

Randolph Kirk USGS Astrogeology Team MER Landing Site Workshop 3
 28 March 2002

Introduction

Objective is to quantify slopes of MER sites at highest resolution (5 m baseline)
MER Safety criterion: $\mathrm{P}\left(\right.$ slope $=15^{\circ}$) $=1 \%$

- Initial results reported at MER WS 2, 10/2001
- 4 sites, 1 DEM each (Eos, Isidis, Gusev, Melas)
- All were rougher than MER criterion
- Fairly representative apart from Melas (only dunes sampled)
- Update for MER LS WS 3:
- 12 datasets covering all 6 sites
- Good consistency with previous results
- Melas layers even rougher than dunes
- Athabasca, Hematite smooth, meet criterion

Overview of Methodology

- Rely on MOC-NA images
- 2×2 summation, $\sim 3 \mathrm{~m}$ resolution (some $4 \times 4, \sim 6 \mathrm{~m}$)
- Stereoanalysis
- Horizontal resolution $=3$ pixels (10 m)
- Vertical precision ~2m w/high confidence
- 2D Photoclinometry (shape-from-shading)
- Horizontal resolution=1 pixel
- Model-dependent; calibrate amplitude to stereo to improve confidence
- Subject to artifacts due to albedo variations
- Samples smaller, usually slightly different areas

Slope analysis based on DEMs produced

Software

- We use commercial photogrammetric workstation (LH Systems SOCET SET) combined with ISIS
Includes "generic pushbroom scanner" sensor model that can describe MOC
- Adjustment capability limited Wrote software to ingest/setup images Also use Kirk's 2D photoclinometry and slope analysis software

Identification of Images

- Automated search of MOC cumindex
- Searched releases through E12
- Look for overlaps
- Require compatible illumination
- Validate image quality \& overlap by inspection
- Disappointing after our original search
- Manual search
- Footprint maps on Marsoweb site
- Compared E12, E13 image pages
- We welcome suggestions from colleagues

23 candidate pairs/triplets found

- 7 eliminated (hazy, poor o/l, surface changes,...)

10 mapped
Also used 2 images for photoclinometry only

Stereo Coverage—10/01

Isidis Planitia

E02-01301/E02-02016

E022-023553/E02.01453

E02-006651E04201275

Stereo Coverage-Current

Stereo Coverage-Current

Hematite: PC only Athabasca: 3 + 1 PC only

Many more images with regions suitable for PC...

At least 1 more pair (not shown) found for Athabasca

Characterization of the Sites

AKA "Why Randy is not a geologist..."

Stereo Image Control

- Do least-squares adjustment in SOCET
- Position/velocity offsets in 3 axes
- Rotation offset/vel/accn in 3 angles
- Does NOT handle high-frequency "wiggles"
- Constrain tiepoints to elevations interpolated from MOLA (USGS 500m grid for each site)
- Did not attempt absolute horizontal control
- Would require ties to MOLA via intermediate resolution images
- Not necessary for roughnness analysis
- Horizontal positions OK to few $\times 100$ m

Stereo DEM Collection

- Collect by automatching,edit w/stereo display High-frequency s/c pointing oscillations cause serious problems for DEM collection \& use
- Periods $0.1-1 \mathrm{~s}$, amplitudes =50 uRad
- Also seen in SPICE CK but aliased to $=4 \mathrm{~s}$
- Cross-track oscillations mimic stereo parallax, cause DEM to undulate (10s of m amplitude)
- Digitally filter DEMs to suppress undulations
- Along-track oscillations cause matching image lines to wander in and out of alignment.
- Stereo matcher "loses lock" and fails
- Collect in sections, adjusting for offset, then edit together
- Workarounds more difficult in Relay-16 mode?

Atha 2: M07-05928/E10-02604

Atha 3: M07-00614/E05-00197

Melas 1: E02-00270/E05-01626

Melas 2: M08-04367/E09-02618

Melas 3: M04-00361/E12-00720

Melas 3 Visualized

Gusev 1: E02-00665/E02-01453

Gusev 2: E02-00341/E05-00471

Isidis 1: E02-02016/E02-01301

Eos 1: E02-02855/E04-01275

Eos 2: E04-02155/E11-02980

Photoclinometry "Control"

- Haze reduces contrast; must subtract correct haze to get correct DEM, slopes
- If possible use stereo DEM to get haze
- Shade DEM with surface photom function
- Regress image on shaded; intercept=haze
- Similar aproach w/MOLA works at poles

Determine haze from shadows (if any) Scale contrast of known slopes (dunes) Extrapolate atmospheric optical depth

Athabasca PC Areas

Above: Atha 1a-c, haze from shadow

Left: Atha 3c-d, haze from stereo fit

Haze Estimation for Hematite

1) Give dunes in E04-01873 same haze-free contrast as Melas dunes
->Haze/Total = 0.6

2) Compare site albedos \& optical depths using radiative xfer model.
-> "reasonable" tau=0.4, A~0.14

Effect of Haze Estimates on Hematite RMS Slopes

Hematite 2a "Slope"Maps: Effect of Albedo Variations

"Slope" in down-sun direction

"Slope" in cross-sun direction

Hematite: Areas 2b-c chosen for minimal albedo variation

Statistical Analysis

- Direct calculation of slopes

- Adirectional (gradient) or bidirectional (e.g., E-W)
- Gives shape of entire slope distribution
- Distributions at all sites are similar and long-tailed: extreme slopes are more common than RMS suggests
- Limited to single horizontal baseline at a time
- Fourier transform techniques
- Limited to bidirectional slope
- Gives RMS slope only, not distribution
- Quickly gives variation with baseline
- How do results compare w/other datasets?
- Are slope-producing features adequately resolved?

Slope Map Example: Gusev 2a Stereo

Slope Map Example: Gusev 2c Photoclinometry

Preferred Slope Estimates

- Prefer stereo when
- Samples larger, more represantative area
- PC is compromised by albedo variations

Prefer PC when

- Albedo variations not dominant
- Stereo fails to resolve relief elements
- Stereo matching/editing errors severe

Slope vs. Baseline 1 Gusev: Highly consistent

Stereo partly resolves main roughness elements

Photoclinometry resolves these features better

Long-base slope estimates are compatible, so photoclinometry results preferred
Smooth crater floor is atypical, remainder are similar

Slope vs. Baseline 2 Melas: Stereo lacks resolution

Stereo fails to resolve dunes

Photoclinometry resolves dunes, gives best slope estimates

Stereo appears to resolve layer topographyfortunate, since PC is impossible because of albedo

Slope vs. Baseline 3 Isidis: PC affected by albedo

Stereo, photoclinometry both resolve roughness elements

Photoclinometry slopes slightly higher (albedorelated artifacts, sampling effect)

Stereo results preferred

Slope vs. Baseline 4 Hematite: PC affected by albedo

No stereo
Photoclinometry (areas b,c) resolves features

Albedo variations in area a are reflected in baseline dependence as well as apparent greater slopes

Slope vs. Baseline 5 Eos: Sampling effect on PC

Stereo resolves main roughness elements

Photoclinometry confirms no unresolved features

Photoclinometry slopes vary, depending on area sampled (amount of hills)

Stereo results preferred

Slope vs. Baseline 6 Athabasca: Complicated

Stereo resolves main roughness elements

Photoclinometry confirms no unresolved features

Slopes vary with location

Note high PC slopes at long baselines (rolling topography or albedo varying?)

Stereo results preferred

Results

Digestible (?) Results

Another look at Melas

