

Considering an ENERGY STAR CAC/ASHP Specification for 2006

Rachel Schmeltz
(202)343-9124 / schmeltz.rachel@epa.gov
October 6, 2004

Agenda for the Rest of Today

- Now: Overview
 - Need for revising CAC/ASHP spec
 - Background on specification revision process
 - Overview of the "strawman"
- After lunch: Discussion
 - Equipment specification options
 - Installation, verification, and labeling

The Need for Revision

 Federal minimum efficiency standard increases to 13 SEER in January 2006

Federal Standard*	ENERGY STAR Spec*		
13 SEER	13 SEER		
7.7 HSPF	8.0 HSPF		
	11 EER		

^{*} for split systems

How should ENERGY STAR continue to play a role?

Guiding Principles for Labeling

- Significant energy savings can be realized nationally
- Product performance can be maintained or enhanced with increased energy efficiency
- **Purchasers** will **recover** their **investment** in increased energy efficiency within a reasonable time period
- Efficiency can be achieved with several technology options, at least one of which is non-proprietary
- Product energy consumption and performance can be measured and verified with testing
- Labeling would effectively differentiate products and be visible to purchasers

Challenge

- To update the spec to capture cost-effective energy savings
 - Higher equipment efficiency levels, plus other possible equipment requirements provide modest incremental savings
 - Installation improvements could yield additional savings, but are harder to achieve and verify

----- New paradigm for ENERGY STAR

Why Address Installation?

- With minimum SEER increasing to 13, marginal benefit of higher SEER equipment is less
- Many systems installed with incorrect refrigerant charge and/or airflow
- Studies illustrate performance degradation over time
 - Refrigerant leakage
 - Lack of maintenance
- Substantial savings possible with proper installation
 - Verification of installation is key

Where are the Potential Savings?

	Savings Range/Average		
14 SEER	7%		
Sizing*	2-10%		
Refrigerant charge*	12.5%		
Airflow*	8.1%		
Duct Leakage*	16.8%		

^{*}From studies listed in Appendix B

Note: Potential installation savings are not additive

Equipment Criteria

Possible Equipment Criteria

Criteria	Possible Measures	
Annual Efficiency	SEER, HSPF	
Peak Efficiency	EER	
Component Requirements	Expansion Devices	
Maintainability	Evaporator Access	
Diagnostics	On-board diagnostics for air flow, etc.	

Equipment Specification Options

	Current		From Strawman	
	Split	Packaged	Split	Packaged
SEER	13	12	14	14
EER	11	10.5	12	11
HSPF	8	7.6	8.5	8

Implications

- Addresses peak load issues
 - Important for utilities
 - Continued reliance on ARI/CEE database
- Aligns with current CEE Tier 2 specs
- Limited product availability
- Cost effectiveness / payback may not be very compelling

Cost Effectiveness of 14 SEER

- Preliminary analysis shows cost effectiveness is limited
 - Better for southern climates
- Any additional data/estimates on costs and savings?
 - For example, over time incremental costs may decrease with new standard

Possible Equipment Requirements

- Evaporator access
 - Maintainability
 - Measurement
- Automatic refrigerant flow-metering devices

Evaporator Access

- For maintainability, possibly require:
 - Airtight means of access for inspection and cleaning, or
 - On-board diagnostic indicator of improper airflow or temperature change across coil
- For measurement, possibly require:
 - Airtight access port to allow for measurement of temperatures (wet and dry) and pressures, or
 - Indicator mark on housing to direct technician where to drill so measurements can be taken

Evaporator Access

- Addresses two key issues regarding installation:
 - Adequate airflow over evaporator coils
 - Maintainability of those coils over time
- Possible to address some installation issues using equipment requirements

Automatic Refrigerant Flow Metering Devices

- Possibly require TXV, EXV or "equivalent"
 - Retain efficiency benefits for some substandard HVAC installations
 - Cost differential ~\$10 \$15
 - Current penetration in ≥SEER 13 is already high
- Require factory installation, insulation
 - Prevent incorrect field installation
 - Field benefit not guaranteed
- Possible to address some installation issues using equipment requirements

Other Criteria to Consider

- Improved cfm/watt ratios for air handling
 - Through variable speed fans, more efficient motors, or more efficient fan wheels
- Built-in pressure and temperature sensors to allow advanced diagnostics
- On-board diagnostics indicating need to:
 - Change filters
 - Clean evaporator coil
 - Evaluate refrigerant charge
- All system components from single vendor

Installation Criteria

Possible Installation Requirements

- Design/Sizing
- Refrigerant charge
- Airflow
- Duct systems
- Collection/analysis of performance data
- Commissioning report for the owner

Design and Sizing

- Equipment frequently oversized
 - Average of 47% in newer homes
 - Causing short cycling inability to dehumidify, degrading efficiency, and shortening equipment life
 - Annual savings potential ranges from 2-10%
- Technician must be competent with methods
 - Prescribed by manufacturer
 - ACCA Design Manuals
- Possibly require that technician is NATE certified
 - Accredited contractors (e.g. by BPI)

Refrigerant Charge

- Essential to maintain capacity
 - Improper charge can lead to premature compressor failure
 - Up to 41% systems undercharged, 33% overcharged
 - Average savings of 12.5% with proper charge
- Adjusted by technician in accordance with manufacturer's instructions
 - Systems with more than $\pm 3^{\circ}$ deviation in subcooling from manufacturer spec would not qualify

Air Flow

- Essential for comfort
 - 70% of systems tested are operating at less than
 350 cfm/ton (ideal is 400 cfm/ton)
 - Annual savings of 8% possible
- Technician verifies system is flowing at 400cfm/ton (or cfm specified by manufacturer) during full-speed testing
 - Systems incapable of 350 cfm/ton or greater must be corrected by improving ducts or would not qualify

Duct Systems

- Duct leakage causes reductions in capacity, efficiency, and comfort.
 - Proper sealing can yield energy savings on average of 17%
- For new construction or new ducts
 - Design using ACCA Manual D
 - Seal all joints with appropriate mastic or sealant

Data Collection and Reporting

- Technician would collect and analyze data to ensure installation meets manufacturer's specs at steady state
- Technician would provide to the owner
 - Commissioning data report
 - ENERGY STAR maintenance checklist
 - Manufacturer's product manuals
 - Manufacturer's warranty information

Other Considerations for Installation

- Installation by NATE certified technicians?
- Contractors analyze airflow capabilities of retrofit applications prior to equipment selection?
- Specifically address duct leakage?
 - ENERGY STAR recommends duct leakage<10% of rated system flow (based on 400 cfm/ton)

Verification Options

Possible Verification Options

- Energy Efficiency Program Sponsor (EEPS)
- Manufacturer
- Contractor Accreditation
- Third-party Verification Service
- Home Energy Rating System
- EPA
- Self-certification

Verification by EEPS

- Such as a local utility offering a rebate
 - Verify the installation or a sample of installations
- Would need a formal agreement with EPA to verify
 - EPA would need to develop a suitable agreement
 - EPA would need to provide technical guidance on running a verification program

Verification by Manufacturer

- Correctly installed systems perform better and may last longer
 - Fewer warranty claims
 - Opportunity to offer additional warranty periods for verified systems
- Could use electronic data collection
- EPA could initially screen data submitted and forward to manufacturer for verification

Verification via Contractor Accreditation

- Contractors accredited by independent organization
 - Building Performance Institute
 - Other TBD
- Contractor performance overseen by accrediting organization
 - Accreditation system defines standards for contractors
 - Additional third-party verification not required

Verification by Third-party

- Contractor (or manufacturer) could use a provider of verification services such as:
 - CheckMe
 - Service Assistant
 - Other deemed appropriate
- Helps prevent gaming of an automated system via data review

Verification by HERS

- Local HERS rater (trained on HVAC verification) could inspect installation
 - Or sample of installations by contractor
- Question of infrastructure
 - Are there HERS raters who could do this?

Verification by EPA

- Contractor would electronically submit a copy of commissioning report to EPA
 - Random sample of reports selected and analyzed
 - If >10% do not meet specs, contractor could no longer label installed systems

Self-certification

- Allow NATE certified technicians (or equivalent) to perform their own post installation inspection
 - Using ENERGY STAR checklist
 - Self-certify as qualified
- Least involvement by EPA or third-party
 - But also least assurance of increased efficiency

Labeling Options

- Label shipped with (not affixed to) unit
 - Affixed by contractor only after completing and selfcertifying installation
- Obtained by qualified contractors
 - Those who agree to follow proper procedures and have met accreditation requirements
- Affixed by Third Party verifier
 - EEPS, HERS, mailed by EPA after data check

Timeframe

- Comments on "Strawman" due to EPA by October 27th.
- Equipment specification will need to change by January 2006
 - Finalize spec in April 2005
 - Provide 9 months lead time for manufacturers
- Installation component could take effect simultaneously or be phased in over a period of time