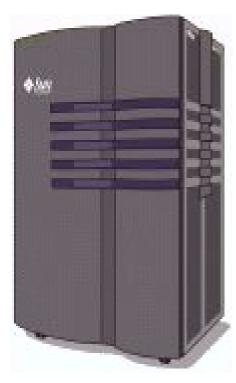


SWaP Space Watts and Power

David Greenhill

Distinguished Engineer

Chief Engineer Horizontal Systems
david.greenhill@sun.com


Outline

- Motivation for Introducing SWaP
- Overview and examples of SWaP benchmark
- SWaP in a power constrained environment
- Power Benchmarking

Motivation

E10K T2000

1997

32 x US2

77.4 ft³

2000 lbs

13,456 W

52,000 BTUs/hr

2005

1 x US T1

0.85 ft³

37 lbs

~300 W

1,364 BTUs/hr

The New Metric for Server Evaluation:

Space, Watts, and Performance

SWaP Rating =

Space*Watts

What Analysts Are Saying

"SWaP is an objective three-dimensional metric that provides a more comprehensive and realistic way to assess today's servers."

"Benchmarking the energy efficiency of IT systems can help customers make better purchasing decisions when considering the trade-off between the need for greater performance and the rising cost of energy and real estate."

How Does SWaP Work?

19,000 Lotus iNotes Users = SWaP: 29.2 2RU * 325 Watts

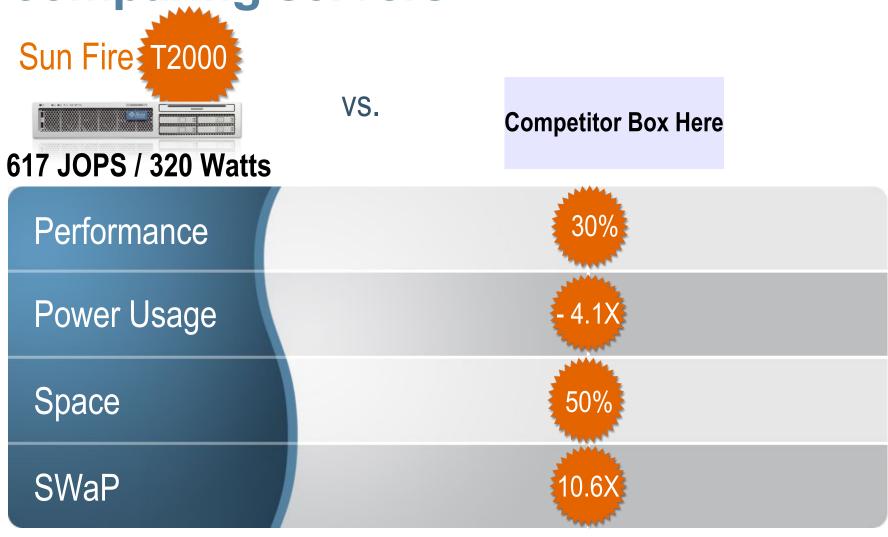
Performance/(Space*Power) = SWaP Rating

http://www.notesbench.org/r7report.nsf/ed670662098f24c68525687f006bf80e/e27efb1686cf746c852570ce007c0202?OpenDocument

SWaP is benchmark dependant: SpecJAppServer2004

616 Jops

= SWaP: 0.96


2RU * 320 Watts

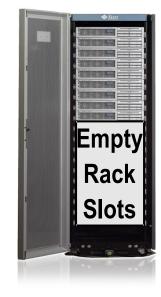
Performance/(Space*Power) = SWaP Rating

http://www.notesbench.org/r7report.nsf/ed670662098f24c68525687f006bf80e/e27efb1686cf746c852570ce007c0202?OpenDocument

Best used as a relative measure for comparing servers

Legal Substantiation – Benchmarks

- Results as posted on www.spec.org: SPECjAppServer2004 BEA WebLogic Server 9.0 on Sun Fire T2000 615.64 Sun Fire T2000 (8 cores, 1 chip, 32GB)
- NotesBench* R7Notes* Sun Fire T2000 (1x1200 MHz UltraSPARC T1, 32GB), 4 partitions, Solaris [TM] 10, Lotus[R] Domino 7.0, 19,000 users, *\$4.24 per user, 16,061 NotesMark tpm, 400 ms avg NotesBench R6iNotes IBM x346 (2 x 3.4 GHz Xeon processors, 8GB), 1 partition, SuSE Linux 8, Lotus[R] DominoR6.5.3, 6,050 users, \$9.07 per user, 5,109 NotesMark tpm, 569 ms avg rt. *NotesBench R7 Notes HP DL580 (4 x 3.0 GHz Dual Core Xeon processors, 8GB), 4 partitions, Windows Server 2003, Lotus[R] Domino 7.0, 18,500 users, \$4.29 per user, 15,953 NotesMark tpm, 434 ms avg rt.
- Sun Fire T2000 server power consumptions taken from measurements made during the benchmark run

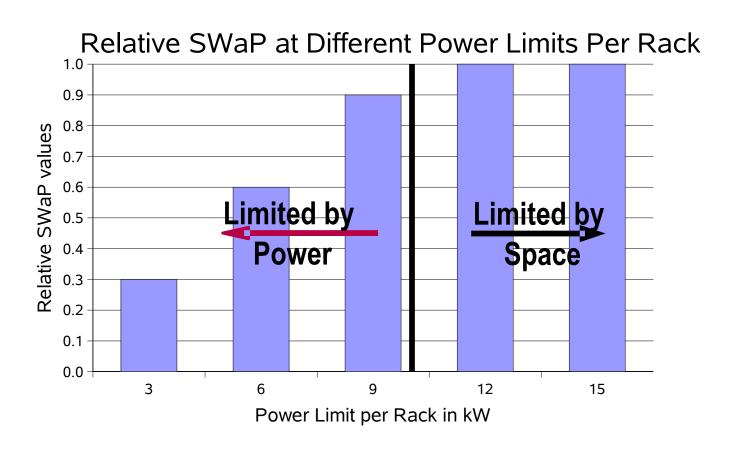


Is this just marketing?

- Sun Engineers are finding this is useful too
- We're using SWaP to evaluate future systems
- One caveat is that in some cases data centers are limited by Watts/sq. ft.

SWaP in a power limited environment

- SWaP is still applicable
- Need to calculate SWaP with a set power limit per sq. ft. of floor space
 - Convenient to translate to a power/rack
- Space becomes the effective RU taken by the servers including white space
- If both servers in a comparison are limited by power and not by the size then SWaP just becomes a measure of


Performance

Watts

Example: SWaP for a system taking 10kW in a fully populated rack

Methodology for Power-Performance

- Variation of Performance Benchmark Load
 - > Typical benchmark has ramp-up, steady-state, ramp-down phases
 - > Some benchmarks (i.e. SPECcpu2000, SPECweb2005) consist of a variety of sub tests with different subsystem loading.
 - Even monolithic benchmarks vary subsystem loading during steadystate
 - Variation in subsystem loading -> variation in power consumption
- Measure average power consumption during benchmark steady-state
 - Do not include power measurements during ramp up/down
 - This is a good enough definition to get started however need to make the start and stop points explicit points in the benchmark to make the rules unambiguous

Power Efficiency Benchmarking

- Avoid unnecessary complexity
 - Senerally the power consumption doesn't vary too much by the exact workload
- We propose picking one widely used benchmark for each of the major type of computation
- Four key application areas
 - > Web Tier Servers e.g. SPECweb2005
 - > Application Tier Servers: e.g. SPECjbb2005
 - > Database Tier Servers
 - > High performance computing (HPC)
- Power efficiency defined as the average performance/watt over the steady state execution of the benchmark

The Standard Benchmark Rules

- Only published results on the benchmark organizations web site will be allowed
- Power should be measured on the exact benchmark configuration.
- Power is only for the system under test and not associated hardware required for benchmarking
- Power is the average server power consumption during the active part of the benchmark
- Benchmarks that most closely resembles the customer workload should be used

Conclusion

- SWaP is a useful metric for comparing power and space efficiency of servers
- Works in power constrained and unconstrained situations
- Need consistent standards for Watts & Performance
- Efforts are just starting in Spec.org & other industry forums to set rules for power benchmarking

THE END

David Greenhill

david.greenhill@sun.com