the facility is otherwise subject to this part.

(5) Any container with a storage capacity of less than 55 gallons of oil.

(6) Any facility or part thereof used exclusively for wastewater treatment and not used to satisfy any requirement of this part. The production, recovery, or recycling of oil is not wastewater treatment for purposes of this

paragraph.

(e) This part establishes requirements for the preparation and implementation of Spill Prevention, Control, and Countermeasure (SPCC) Plans. SPCC Plans are designed to complement existing laws, regulations, rules, standards, policies, and procedures pertaining to safety standards, fire prevention, and pollution prevention rules. The purpose of an SPCC Plan is to form a comprehensive Federal/State spill prevention program that minimizes the potential for discharges. The SPCC Plan must address all relevant spill prevention, control, and countermeasures necessary at the specific facility. Compliance with this part does not in any way relieve the owner or operator of an onshore or an offshore facility from compliance with other Federal, State, or local laws.

(f) Notwithstanding paragraph (d) of this section, the Regional Administrator may require that the owner or operator of any facility subject to the jurisdiction of EPA under section 311(j) of the CWA prepare and implement an SPCC Plan, or any applicable part, to carry out the

purposes of the CWA.

(1) Following a preliminary determination, the Regional Administrator must provide a written notice to the owner or operator stating the reasons why he must prepare an SPCC Plan, or applicable part. The Regional Administrator must send such notice to the owner or operator by certified mail or by personal delivery. If the owner or operator is a corporation, the Regional Administrator must also mail a copy of such notice to the registered agent, if any and if known, of the corporation in the State where the facility is located.

(2) Within 30 days of receipt of such written notice, the owner or operator may provide information and data and may consult with the Agency about the need to prepare an SPCC Plan, or

applicable part.

(3) Within 30 days following the time under paragraph (b)(2) of this section within which the owner or operator may provide information and data and consult with the Agency about the need to prepare an SPCC Plan, or applicable part, the Regional Administrator must make a final determination regarding

whether the owner or operator is required to prepare and implement an SPCC Plan, or applicable part. The Regional Administrator must send the final determination to the owner or operator by certified mail or by personal delivery. If the owner or operator is a corporation, the Regional Administrator must also mail a copy of the final determination to the registered agent, if any and if known, of the corporation in the State where the facility is located.

(4) If the Regional Administrator makes a final determination that an SPCC Plan, or applicable part, is necessary, the owner or operator must prepare the Plan, or applicable part, within six months of that final determination and implement the Plan, or applicable part, as soon as possible, but not later than one year after the Regional Administrator has made a final

determination.

(5) The owner or operator may appeal a final determination made by the Regional Administrator requiring preparation and implementation of an SPCC Plan, or applicable part, under this paragraph. The owner or operator must make the appeal to the Administrator of EPA within 30 days of receipt of the final determination under paragraph (b)(3) of this section from the Regional Administrator requiring preparation and/or implementation of an SPCC Plan, or applicable part. The owner or operator must send a complete copy of the appeal to the Regional Administrator at the time he makes the appeal to the Administrator. The appeal must contain a clear and concise statement of the issues and points of fact in the case. In the appeal, the owner or operator may also provide additional information. The additional information may be from any person. The Administrator may request additional information from the owner or operator. The Administrator must render a decision within 60 days of receiving the appeal or additional information submitted by the owner or operator and must serve the owner or operator with the decision made in the appeal in the manner described in paragraph (f)(1) of this section.

§112.2 Definitions.

For the purposes of this part: Adverse weather means weather conditions that make it difficult for response equipment and personnel to clean up or remove spilled oil, and that must be considered when identifying response systems and equipment in a response plan for the applicable operating environment. Factors to consider include significant wave height as specified in Appendix E to this part

(as appropriate), ice conditions, temperatures, weather-related visibility, and currents within the area in which the systems or equipment is intended to function.

Alteration means any work on a container involving cutting, burning, welding, or heating operations that changes the physical dimensions or configuration of the container.

Animal fat means a non-petroleum oil, fat, or grease of animal, fish, or marine mammal origin.

Breakout tank means a container used to relieve surges in an oil pipeline system or to receive and store oil transported by a pipeline for reinjection and continued transportation by pipeline.

Bulk storage container means any container used to store oil. These containers are used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to further distribution in commerce. Oil-filled electrical, operating, or manufacturing equipment is not a bulk storage container.

Bunkered tank means a container constructed or placed in the ground by cutting the earth and re-covering the container in a manner that breaks the surrounding natural grade, or that lies above grade, and is covered with earth, sand, gravel, asphalt, or other material. A bunkered tank is considered an aboveground storage container for purposes of this part.

Completely buried tank means any container completely below grade and covered with earth, sand, gravel, asphalt, or other material. Containers in vaults, bunkered tanks, or partially buried tanks are considered aboveground storage containers for purposes of this part.

Complex means a facility possessing a combination of transportation-related and non-transportation-related components that is subject to the jurisdiction of more than one Federal agency under section 311(j) of the CWA.

Contiguous zone means the zone established by the United States under Article 24 of the Convention of the Territorial Sea and Contiguous Zone, that is contiguous to the territorial sea and that extends nine miles seaward from the outer limit of the territorial area.

Contract or other approved means means:

(1) A written contractual agreement with an oil spill removal organization that identifies and ensures the availability of the necessary personnel and equipment within appropriate response times; and/or

- (2) A written certification by the owner or operator that the necessary personnel and equipment resources, owned or operated by the facility owner or operator, are available to respond to a discharge within appropriate response times; and/or
- (3) Active membership in a local or regional oil spill removal organization that has identified and ensures adequate access through such membership to necessary personnel and equipment to respond to a discharge within appropriate response times in the specified geographic area; and/or

(4) Any other specific arrangement approved by the Regional Administrator upon request of the owner or operator.

Discharge includes, but is not limited to, any spilling, leaking, pumping, pouring, emitting, emptying, or dumping of oil, but excludes discharges in compliance with a permit under section 402 of the CWA; discharges resulting from circumstances identified, reviewed, and made a part of the public record with respect to a permit issued or modified under section 402 of the CWA, and subject to a condition in such permit; or continuous or anticipated intermittent discharges from a point source, identified in a permit or permit application under section 402 of the CWA, that are caused by events occurring within the scope of relevant operating or treatment systems. For purposes of this part, the term discharge shall not include any discharge of oil that is authorized by a permit issued under section 13 of the River and Harbor Act of 1899 (33 U.S.C. 407).

Facility means any mobile or fixed, onshore or offshore building, structure, installation, equipment, pipe, or pipeline (other than a vessel or a public vessel) used in oil well drilling operations, oil production, oil refining, oil storage, oil gathering, oil processing, oil transfer, oil distribution, and waste treatment, or in which oil is used, as described in Appendix A to this part. The boundaries of a facility depend on several site-specific factors, including, but not limited to, the ownership or operation of buildings, structures, and equipment on the same site and the types of activity at the site.

Fish and wildlife and sensitive environments means areas that may be identified by their legal designation or by evaluations of Area Committees (for planning) or members of the Federal On-Scene Coordinator's spill response structure (during responses). These areas may include wetlands, National and State parks, critical habitats for endangered or threatened species, wilderness and natural resource areas, marine sanctuaries and estuarine

reserves, conservation areas, preserves, wildlife areas, wildlife refuges, wild and scenic rivers, recreational areas, national forests, Federal and State lands that are research national areas, heritage program areas, land trust areas, and historical and archaeological sites and parks. These areas may also include unique habitats such as aquaculture sites and agricultural surface water intakes, bird nesting areas, critical biological resource areas, designated migratory routes, and designated seasonal habitats.

Injury means a measurable adverse change, either long- or short-term, in the chemical or physical quality or the viability of a natural resource resulting either directly or indirectly from exposure to a discharge, or exposure to a product of reactions resulting from a discharge.

Maximum extent practicable means within the limitations used to determine oil spill planning resources and response times for on-water recovery, shoreline protection, and cleanup for worst case discharges from onshore nontransportation-related facilities in adverse weather. It includes the planned capability to respond to a worst case discharge in adverse weather, as contained in a response plan that meets the requirements in § 112.20 or in a specific plan approved by the Regional Administrator.

Navigable waters means the waters of the United States, including the territorial seas.

- (1) The term includes:
- (i) All waters that are currently used, were used in the past, or may be susceptible to use in interstate or foreign commerce, including all waters subject to the ebb and flow of the tide;
- (ii) All interstate waters, including interstate wetlands;
- (iii) All other waters such as intrastate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds, the use, degradation, or destruction of which could affect interstate or foreign commerce including any such waters:
- (A) That are or could be used by interstate or foreign travelers for recreational or other purposes; or
- (B) From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or,
- (C) That are or could be used for industrial purposes by industries in interstate commerce;
- (iv) All impoundments of waters otherwise defined as waters of the United States under this section;

- (v) Tributaries of waters identified in paragraphs (1)(i) through (iv) of this definition;
- (vi) The territorial sea; and (vii) Wetlands adjacent to waters (other than waters that are themselves wetlands) identified in paragraph (1) of this definition.
- (2) Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of the CWA (other than cooling ponds which also meet the criteria of this definition) are not waters of the United States. Navigable waters do not include prior converted cropland.

 Notwithstanding the determination of

an area's status as prior converted cropland by any other Federal agency, for the purposes of the CWA, the final authority regarding CWA jurisdiction remains with EPA.

remains with EPA.

Non-petroleum oil means oil of any kind that is not petroleum-based, including but not limited to: Fats, oils, and greases of animal, fish, or marine mammal origin; and vegetable oils, including oils from seeds, nuts, fruits, and kernels.

Offshore facility means any facility of any kind (other than a vessel or public vessel) located in, on, or under any of the navigable waters of the United States, and any facility of any kind that is subject to the jurisdiction of the United States and is located in, on, or under any other waters.

Oil means oil of any kind or in any form, including, but not limited to: fats, oils, or greases of animal, fish, or marine mammal origin; vegetable oils, including oils from seeds, nuts, fruits, or kernels; and, other oils and greases, including petroleum, fuel oil, sludge, synthetic oils, mineral oils, oil refuse, or oil mixed with wastes other than dredged spoil.

Oil Spill Removal Organization means an entity that provides oil spill response resources, and includes any for-profit or not-for-profit contractor, cooperative, or in-house response resources that have been established in a geographic area to provide required response resources.

Onshore facility means any facility of any kind located in, on, or under any land within the United States, other

than submerged lands.

Owner or operator means any person owning or operating an onshore facility or an offshore facility, and in the case of any abandoned offshore facility, the person who owned or operated or maintained the facility immediately prior to such abandonment.

Partially buried tank means a storage container that is partially inserted or constructed in the ground, but not entirely below grade, and not completely covered with earth, sand, gravel, asphalt, or other material. A partially buried tank is considered an aboveground storage container for purposes of this part.

Permanently closed means any container or facility for which:

(1) All liquid and sludge has been removed from each container and connecting line; and

(2) All connecting lines and piping have been disconnected from the container and blanked off, all valves (except for ventilation valves) have been closed and locked, and conspicuous signs have been posted on each container stating that it is a permanently closed container and noting the date of closure.

Person includes an individual, firm, corporation, association, or partnership.

Petroleum oil means petroleum in any form, including but not limited to crude oil, fuel oil, mineral oil, sludge, oil refuse, and refined products.

Production facility means all structures (including but not limited to wells, platforms, or storage facilities), piping (including but not limited to flowlines or gathering lines), or equipment (including but not limited to workover equipment, separation equipment, or auxiliary non-transportation-related equipment) used in the production, extraction, recovery, lifting, stabilization, separation or treating of oil, or associated storage or measurement, and located in a single geographical oil or gas field operated by a single operator.

Regional Administrator means the Regional Administrator of the Environmental Protection Agency, in and for the Region in which the facility is located.

Repair means any work necessary to maintain or restore a container to a condition suitable for safe operation, other than that necessary for ordinary, day-to-day maintenance to maintain the functional integrity of the container and that does not weaken the container.

Spill Prevention, Control, and Countermeasure Plan; SPCC Plan, or Plan means the document required by § 112.3 that details the equipment, workforce, procedures, and steps to prevent, control, and provide adequate countermeasures to a discharge.

Storage capacity of a container means the shell capacity of the container.

Transportation-related and nontransportation-related, as applied to an onshore or offshore facility, are defined in the Memorandum of Understanding between the Secretary of Transportation and the Administrator of the Environmental Protection Agency, dated November 24, 1971, (Appendix A of this part).

United States means the States, the District of Columbia, the Commonwealth of Puerto Rico, the Commonwealth of the Northern Mariana Islands, Guam, American Samoa, the U.S. Virgin Islands, and the Pacific Island Governments.

Vegetable oil means a non-petroleum oil or fat of vegetable origin, including but not limited to oils and fats derived from plant seeds, nuts, fruits, and kernels.

Vessel means every description of watercraft or other artificial contrivance used, or capable of being used, as a means of transportation on water, other than a public vessel.

Wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency or duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include playa lakes, swamps, marshes, bogs, and similar areas such as sloughs, prairie potholes, wet meadows, prairie river overflows, mudflats, and natural ponds.

Worst case discharge for an onshore non-transportation-related facility means the largest foreseeable discharge in adverse weather conditions as determined using the worksheets in Appendix D to this part.

§112.3 Requirement to prepare and implement a Spill Prevention, Control, and Countermeasure Plan.

The owner or operator of an onshore or offshore facility subject to this section must prepare a Spill Prevention, Control, and Countermeasure Plan (hereafter "SPCC Plan" or "Plan)," in writing, and in accordance with § 112.7, and any other applicable section of this part.

(a) If your onshore or offshore facility was in operation on or before August 16, 2002, you must maintain your Plan, but must amend it, if necessary to ensure compliance with this part, on or before February 17, 2003, and must implement the amended Plan as soon as possible, but not later than August 18, 2003. If your onshore or offshore facility becomes operational after August 16, 2002, through August 18, 2003, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare a Plan on or before August 18, 2003, and fully implement it as soon as possible, but not later than August 18, 2003.

(b) If you are the owner or operator of an onshore or offshore facility that becomes operational after August 18, 2003, and could reasonably be expected to have a discharge as described in § 112.1(b), you must prepare and implement a Plan before you begin operations.

- (c) If you are the owner or operator of an onshore or offshore mobile facility, such as an onshore drilling or workover rig, barge mounted offshore drilling or workover rig, or portable fueling facility, you must prepare, implement, and maintain a facility Plan as required by this section. This provision does not require that you prepare a new Plan each time you move the facility to a new site. The Plan may be a general plan. When you move the mobile or portable facility, you must locate and install it using the discharge prevention practices outlined in the Plan for the facility. You may not operate a mobile or portable facility subject to this part unless you have implemented the Plan. The Plan is applicable only while the facility is in a fixed (non-transportation) operating
- (d) A licensed Professional Engineer must review and certify a Plan for it to be effective to satisfy the requirements of this part.

(1) By means of this certification the Professional Engineer attests:

(i) That he is familiar with the requirements of this part;

(ii) That he or his agent has visited and examined the facility;

(iii) That the Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards, and with the requirements of this part;

(iv) That procedures for required inspections and testing have been established; and

(v) That the Plan is adequate for the facility.

(2) Such certification shall in no way relieve the owner or operator of a facility of his duty to prepare and fully implement such Plan in accordance with the requirements of this part.

(e) If you are the owner or operator of a facility for which a Plan is required under this section, you must:

(1) Maintain a complete copy of the Plan at the facility if the facility is normally attended at least four hours per day, or at the nearest field office if the facility is not so attended, and

(2) Have the Plan available to the Regional Administrator for on-site review during normal working hours.

(f) Extension of time. (1) The Regional Administrator may authorize an extension of time for the preparation and full implementation of a Plan, or any amendment thereto, beyond the time permitted for the preparation, implementation, or amendment of a

Plan under this part, when he finds that the owner or operator of a facility subject to this section, cannot fully comply with the requirements as a result of either nonavailability of qualified personnel, or delays in construction or equipment delivery beyond the control and without the fault of such owner or operator or his agents or employees.

(2) If you are an owner or operator seeking an extension of time under paragraph (f)(1) of this section, you may submit a written extension request to the Regional Administrator. Your

request must include:

(i) A full explanation of the cause for any such delay and the specific aspects of the Plan affected by the delay;

(ii) A full discussion of actions being taken or contemplated to minimize or

mitigate such delay; and

- (iii) A proposed time schedule for the implementation of any corrective actions being taken or contemplated, including interim dates for completion of tests or studies, installation and operation of any necessary equipment, or other preventive measures. In addition you may present additional oral or written statements in support of
- your extension request.
- (3) The submission of a written extension request under paragraph (f)(2) of this section does not relieve you of your obligation to comply with the requirements of this part. The Regional Administrator may request a copy of your Plan to evaluate the extension request. When the Regional Administrator authorizes an extension of time for particular equipment or other specific aspects of the Plan, such extension does not affect your obligation to comply with the requirements related to other equipment or other specific aspects of the Plan for which the Regional Administrator has not expressly authorized an extension.

§112.4 Amendment of Spill Prevention, Control, and Countermeasure Plan by Regional Administrator.

If you are the owner or operator of a facility subject to this part, you must:

- (a) Notwithstanding compliance with § 112.3, whenever your facility has discharged more than 1,000 U.S. gallons of oil in a single discharge as described in § 112.1(b), or discharged more than 42 U.S. gallons of oil in each of two discharges as described in § 112.1(b), occurring within any twelve month period, submit the following information to the Regional Administrator within 60 days from the time the facility becomes subject to this section:
 - (1) Name of the facility;

(2) Your name;

(3) Location of the facility;

(4) Maximum storage or handling capacity of the facility and normal daily throughput;

(5) Corrective action and countermeasures you have taken, including a description of equipment repairs and replacements;

(6) An adequate description of the facility, including maps, flow diagrams, and topographical maps, as necessary;

- (7) The cause of such discharge as described in § 112.1(b), including a failure analysis of the system or subsystem in which the failure occurred;
- (8) Additional preventive measures you have taken or contemplated to minimize the possibility of recurrence; and
- (9) Such other information as the Regional Administrator may reasonably require pertinent to the Plan or discharge.
- (b) Take no action under this section until it applies to your facility. This section does not apply until the expiration of the time permitted for the initial preparation and implementation of the Plan under § 112.3, but not including any amendments to the Plan.
- (c) Send to the appropriate agency or agencies in charge of oil pollution control activities in the State in which the facility is located a complete copy of all information you provided to the Regional Administrator under paragraph (a) of this section. Upon receipt of the information such State agency or agencies may conduct a review and make recommendations to the Regional Administrator as to further procedures, methods, equipment, and other requirements necessary to prevent and to contain discharges from your facility.
- (d) Amend your Plan, if after review by the Regional Administrator of the information you submit under paragraph (a) of this section, or submission of information to EPA by the State agency under paragraph (c) of this section, or after on-site review of your Plan, the Regional Administrator requires that you do so. The Regional Administrator may require you to amend your Plan if he finds that it does not meet the requirements of this part or that amendment is necessary to prevent and contain discharges from your facility.
- (e) Act in accordance with this paragraph when the Regional Administrator proposes by certified mail or by personal delivery that you amend your SPCC Plan. If the owner or operator is a corporation, he must also notify by mail the registered agent of such corporation, if any and if known,

in the State in which the facility is located. The Regional Administrator must specify the terms of such proposed amendment. Within 30 days from receipt of such notice, you may submit written information, views, and arguments on the proposed amendment. After considering all relevant material presented, the Regional Administrator must either notify you of any amendment required or rescind the notice. You must amend your Plan as required within 30 days after such notice, unless the Regional Administrator, for good cause, specifies another effective date. You must implement the amended Plan as soon as possible, but not later than six months after you amend your Plan, unless the Regional Administrator specifies another date.

(f) If you appeal a decision made by the Regional Administrator requiring an amendment to an SPCC Plan, send the appeal to the EPA Administrator in writing within 30 days of receipt of the notice from the Regional Administrator requiring the amendment under paragraph (e) of this section. You must send a complete copy of the appeal to the Regional Administrator at the time you make the appeal. The appeal must contain a clear and concise statement of the issues and points of fact in the case. It may also contain additional information from you, or from any other person. The EPA Administrator may request additional information from you, or from any other person. The EPA Administrator must render a decision within 60 days of receiving the appeal and must notify you of his decision.

§112.5 Amendment of Spill Prevention, Control, and Countermeasure Plan by owners or operators.

If you are the owner or operator of a facility subject to this part, you must:

(a) Amend the SPCC Plan for your facility in accordance with the general requirements in § 112.7, and with any specific section of this part applicable to your facility, when there is a change in the facility design, construction, operation, or maintenance that materially affects its potential for a discharge as described in § 112.1(b). Examples of changes that may require amendment of the Plan include, but are not limited to: commissioning or decommissioning containers; replacement, reconstruction, or movement of containers; reconstruction, replacement, or installation of piping systems; construction or demolition that might alter secondary containment structures; changes of product or service; or revision of standard operation or maintenance procedures at

a facility. An amendment made under this section must be prepared within six months, and implemented as soon as possible, but not later than six months following preparation of the amendment.

(b) Notwithstanding compliance with paragraph (a) of this section, complete a review and evaluation of the SPCC Plan at least once every five years from the date your facility becomes subject to this part; or, if your facility was in operation on or before August 16, 2002, five years from the date your last review was required under this part. As a result of this review and evaluation, you must amend your SPCC Plan within six months of the review to include more effective prevention and control technology if the technology has been field-proven at the time of the review and will significantly reduce the likelihood of a discharge as described in § 112.1(b) from the facility. You must implement any amendment as soon as possible, but not later than six months following preparation of any amendment. You must document your completion of the review and evaluation, and must sign a statement as to whether you will amend the Plan, either at the beginning or end of the Plan or in a log or an appendix to the Plan. The following words will suffice, "I have completed review and evaluation of the SPCC Plan for (name of facility) on (date), and will (will not) amend the Plan as a result."

(c) Have a Professional Engineer certify any technical amendment to your Plan in accordance with § 112.3(d).

§112.6 [Reserved]

§ 112.7 General requirements for Spill Prevention, Control, and Countermeasure Plans.

If you are the owner or operator of a facility subject to this part you must prepare a Plan in accordance with good engineering practices. The Plan must have the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan. You must prepare the Plan in writing. If you do not follow the sequence specified in this section for the Plan, you must prepare an equivalent Plan acceptable to the Regional Administrator that meets all of the applicable requirements listed in this part, and you must supplement it with a section cross-referencing the location of requirements listed in this part and the equivalent requirements in the other prevention plan. If the Plan calls for additional facilities or procedures, methods, or equipment not yet fully operational, you must discuss

these items in separate paragraphs, and must explain separately the details of installation and operational start-up. As detailed elsewhere in this section, you must also:

(a)(1) Include a discussion of your facility's conformance with the requirements listed in this part.

(2) Comply with all applicable requirements listed in this part. Your Plan may deviate from the requirements in paragraphs (g), (h)(2) and (3), and (i) of this section and the requirements in subparts B and C of this part, except the secondary containment requirements in paragraphs (c) and (h)(1) of this section, and §§ 112.8(c)(2),112.8(c)(11), 112.9(c)(2), 112.10(c), 112.12(c)(2), 112.12(c)(11),112.13(c)(2), and 112.14(c), where applicable to a specific facility, if you provide equivalent environmental protection by some other means of spill prevention, control, or countermeasure. Where your Plan does not conform to the applicable requirements in paragraphs (g), (h)(2) and (3), and (i) of this section, or the requirements of subparts B and C of this part, except the secondary containment requirements in paragraphs (c) and (h)(1) of this section, and \S 112.8(c)(2), 112.8(c)(11), 112.9(c)(2), 112.10(c), 112.12(c)(2), 112.12(c)(11), 112.13(c)(2), and 112.14(c), you must state the reasons for nonconformance in your Plan and describe in detail alternate methods and how you will achieve equivalent environmental protection. If the Regional Administrator determines that the measures described in your Plan do not provide equivalent environmental protection, he may require that you amend your Plan, following the procedures in § 112.4(d) and (e).

(3) Describe in your Plan the physical layout of the facility and include a facility diagram, which must mark the location and contents of each container. The facility diagram must include completely buried tanks that are otherwise exempted from the requirements of this part under § 112.1(d)(4). The facility diagram must also include all transfer stations and connecting pipes. You must also address in your Plan:

(i) The type of oil in each container and its storage capacity;

(ii) Discharge prevention measures including procedures for routine handling of products (loading, unloading, and facility transfers, etc.);

(iii) Discharge or drainage controls such as secondary containment around containers and other structures, equipment, and procedures for the control of a discharge; (iv) Countermeasures for discharge discovery, response, and cleanup (both the facility's capability and those that might be required of a contractor);

(v) Methods of disposal of recovered materials in accordance with applicable

legal requirements; and

(vi) Contact list and phone numbers for the facility response coordinator, National Response Center, cleanup contractors with whom you have an agreement for response, and all appropriate Federal, State, and local agencies who must be contacted in case of a discharge as described in § 112.1(b).

(4) Unless you have submitted a response plan under § 112.20, provide information and procedures in your Plan to enable a person reporting a discharge as described in § 112.1(b) to relate information on the exact address or location and phone number of the facility; the date and time of the discharge, the type of material discharged; estimates of the total quantity discharged; estimates of the quantity discharged as described in § 112.1(b); the source of the discharge; a description of all affected media; the cause of the discharge; any damages or injuries caused by the discharge; actions being used to stop, remove, and mitigate the effects of the discharge; whether an evacuation may be needed; and, the names of individuals and/or organizations who have also been contacted.

(5) Unless you have submitted a response plan under § 112.20, organize portions of the Plan describing procedures you will use when a discharge occurs in a way that will make them readily usable in an emergency, and include appropriate supporting material as appendices.

(b) Where experience indicates a reasonable potential for equipment failure (such as loading or unloading equipment, tank overflow, rupture, or leakage, or any other equipment known to be a source of a discharge), include in your Plan a prediction of the direction, rate of flow, and total quantity of oil which could be discharged from the facility as a result of each type of major equipment failure.

(c) Provide appropriate containment and/or diversionary structures or equipment to prevent a discharge as described in § 112.1(b). The entire containment system, including walls and floor, must be capable of containing oil and must be constructed so that any discharge from a primary containment system, such as a tank or pipe, will not escape the containment system before cleanup occurs. At a minimum, you must use one of the following prevention systems or its equivalent:

- (1) For onshore facilities:
- (i) Dikes, berms, or retaining walls sufficiently impervious to contain oil; (ii) Curbing;
- (iii) Culverting, gutters, or other drainage systems;
 - (iv) Weirs, booms, or other barriers;
 - (v) Spill diversion ponds;
 - (vi) Retention ponds; or (vii) Sorbent materials.

 - (2) For offshore facilities: (i) Curbing or drip pans; or

 - (ii) Sumps and collection systems.
- (d) If you determine that the installation of any of the structures or pieces of equipment listed in paragraphs (c) and (h)(1) of this section, and §§ 112.8(c)(2), 112.8(c)(11), 112.9(c)(2), 112.10(c), 112.12(c)(2), 112.12(c)(11), 112.13(c)(2), and 112.14(c) to prevent a discharge as described in § 112.1(b) from any onshore or offshore facility is not practicable, you must clearly explain in your Plan why such measures are not practicable; for bulk storage containers, conduct both periodic integrity testing of the containers and periodic integrity and leak testing of the valves and piping; and, unless you have submitted a response plan under § 112.20, provide in your Plan the following:
- (1) An oil spill contingency plan following the provisions of part 109 of this chapter.
- (2) A written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful.
- (e) Inspections, tests, and records. Conduct inspections and tests required by this part in accordance with written procedures that you or the certifying engineer develop for the facility. You must keep these written procedures and a record of the inspections and tests, signed by the appropriate supervisor or inspector, with the SPCC Plan for a period of three years. Records of inspections and tests kept under usual and customary business practices will suffice for purposes of this paragraph.
- (f) Personnel, training, and discharge prevention procedures. (1) At a minimum, train your oil-handling personnel in the operation and maintenance of equipment to prevent discharges; discharge procedure protocols; applicable pollution control laws, rules, and regulations; general facility operations; and, the contents of the facility SPCC Plan.
- (2) Designate a person at each applicable facility who is accountable for discharge prevention and who reports to facility management.
- (3) Schedule and conduct discharge prevention briefings for your oil-

- handling personnel at least once a year to assure adequate understanding of the SPCC Plan for that facility. Such briefings must highlight and describe known discharges as described in § 112.1(b) or failures, malfunctioning components, and any recently developed precautionary measures.
- (g) Security (excluding oil production facilities). (1) Fully fence each facility handling, processing, or storing oil, and lock and/or guard entrance gates when the facility is not in production or is unattended.
- (2) Ensure that the master flow and drain valves and any other valves permitting direct outward flow of the container's contents to the surface have adequate security measures so that they remain in the closed position when in non-operating or non-standby status.

(3) Lock the starter control on each oil pump in the "off" position and locate it at a site accessible only to authorized personnel when the pump is in a nonoperating or non-standby status.

(4) Securely cap or blank-flange the loading/unloading connections of oil pipelines or facility piping when not in service or when in standby service for an extended time. This security practice also applies to piping that is emptied of liquid content either by draining or by inert gas pressure.

(5) Provide facility lighting commensurate with the type and location of the facility that will assist in

(i) Discovery of discharges occurring during hours of darkness, both by operating personnel, if present, and by non-operating personnel (the general public, local police, etc.); and

(ii) Prevention of discharges occurring through acts of vandalism.

(h) Facility tank car and tank truck loading/unloading rack (excluding offshore facilities). (1) Where loading/ unloading area drainage does not flow into a catchment basin or treatment facility designed to handle discharges, use a quick drainage system for tank car or tank truck loading and unloading areas. You must design any containment system to hold at least the maximum capacity of any single compartment of a tank car or tank truck loaded or unloaded at the facility.

(2) Provide an interlocked warning light or physical barrier system, warning signs, wheel chocks, or vehicle break interlock system in loading/unloading areas to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines.

(3) Prior to filling and departure of any tank car or tank truck, closely inspect for discharges the lowermost drain and all outlets of such vehicles,

- and if necessary, ensure that they are tightened, adjusted, or replaced to prevent liquid discharge while in
- (i) If a field-constructed aboveground container undergoes a repair, alteration, reconstruction, or a change in service that might affect the risk of a discharge or failure due to brittle fracture or other catastrophe, or has discharged oil or failed due to brittle fracture failure or other catastrophe, evaluate the container for risk of discharge or failure due to brittle fracture or other catastrophe, and as necessary, take appropriate action.
- (i) In addition to the minimal prevention standards listed under this section, include in your Plan a complete discussion of conformance with the applicable requirements and other effective discharge prevention and containment procedures listed in this part or any applicable more stringent State rules, regulations, and guidelines.
- 3. Part 112 is amended adding subpart B consisting of §§ 112.8 through 112.11 to read as follows:

Subpart B—Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels)

- 112.8 Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding production facilities).
- 112.9 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil production facilities.
- 112.10 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and workover facilities.
- 112.11 Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities.

Subpart B—Requirements for **Petroleum Oils and Non-Petroleum** Oils, Except Animal Fats and Oils and **Greases, and Fish and Marine Mammal** Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels)

§112.8 Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding production facilities).

If you are the owner or operator of an onshore facility (excluding a production facility), you must:

(a) Meet the general requirements for the Plan listed under § 112.7, and the specific discharge prevention and containment procedures listed in this section.

(b) Facility drainage. (1) Restrain drainage from diked storage areas by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. You may empty diked areas by pumps or ejectors; however, you must manually activate these pumps or ejectors and must inspect the condition of the accumulation before starting, to ensure no oil will be discharged.

(2) Use valves of manual, open-andclosed design, for the drainage of diked areas. You may not use flapper-type drain valves to drain diked areas. If your facility drainage drains directly into a watercourse and not into an on-site wastewater treatment plant, you must inspect and may drain uncontaminated retained stormwater, as provided in paragraphs (c)(3)(ii), (iii), and (iv) of this section.

(3) Design facility drainage systems

from undiked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharges may occur outside the loading area) to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility. You must not locate catchment basins in areas subject to periodic flooding.

(4) If facility drainage is not engineered as in paragraph (b)(3) of this section, equip the final discharge of all ditches inside the facility with a diversion system that would, in the event of an uncontrolled discharge,

retain oil in the facility.

(5) Where drainage waters are treated in more than one treatment unit and such treatment is continuous, and pump transfer is needed, provide two "lift" pumps and permanently install at least one of the pumps. Whatever techniques you use, you must engineer facility drainage systems to prevent a discharge as described in § 112.1(b) in case there is an equipment failure or human error at the facility.

(c) Bulk storage containers. (1) Not use a container for the storage of oil unless its material and construction are compatible with the material stored and conditions of storage such as pressure

and temperature.

(2) Construct all bulk storage container installations so that you provide a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must ensure that diked areas are sufficiently impervious to contain discharged oil. Dikes, containment curbs, and pits are commonly employed for this purpose.

You may also use an alternative system consisting of a drainage trench enclosure that must be arranged so that any discharge will terminate and be safely confined in a facility catchment basin or holding pond.

(3) Not allow drainage of uncontaminated rainwater from the diked area into a storm drain or discharge of an effluent into an open watercourse, lake, or pond, bypassing the facility treatment system unless you:

(i) Normally keep the bypass valve

sealed closed.

(ii) Inspect the retained rainwater to ensure that its presence will not cause a discharge as described in § 112.1(b).

(iii) Open the bypass valve and reseal it following drainage under responsible

supervision; and

(iv) Keep adequate records of such events, for example, any records required under permits issued in accordance with §§ 122.41(j)(2) and 122.41(m)(3) of this chapter.

- (4) Protect any completely buried metallic storage tank installed on or after January 10, 1974 from corrosion by coatings or cathodic protection compatible with local soil conditions. You must regularly leak test such completely buried metallic storage tanks.
- (5) Not use partially buried or bunkered metallic tanks for the storage of oil, unless you protect the buried section of the tank from corrosion. You must protect partially buried and bunkered tanks from corrosion by coatings or cathodic protection compatible with local soil conditions.
- (6) Test each aboveground container for integrity on a regular schedule, and whenever you make material repairs. The frequency of and type of testing must take into account container size and design (such as floating roof, skidmounted, elevated, or partially buried). You must combine visual inspection with another testing technique such as hydrostatic testing, radiographic testing, ultrasonic testing, acoustic emissions testing, or another system of nondestructive shell testing. You must keep comparison records and you must also inspect the container's supports and foundations. In addition, you must frequently inspect the outside of the container for signs of deterioration, discharges, or accumulation of oil inside diked areas. Records of inspections and tests kept under usual and customary business practices will suffice for purposes of this paragraph.

(7) Control leakage through defective internal heating coils by monitoring the steam return and exhaust lines for contamination from internal heating coils that discharge into an open

- watercourse, or pass the steam return or exhaust lines through a settling tank, skimmer, or other separation or retention system.
- (8) Engineer or update each container installation in accordance with good engineering practice to avoid discharges. You must provide at least one of the following devices:
- (i) High liquid level alarms with an audible or visual signal at a constantly attended operation or surveillance station. In smaller facilities an audible air vent may suffice.
- (ii) High liquid level pump cutoff devices set to stop flow at a predetermined container content level.
- (iii) Direct audible or code signal communication between the container gauger and the pumping station.
- (iv) A fast response system for determining the liquid level of each bulk storage container such as digital computers, telepulse, or direct vision gauges. If you use this alternative, a person must be present to monitor gauges and the overall filling of bulk storage containers.
- (v) You must regularly test liquid level sensing devices to ensure proper operation.
- (9) Observe effluent treatment facilities frequently enough to detect possible system upsets that could cause a discharge as described in § 112.1(b).
- (10) Promptly correct visible discharges which result in a loss of oil from the container, including but not limited to seams, gaskets, piping, pumps, valves, rivets, and bolts. You must promptly remove any accumulations of oil in diked areas.
- (11) Position or locate mobile or portable oil storage containers to prevent a discharge as described in § 112.1(b). You must furnish a secondary means of containment, such as a dike or catchment basin, sufficient to contain the capacity of the largest single compartment or container with sufficient freeboard to contain precipitation.
- (d) Facility transfer operations, pumping, and facility process. (1) Provide buried piping that is installed or replaced on or after August 16, 2002, with a protective wrapping and coating. You must also cathodically protect such buried piping installations or otherwise satisfy the corrosion protection standards for piping in part 280 of this chapter or a State program approved under part 281 of this chapter. If a section of buried line is exposed for any reason, you must carefully inspect it for deterioration. If you find corrosion damage, you must undertake additional examination and corrective action as

indicated by the magnitude of the damage.

(2) Cap or blank-flange the terminal connection at the transfer point and mark it as to origin when piping is not in service or is in standby service for an extended time.

(3) Properly design pipe supports to minimize abrasion and corrosion and allow for expansion and contraction.

- (4) Regularly inspect all aboveground valves, piping, and appurtenances. During the inspection you must assess the general condition of items, such as flange joints, expansion joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces. You must also conduct integrity and leak testing of buried piping at the time of installation, modification, construction, relocation, or replacement.
- (5) Warn all vehicles entering the facility to be sure that no vehicle will endanger aboveground piping or other oil transfer operations.

§ 112.9 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil production facilities.

If you are the owner or operator of an onshore production facility, you must:

- (a) Meet the general requirements for the Plan listed under § 112.7, and the specific discharge prevention and containment procedures listed under this section.
- (b) Oil production facility drainage. (1) At tank batteries and separation and treating areas where there is a reasonable possibility of a discharge as described in § 112.1(b), close and seal at all times drains of dikes or drains of equivalent measures required under § 112.7(c)(1), except when draining uncontaminated rainwater. Prior to drainage, you must inspect the diked area and take action as provided in § 112.8(c)(3)(ii), (iii), and (iv). You must remove accumulated oil on the rainwater and return it to storage or dispose of it in accordance with legally approved methods.
- (2) Inspect at regularly scheduled intervals field drainage systems (such as drainage ditches or road ditches), and oil traps, sumps, or skimmers, for an accumulation of oil that may have resulted from any small discharge. You must promptly remove any accumulations of oil.
- (c) Oil production facility bulk storage containers. (1) Not use a container for the storage of oil unless its material and construction are compatible with the material stored and the conditions of storage.
- (2) Provide all tank battery, separation, and treating facility

installations with a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must safely confine drainage from undiked areas in a catchment basin or holding pond.

(3) Periodically and upon a regular schedule visually inspect each container of oil for deterioration and maintenance needs, including the foundation and support of each container that is on or above the surface of the ground.

(4) Engineer or update new and old tank battery installations in accordance with good engineering practice to prevent discharges. You must provide at least one of the following:

(i) Container capacity adequate to assure that a container will not overfill if a pumper/gauger is delayed in making regularly scheduled rounds.

(ii) Overflow equalizing lines between containers so that a full container can overflow to an adjacent container.

(iii) Vacuum protection adequate to prevent container collapse during a pipeline run or other transfer of oil from the container.

(iv) High level sensors to generate and transmit an alarm signal to the computer where the facility is subject to a computer production control system.

- (d) Facility transfer operations, oil production facility. (1) Periodically and upon a regular schedule inspect all aboveground valves and piping associated with transfer operations for the general condition of flange joints, valve glands and bodies, drip pans, pipe supports, pumping well polish rod stuffing boxes, bleeder and gauge valves, and other such items.
- (2) Inspect saltwater (oil field brine) disposal facilities often, particularly following a sudden change in atmospheric temperature, to detect possible system upsets capable of causing a discharge.
- (3) Have a program of flowline maintenance to prevent discharges from each flowline.

§112.10 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and workover facilities.

If you are the owner or operator of an onshore oil drilling and workover facility, you must:

- (a) Meet the general requirements listed under § 112.7, and also meet the specific discharge prevention and containment procedures listed under this section.
- (b) Position or locate mobile drilling or workover equipment so as to prevent a discharge as described in § 112.1(b).
- (c) Provide catchment basins or diversion structures to intercept and

contain discharges of fuel, crude oil, or oily drilling fluids.

(d) Install a blowout prevention (BOP) assembly and well control system before drilling below any casing string or during workover operations. The BOP assembly and well control system must be capable of controlling any well-head pressure that may be encountered while that BOP assembly and well control system are on the well.

§112.11 Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities.

If you are the owner or operator of an offshore oil drilling, production, or workover facility, you must:

- (a) Meet the general requirements listed under § 112.7, and also meet the specific discharge prevention and containment procedures listed under this section.
- (b) Use oil drainage collection equipment to prevent and control small oil discharges around pumps, glands, valves, flanges, expansion joints, hoses, drain lines, separators, treaters, tanks, and associated equipment. You must control and direct facility drains toward a central collection sump to prevent the facility from having a discharge as described in § 112.1(b). Where drains and sumps are not practicable, you must remove oil contained in collection equipment as often as necessary to prevent overflow.
- (c) For facilities employing a sump system, provide adequately sized sump and drains and make available a spare pump to remove liquid from the sump and assure that oil does not escape. You must employ a regularly scheduled preventive maintenance inspection and testing program to assure reliable operation of the liquid removal system and pump start-up device. Redundant automatic sump pumps and control devices may be required on some installations.
- (d) At facilities with areas where separators and treaters are equipped with dump valves which predominantly fail in the closed position and where pollution risk is high, specially equip the facility to prevent the discharge of oil. You must prevent the discharge of oil by:
- (1) Extending the flare line to a diked area if the separator is near shore;
- (2) Equipping the separator with a high liquid level sensor that will automatically shut in wells producing to the separator; or
- (3) Installing parallel redundant dump valves.
- (e) Equip atmospheric storage or surge containers with high liquid level

- sensing devices that activate an alarm or control the flow, or otherwise prevent discharges.
- (f) Equip pressure containers with high and low pressure sensing devices that activate an alarm or control the flow.
- (g) Equip containers with suitable corrosion protection.
- (h) Prepare and maintain at the facility a written procedure within the Plan for inspecting and testing pollution prevention equipment and systems.
- (i) Conduct testing and inspection of the pollution prevention equipment and systems at the facility on a scheduled periodic basis, commensurate with the complexity, conditions, and circumstances of the facility and any other appropriate regulations. You must use simulated discharges for testing and inspecting human and equipment pollution control and countermeasure systems.
- (j) Describe in detailed records surface and subsurface well shut-in valves and devices in use at the facility for each well sufficiently to determine their method of activation or control, such as pressure differential, change in fluid or flow conditions, combination of pressure and flow, manual or remote control mechanisms.
- (k) Install a BOP assembly and well control system during workover operations and before drilling below any casing string. The BOP assembly and well control system must be capable of controlling any well-head pressure that may be encountered while the BOP assembly and well control system are on the well.
- (l) Equip all manifolds (headers) with check valves on individual flowlines.
- (m) Equip the flowline with a high pressure sensing device and shut-in valve at the wellhead if the shut-in well pressure is greater than the working pressure of the flowline and manifold valves up to and including the header valves. Alternatively you may provide a pressure relief system for flowlines.
- (n) Protect all piping appurtenant to the facility from corrosion, such as with protective coatings or cathodic protection.
- (o) Adequately protect sub-marine piping appurtenant to the facility against environmental stresses and other activities such as fishing operations.
- (p) Maintain sub-marine piping appurtenant to the facility in good operating condition at all times. You must periodically and according to a schedule inspect or test such piping for failures. You must document and keep a record of such inspections or tests at the facility.

4. Part 112 is amended by adding subpart C consisting of §§ 112.12 through 112.15 to read as follows:

Subpart C—Requirements for Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and for Vegetable Oils, Including Oils from Seeds, Nuts, Fruits and Kernels

Sec.

- 112.12 Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding production facilities).
- 112.13 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil production facilities.
- 112.14 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and workover facilities.
- 112.15 Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities.

Subpart C—Requirements for Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and for Vegetable Oils, including Oils from Seeds, Nuts, Fruits, and Kernels.

§ 112.12 Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding production facilities)

If you are the owner or operator of an onshore facility (excluding a production facility), you must:

- (a) Meet the general requirements for the Plan listed under § 112.7, and the specific discharge prevention and containment procedures listed in this section
- (b) Facility drainage. (1) Restrain drainage from diked storage areas by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. You may empty diked areas by pumps or ejectors; however, you must manually activate these pumps or ejectors and must inspect the condition of the accumulation before starting, to ensure no oil will be discharged.
- (2) Use valves of manual, open-and-closed design, for the drainage of diked areas. You may not use flapper-type drain valves to drain diked areas. If your facility drainage drains directly into a watercourse and not into an on-site wastewater treatment plant, you must inspect and may drain uncontaminated retained stormwater, subject to the requirements of paragraphs (c)(3)(ii), (iii), and (iv) of this section.
- (3) Design facility drainage systems from undiked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharges may occur

outside the loading area) to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility. You must not locate catchment basins in areas subject to periodic flooding.

(4) If facility drainage is not engineered as in paragraph (b)(3) of this section, equip the final discharge of all ditches inside the facility with a diversion system that would, in the event of an uncontrolled discharge, retain oil in the facility.

(5) Where drainage waters are treated in more than one treatment unit and such treatment is continuous, and pump transfer is needed, provide two "lift" pumps and permanently install at least one of the pumps. Whatever techniques you use, you must engineer facility drainage systems to prevent a discharge as described in § 112.1(b) in case there is an equipment failure or human error at the facility.

(c) Bulk storage containers. (1) Not use a container for the storage of oil unless its material and construction are compatible with the material stored and conditions of storage such as pressure

and temperature.

- (2) Construct all bulk storage container installations so that you provide a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must ensure that diked areas are sufficiently impervious to contain discharged oil. Dikes, containment curbs, and pits are commonly employed for this purpose. You may also use an alternative system consisting of a drainage trench enclosure that must be arranged so that any discharge will terminate and be safely confined in a facility catchment basin or holding pond.
- (3) Not allow drainage of uncontaminated rainwater from the diked area into a storm drain or discharge of an effluent into an open watercourse, lake, or pond, bypassing the facility treatment system unless you:
- (i) Normally keep the bypass valve sealed closed.
- (ii) Inspect the retained rainwater to ensure that its presence will not cause a discharge as described in § 112.1(b).

(iii) Open the bypass valve and reseal it following drainage under responsible supervision; and

(iv) Keep adequate records of such events, for example, any records required under permits issued in accordance with §§ 122.41(j)(2) and 122.41(m)(3) of this chapter.

(4) Protect any completely buried metallic storage tank installed on or after January 10, 1974 from corrosion by coatings or cathodic protection compatible with local soil conditions. You must regularly leak test such completely buried metallic storage tanks.

(5) Not use partially buried or bunkered metallic tanks for the storage of oil, unless you protect the buried section of the tank from corrosion. You must protect partially buried and bunkered tanks from corrosion by coatings or cathodic protection compatible with local soil conditions.

(6) Test each aboveground container for integrity on a regular schedule, and whenever you make material repairs. The frequency of and type of testing must take into account container size and design (such as floating roof, skidmounted, elevated, or partially buried). You must combine visual inspection with another testing technique such as hydrostatic testing, radiographic testing, ultrasonic testing, acoustic emissions testing, or another system of nondestructive shell testing. You must keep comparison records and you must also inspect the container's supports and foundations. In addition, you must frequently inspect the outside of the container for signs of deterioration, discharges, or accumulation of oil inside diked areas. Records of inspections and tests kept under usual and customary business practices will suffice for purposes of this paragraph.

(7) Control leakage through defective internal heating coils by monitoring the steam return and exhaust lines for contamination from internal heating coils that discharge into an open watercourse, or pass the steam return or exhaust lines through a settling tank, skimmer, or other separation or

retention system.

(8) Engineer or update each container installation in accordance with good engineering practice to avoid discharges. You must provide at least one of the following devices:

(i) High liquid level alarms with an audible or visual signal at a constantly attended operation or surveillance station. In smaller facilities an audible air vent may suffice.

(ii) High liquid level pump cutoff devices set to stop flow at a predetermined container content level.

(iii) Direct audible or code signal communication between the container gauger and the pumping station.

(iv) A fast response system for determining the liquid level of each bulk storage container such as digital computers, telepulse, or direct vision gauges. If you use this alternative, a person must be present to monitor gauges and the overall filling of bulk storage containers.

- (v) You must regularly test liquid level sensing devices to ensure proper
- (9) Observe effluent treatment facilities frequently enough to detect possible system upsets that could cause a discharge as described in § 112.1(b).
- (10) Promptly correct visible discharges which result in a loss of oil from the container, including but not limited to seams, gaskets, piping, pumps, valves, rivets, and bolts. You must promptly remove any accumulations of oil in diked areas.
- (11) Position or locate mobile or portable oil storage containers to prevent a discharge as described in § 112.1(b). You must furnish a secondary means of containment, such as a dike or catchment basin, sufficient to contain the capacity of the largest single compartment or container with sufficient freeboard to contain precipitation.
- (d) Facility transfer operations, pumping, and facility process. (1) Provide buried piping that is installed or replaced on or after August 16, 2002, with a protective wrapping and coating. You must also cathodically protect such buried piping installations or otherwise satisfy the corrosion protection standards for piping in part 280 of this chapter or a State program approved under part 281 of this chapter. If a section of buried line is exposed for any reason, you must carefully inspect it for deterioration. If you find corrosion damage, you must undertake additional examination and corrective action as indicated by the magnitude of the
- (2) Cap or blank-flange the terminal connection at the transfer point and mark it as to origin when piping is not in service or is in standby service for an extended time.
- (3) Properly design pipe supports to minimize abrasion and corrosion and allow for expansion and contraction.
- (4) Regularly inspect all aboveground valves, piping, and appurtenances. During the inspection you must assess the general condition of items, such as flange joints, expansion joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces. You must also conduct integrity and leak testing of buried piping at the time of installation, modification, construction, relocation, or replacement.
- (5) Warn all vehicles entering the facility to be sure that no vehicle will endanger aboveground piping or other oil transfer operations.

§112.13 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil production facilities.

If you are the owner or operator of an onshore production facility, you must:

- (a) Meet the general requirements for the Plan listed under § 112.7, and the specific discharge prevention and containment procedures listed under this section.
- (b) Oil production facility drainage. (1) At tank batteries and separation and treating areas where there is a reasonable possibility of a discharge as described in § 112.1(b), close and seal at all times drains of dikes or drains of equivalent measures required under § 112.7(c)(1), except when draining uncontaminated rainwater. Prior to drainage, you must inspect the diked area and take action as provided in § 112.12(c)(3)(ii), (iii), and (iv). You must remove accumulated oil on the rainwater and return it to storage or dispose of it in accordance with legally approved methods.

(2) Inspect at regularly scheduled intervals field drainage systems (such as drainage ditches or road ditches), and oil traps, sumps, or skimmers, for an accumulation of oil that may have resulted from any small discharge. You must promptly remove any

accumulations of oil.

(c) Oil production facility bulk storage containers. (1) Not use a container for the storage of oil unless its material and construction are compatible with the material stored and the conditions of storage.

(2) Provide all tank battery, separation, and treating facility installations with a secondary means of containment for the entire capacity of the largest single container and sufficient freeboard to contain precipitation. You must safely confine drainage from undiked areas in a catchment basin or holding pond.

(3) Periodically and upon a regular schedule visually inspect each container of oil for deterioration and maintenance needs, including the foundation and support of each container that is on or above the surface of the ground.

(4) Engineer or update new and old tank battery installations in accordance with good engineering practice to prevent discharges. You must provide at least one of the following:

(i) Container capacity adequate to assure that a container will not overfill if a pumper/gauger is delayed in making regularly scheduled rounds.

(ii) Overflow equalizing lines between containers so that a full container can overflow to an adjacent container.

(iii) Vacuum protection adequate to prevent container collapse during a

pipeline run or other transfer of oil from the container.

(iv) High level sensors to generate and transmit an alarm signal to the computer where the facility is subject to a computer production control system.

(d) Facility transfer operations, oil production facility. (1) Periodically and upon a regular schedule inspect all aboveground valves and piping associated with transfer operations for the general condition of flange joints, valve glands and bodies, drip pans, pipe supports, pumping well polish rod stuffing boxes, bleeder and gauge valves, and other such items.

(2) Inspect saltwater (oil field brine) disposal facilities often, particularly following a sudden change in atmospheric temperature, to detect possible system upsets capable of causing a discharge.

(3) Have a program of flowline maintenance to prevent discharges from

each flowline.

§112.14 Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and workover facilities.

If you are the owner or operator of an onshore oil drilling and workover facility, you must:

- (a) Meet the general requirements listed under § 112.7, and also meet the specific discharge prevention and containment procedures listed under this section.
- (b) Position or locate mobile drilling or workover equipment so as to prevent a discharge as described in § 112.1(b).

(c) Provide catchment basins or diversion structures to intercept and contain discharges of fuel, crude oil, or

oily drilling fluids.

(d) Install a blowout prevention (BOP) assembly and well control system before drilling below any casing string or during workover operations. The BOP assembly and well control system must be capable of controlling any well-head pressure that may be encountered while that BOP assembly and well control system are on the well.

§112.15 Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities.

If you are the owner or operator of an offshore oil drilling, production, or workover facility, you must:

- (a) Meet the general requirements listed under § 112.7, and also meet the specific discharge prevention and containment procedures listed under this section.
- (b) Use oil drainage collection equipment to prevent and control small oil discharges around pumps, glands, valves, flanges, expansion joints, hoses,

drain lines, separators, treaters, tanks, and associated equipment. You must control and direct facility drains toward a central collection sump to prevent the facility from having a discharge as described in § 112.1(b). Where drains and sumps are not practicable, you must remove oil contained in collection equipment as often as necessary to prevent overflow.

- (c) For facilities employing a sump system, provide adequately sized sump and drains and make available a spare pump to remove liquid from the sump and assure that oil does not escape. You must employ a regularly scheduled preventive maintenance inspection and testing program to assure reliable operation of the liquid removal system and pump start-up device. Redundant automatic sump pumps and control devices may be required on some installations.
- (d) At facilities with areas where separators and treaters are equipped with dump valves which predominantly fail in the closed position and where pollution risk is high, specially equip the facility to prevent the discharge of oil. You must prevent the discharge of oil by:
- (1) Extending the flare line to a diked area if the separator is near shore;
- (2) Equipping the separator with a high liquid level sensor that will automatically shut in wells producing to the separator; or
- (3) İnstalling parallel redundant dump valves.
- (e) Equip atmospheric storage or surge containers with high liquid level sensing devices that activate an alarm or control the flow, or otherwise prevent discharges.
- (f) Equip pressure containers with high and low pressure sensing devices that activate an alarm or control the flow.
- (g) Equip containers with suitable corrosion protection.
- (h) Prepare and maintain at the facility a written procedure within the Plan for inspecting and testing pollution prevention equipment and systems.
- (i) Conduct testing and inspection of the pollution prevention equipment and systems at the facility on a scheduled periodic basis, commensurate with the complexity, conditions, and circumstances of the facility and any other appropriate regulations. You must use simulated discharges for testing and inspecting human and equipment pollution control and countermeasure systems.
- (j) Describe in detailed records surface and subsurface well shut-in valves and devices in use at the facility for each well sufficiently to determine their

- method of activation or control, such as pressure differential, change in fluid or flow conditions, combination of pressure and flow, manual or remote control mechanisms.
- (k) Install a BOP assembly and well control system during workover operations and before drilling below any casing string. The BOP assembly and well control system must be capable of controlling any well-head pressure that may be encountered while that BOP assembly and well control system are on the well.
- (l) Equip all manifolds (headers) with check valves on individual flowlines.
- (m) Equip the flowline with a high pressure sensing device and shut-in valve at the wellhead if the shut-in well pressure is greater than the working pressure of the flowline and manifold valves up to and including the header valves. Alternatively you may provide a pressure relief system for flowlines.
- (n) Protect all piping appurtenant to the facility from corrosion, such as with protective coatings or cathodic protection.
- (o) Adequately protect sub-marine piping appurtenant to the facility against environmental stresses and other activities such as fishing operations.
- (p) Maintain sub-marine piping appurtenant to the facility in good operating condition at all times. You must periodically and according to a schedule inspect or test such piping for failures. You must document and keep a record of such inspections or tests at the facility.
- 5. Part 112 is amended by designating §§ 112.20 and 112.21 as subpart D, and adding a subpart heading as follows:

Subpart D—Response Requirements

Sec.

112.20 Facility response plans.112.21 Facility response training and drills/ exercises.

Subpart D—Response Requirements

6. Section 112.20 is amended by revising the first sentence of paragraph (h) to read as follows:

§112.20 Facility response plans.

(h) A response plan shall follow the format of the model facility-specific response plan included in Appendix F to this part, unless you have prepared an equivalent response plan acceptable to the Regional Administrator to meet State or other Federal requirements. * *

* * * * *

Appendix C—[Amended]

- 7. Appendix C of part 112 is amended by:
- a. Revising the first sentence of section 2.1; and
- b. Revising the title and first sentence of section 2.4.

Appendix C to Part 112—Substantial Harm Criteria

* * * * *

2.1 Non-Transportation-Related Facilities With a Total Oil Storage Capacity Greater Than or Equal to 42,000 Gallons Where Operations Include Over-Water Transfers of Oil

A non-transportation-related facility with a total oil storage capacity greater than or equal to 42,000 gallons that transfers oil over water to or from vessels must submit a response plan to EPA. * * *

* * * * *

2.4 Proximity to Public Drinking Water Intakes at Facilities with a Total Oil Storage Capacity Greater than or Equal to 1 Million Gallons

A facility with a total oil storage capacity greater than or equal to 1 million gallons must submit its response plan if it is located at a distance such that a discharge from the facility would shut down a public drinking water intake, which is analogous to a public water system as described at 40 CFR 143.2(c).

Appendix D—[Amended]

8. Appendix D of part 112 is amended by revising footnote 2 to section A.2 of Part A to read as follows:

Appendix D to Part 112—Determination of a Worst Case Discharge Planning Volume

A.2 Secondary Containment—Multiple-Tank Facilities

* * * * *

Secondary containment is described in 40 CFR part 112, subparts A through C. Acceptable methods and structures for containment are also given in 40 CFR 112.7(c)(1).

* * * * *

Appendix F—[Amended]

- 9. Appendix F of part 112 is amended by:
 - a. Revising section 1.2.7;
- b. Revising the second and last sentences of section 1.4.3;

- c. Revising paragraph (7) and the undesignated paragraph and NOTE following paragraph (7) in section 1.7.3;
 - d. Revising section 1.8.1;
- e. Revising the first two sentences of section 1.8.1.1. introductory text;
- f. Revising the next to the last sentence of section 1.8.1.3;
- g. Revising the next to last sentence of section 1.10.;
- h. Revising paragraph (6) of section 2.1;
- i. Remove the acronym "SIC" in section 3.0, and add in alphabetical order the acronym "NAICS'; and.
- j. Remove the reference to "Standard Industrial Classification (SIC) Code" in Attachment F–1, General Information, and add in in alphabetical order a reference to "North American Industrial Classification System (NAICS) Code." The revisions read as follows:

Appendix F to Part 112—Facility-Specific Response Plan

* * * * *

1.2.7 Current Operation

Briefly describe the facility's operations and include the North American Industrial Classification System (NAICS) code.

* * * * *

1.4.3 Analysis of the Potential for an Oil Discharge

* * * This analysis shall incorporate factors such as oil discharge history, horizontal range of a potential discharge, and vulnerability to natural disaster, and shall, as appropriate, incorporate other factors such as tank age. * * * The owner or operator may need to research the age of the tanks the oil discharge history at the facility.

1.7.3 Containment and Drainage Planning

(7) Other cleanup materials.

In addition, a facility owner or operator must meet the inspection and monitoring requirements for drainage contained in 40 CFR part 112, subparts A through C. A copy of the containment and drainage plans that are required in 40 CFR part 112, subparts A through C may be inserted in this section, including any diagrams in those plans.

Note: The general permit for stormwater drainage may contain additional requirements.

1.8.1 Facility Self-Inspection

Under 40 CFR 112.7(e), you must include the written procedures and records of inspections for each facility in the SPCC

Plan. You must include the inspection records for each container, secondary containment, and item of response equipment at the facility. You must crossreference the records of inspections of each container and secondary containment required by 40 CFR 112.7(e) in the facility response plan. The inspection record of response equipment is a new requirement in this plan. Facility self-inspection requires two-steps: (1) a checklist of things to inspect; and (2) a method of recording the actual inspection and its findings. You must note the date of each inspection. You must keep facility response plan records for five years. You must keep SPCC records for three years.

1.8.1.1. Tank Inspection

The tank inspection checklist presented below has been included as guidance during inspections and monitoring. Similar requirements exist in 40 CFR part 112, subparts A through C. * * *

1.8.1.3 Secondary Containment Inspection

* * * * * *

* * * Similar requirements exist in 40

CFR part 112, subparts A through C. * * *

* * * * * *

1.10 Security

According to 40 CFR 112.7(g) facilities are required to maintain a certain level of security, as appropriate. * * *

* * * * * *

(6) North American Indu

(6) North American Industrial Classification System (NAICS) Code: Enter the facility's NAICS code as determined by the Office of Management and Budget (this information may be obtained from public library resources.)

3.0 Acronyms * * *

*

NAICS: North American Industrial Classification System

Attackment to America Post

Attachments to Appendix F

Attachment F–1—Response Plan Cover Sheet * * * * *

General Information

* * * * *

North American Industrial Classification System (NAICS) Code:

[FR Doc. 02–16852 Filed 7–16–02; 8:45 am] $\tt BILLING\ CODE\ 6560–50-P$