a control device meeting the requirements of § 65.115 is exempt from the requirements of paragraph (b) of this section.
- (4) Unmanned plant site. Any agitator that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (b)(3) and (e)(1)(iv) of this section, and the daily requirements of paragraph (e)(1)(v) of this section provided that each agitator is visually inspected as often as practical and at least monthly.
- (5) Difficult-to-monitor agitator seals. Any agitator seal that is designated as described in § 65.103(c)(2) as a difficult-to-monitor agitator seal is exempt from the requirements of paragraph (b) of this section and the owner or operator shall

- monitor the agitator seal according to the written plan specified in § 65.103(c)(4).
- (6) Equipment obstructions. Any agitator seal that is obstructed by equipment or piping that prevents access to the agitator by a monitor probe is exempt from the monitoring requirements of paragraph (b) of this section.
- (7) Unsafe-to-monitor agitator seals. Any agitator seal that is designated as described in \S 65.103(c)(1)(i) as an unsafe-to-monitor agitator seal is exempt from the requirements of paragraph (b) of this section and the owner or operator of the agitator seal monitors the agitator seal according to the written plan specified in \S 65.103(c)(4).
- § 65.110 Standards: Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in liquid service; and instrumentation systems.
- (a) Compliance schedule. The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.
- (b) Leak detection (1) Monitoring method. Pumps, valves, connectors, and agitators in heavy liquid service; pressure relief devices in light liquid or heavy liquid service; and instrumentation systems shall be monitored within 5 calendar days by the method specified in § 65.104 (b), (c), and (e) if evidence of a potential leak to the atmosphere is found by visual, audible, olfactory, or any other detection method, unless the potential leak is repaired as required in paragraph (c) of this section.
- (2) Instrument reading that defines a leak. If an instrument reading of 10,000 parts per million or greater for agitators, 5,000 parts per million or greater for pumps handling polymerizing monomers, 2,000 parts per million or greater for pumps in food/medical service, 1,000 parts per million or greater for all other pumps, or 500 parts per million or greater for valves, connectors, instrumentation systems, and pressure relief devices is measured pursuant to paragraph (b)(1) of this section, a leak is detected and it shall be repaired pursuant to §65.105, as applicable.
- (c) Leak Repair. For equipment identified in paragraph (b) of this section that is not monitored by the method specified in § 65.104(b), repaired shall mean that the visual, audible, olfactory, or other indications of a leak to the atmosphere have been eliminated; that no bubbles are observed at potential leak sites during a leak

check using soap solution; or that the system will hold a test pressure.

§ 65.111 Standards: Pressure relief devices in gas/vapor service.

(a) Compliance schedule. The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.

(b) Compliance standard. Except during pressure releases as provided for in paragraph (c) of this section, each pressure relief device in gas/vapor service shall be operated with an instrument reading of less than 500 parts per million as measured by the method specified in § 65.104(b), (c), and (e)

- (c) Pressure relief requirements. (1) After each pressure release, the pressure relief device shall be returned to a condition indicated by an instrument reading of less than 500 parts per million, as soon as practical, but no later than 5 calendar days after each pressure release except as provided in § 65.105(d).
- (2) The pressure relief device shall be monitored no later than 5 calendar days after the pressure release and being returned to regulated material service to confirm the condition indicated by an instrument reading of less than 500 parts per million as measured by the method specified in § 65.104(b), (c), and (e).
- (3) The owner or operator shall record the dates and results of the monitoring required by paragraph (c)(2) of this section following a pressure release including maximum instrument reading measured during the monitoring and the background level measured if the instrument reading is adjusted for background.
- (d) Pressure relief devices routed to a process or fuel gas system or equipped with a closed vent system and control device. Any pressure relief device that is routed to a process or fuel gas system or equipped with a closed vent system capable of capturing and transporting leakage from the pressure relief device to a control device meeting the requirements of either §§ 65.115 or 65.102(b) is exempt from the requirements of paragraphs (b) and (c) of this section.
- (e) Rupture disk exemption. Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (b) and (c) of this section provided the owner or operator installs a replacement rupture disk upstream of the pressure relief device as soon as practical after each pressure release, but no later than 5

calendar days after each pressure release except as provided in § 65.105(d).

§65.112 Standards: Compressors.

- (a) Compliance schedule. The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.
- (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to the atmosphere except as provided in § 65.102(b) and paragraphs (e) and (f) of this section. Each compressor seal system shall meet the applicable requirements specified in paragraph (b)(1), (b)(2), or (b)(3) of this section.
- (1) Operated with the barrier fluid at a pressure that is greater than the compressor stuffing box pressure at all times (except during periods of start-up, shutdown, or malfunction); or
- (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas system, or connected by a closed vent system to a control device that meets the requirements of § 65.115; or

(3) Equipped with a closed-loop system that purges the barrier fluid directly into a process stream.

- (c) Barrier fluid system. The barrier fluid shall not be in light liquid service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the compressor is located within the boundary of an unmanned plant site.
- (d) Failure criterion and leak detection. (1) The owner or operator shall determine based on design considerations and operating experience a criterion that indicates failure of the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion, a leak is detected and shall be repaired pursuant to § 65.105, as applicable.
- (2) The owner or operator shall keep records of the design criteria and an explanation of the design criteria, and any changes to these criteria and the reasons for the changes.
- (e) Routed to a process or fuel gas system or equipped with a closed vent system. A compressor is exempt from the requirements of paragraphs (b) through (d) of this section if it is equipped with a system to capture and transport leakage from the compressor drive shaft seal to a process or a fuel gas system or to a closed vent system that

captures and transports leakage from the compressor to a control device meeting the requirements of § 65.115.

(f) Alternative compressor standard. (1) Any compressor that is designated as described in §65.103(e) shall operate at all times with an instrument reading of less than 500 parts per million. A compressor so designated is exempt from the requirements of paragraphs (b) through (d) of this section if the compressor is demonstrated initially upon designation, annually, and at other times requested by the Administrator to be operating with an instrument reading of less than 500 parts per million as measured by the method specified in § 65.104(b), (c), and (e). A compressor may not be designated or operated as having an instrument reading of less than 500 parts per million as described in §65.103(e) if the compressor has a maximum instrument reading greater than 500 parts per million.

(2) The owner or operator shall record the dates and results of each compliance test including the background level measured and the maximum instrument reading measured during each

compliance test.

§ 65.113 Standards: Sampling connection systems.

- (a) Compliance schedule. The owner or operator shall comply with this section no later than the implementation date specified in § 65.1(f) of subpart A of this part.
- (b) Equipment requirement. Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed vent system except as provided in paragraph (d) of this section or § 65.102(b). Gases displaced during filling of the sample container are not required to be collected or captured.
- (c) Equipment design and operation. Each closed-purge, closed-loop, or closed vent system as required in paragraph (b) of this section shall meet the applicable requirements specified in paragraphs (c)(1) through (c)(5) of this section.
- (1) The system shall return the purged process fluid directly to a process line or to a fuel gas system; or
- (2) Collect and recycle the purged process fluid to a process; or
- (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements of § 65.115; or
- (4) Collect, store, and transport the purged process fluid to a system or facility identified in paragraph (c)(4)(i), (c)(4)(ii), or (c)(4)(iii) of this section.
- (i) A waste management unit as defined in 40 CFR 63.111 of subpart G, if the waste management unit is