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Peoria Loess deposited in western lowa during the last glacial
maximum (LGM) shows distinct geochemical and particle-size
variations as a function of both depth and distance east of the
Missouri River. Geochemical and particle-size data indicate that
Peoria Loess in western lowa probably had two sources: the Mis-
souri River valley, and a source that lay to the west of the Missouri
River. Both sources indicate that LGM paleowinds in western
lowa had a strong westerly component, similar to interpretations
of previous workers. A compilation of loess studies in lowa and
elsewhere indicates that westerly winds were dominant during
loess transport over much of the midcontinent south of the Lau-
rentide ice sheet, which is not in agreement with paleowinds
simulated by atmospheric general circulation models (AGCMs).
AGCMs consistently generate a glacial anticyclone with easterly
or northeasterly winds over the Laurentide ice sheet and the area
to the south of it. Loess deposition in the midcontinent during the
LGM may be a function of infrequent northwesterly winds that
were unrelated to the presence of the glacial anticy-
clone. © 2000 University of Washington.

Key Words: loess; lowa; North American midcontinent; last
glacial maximum; paleowinds; climate models.

INTRODUCTION

(AGCMs) provide simulations of past, present, and futur
climates on global or regional scales. Because these models
simplified reconstructions of the atmosphere, they require cor
parison with empirically based reconstructions. The geolog
record of past climates is one of the best means by which su
comparisons can be made. One of the most commonly model
periods of the past is the last glacial maximum (LGM), whict
peaked about 21,000 cal yr B.P. The most extensive loe
deposits, on a global scale, are also those that date from f
LGM. Comparisons of last-glacial atmospheric circulation de
rived from AGCM simulations and eolian records have bee
reported for Europe (Isariet al., 1997; Zeeberg, 1998), but
have yet to be made for North America.

In this paper, we reexamine the loess deposits of weste
lowa for the purpose of reconstructing LGM paleowinds an
comparing them to AGCM simulations. We studied one of th
thickest LGM loess deposits in North America, the Lovelanc
paratype locality in western lowa (Daniels and Handy, 195¢
Bettis, 1990; Formart al., 1992), in order to see how loess
properties may have changed over the course of the last glac
period. We also reexamined a transect of loess localities east
the Missouri River, along railroad cuts that had previoush
been studied by Ruhe (1954, 1969, 1983).

Loess is a ubiquitous surficial geologic deposit over much of LOESS STRATIGRAPHY AND GEOCHRONOLOGY

IN WESTERN IOWA

the North American midcontinent and forms the parent mate-
rial for some of the most agriculturally productive soils in the
world. Recently, there has been a growing appreciation of theLoess is distributed widely over much of lowa (Figs. 1 anc
paleoclimatic significance of thick loess sequences with thélj. Three loess units have been identified in western low
intercalated paleosols. Some of these records are considdrasked on detailed stratigraphic studies by Ruhe (1954, 19¢
the best continental analog of the deep-sea oxygen isotd@®83), Daniels and Handy (1959), Bettis (1990), and Foretan
record as a paleoclimatic record of glacial-interglacial cycled. (1992), and all three are present at the Loveland paraty
(e.g., Hovaret al., 1989). locality (Fig. 3). Tills that predate the penultimate glaciatior
An underappreciated aspect of the value of loess to palemderlie the lowest loess unit, which is called Loveland Loes
climatic studies is that eolian silt is a direct record of atmand is thought to date from the penultimate (“lllinoian”) gla-
spheric circulation. Atmospheric general circulation modetsation. Thermoluminescence (TL) age estimates of Lovelar
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sented by the Sangamon Geosol, which is developed in |
land Loess. A thin loess unit called the Pisgah Formg
(Bettis, 1990) overlies the Sangamon Geosol anedsn thick

i at the Loveland paratype locality. The Pisgah Formation
[ , YomL : weak pedogenic alteration to the Farmdale Geosol, mair
T \ %f*-" il \ the form of organic matter accumulation, in the upper pa
p™ l'_\x_____:;!;ﬂii"% the unit. The Farmdale Geosol at Loveland resemble:
co II i il | Farmdale Geosol developed in Roxana Silt (loess) in the
a7l ‘ i il Y sissippi River vglley (McKay, 1979; Follmer, 1983). Radiot
— By bon ages ranging from-34,000 (shell) to~31,000 yr B.P
| AR /= ™ (disseminated organic matter) and TL ages~e80,000 an
dpORERE w T [BEUNATON | ~23,000 cal yr B.P. (Formaet al.,1992) support a correlati
b il et of the Pisgah Formation with the Roxana Silt in Illinois (Ct
— " LA_ _ ow. Des Wones and Follmer, 1992) and the Gilman Canyon Formatiol
'm' ~ il P Nebraska and Kansas (Martin, 1993; May and Holen, 1

-4 Maat and Johnson, 1996).

FIG. 1. Map showing distribution of late Pleistocene loess in the North Peoria Loess occurs above the Pisgah Formation an
American midcontinent, the study area in western lowa, inferred paleowinlight-brown, massive silt loam. At Loveland, Peoria Loess |
from loess data, and the approximate limit of the Laurentide ice sheet duriggi,ch as 41 m thick: radiocarbon ages of basal Peoria Loe

the last glacial period. Arrows with solid heads indicate dominant wind
directions interpreted from detailed loess thickness studies, particle-size dgtﬁ old as 27,000 _24’0603 yr B.P. and TL ages are 22,00

and isotopic provenance studies. Arrows with open heads indicate wind dird@,000 cal yr B.P. (Formaet al., 1992). In Harrison Count;
tions of minor duration interpreted largely from thickness trends that occmiorth of Loveland, Ruhet al. (1971) reported a radiocarb

over short ¢-25 km) distances. Loess distribution slightly modified fromage of ~22,000 “c yr B.P. for Peoria Loess-3.7 m abov:

Thorp and Smith (1952). Inferred dominant paleowinds taken from data | . . . |
Smith (1942), Swineford and Frye (1951), Ruhe (1954), Fehrenbatar What we interpret to be the Pisgah Formation. Near the

(1965, 1986), Snowden and Priddy (1968), Frazeal. (1970), Kleiss (1973), locality, a sample-16.5 m above the base of Peoria Loess
Rutledgeet al. (1975), Ebens and Connor (1980), Putmenal. (1988), ~2.7 m below the top of it is-15,000"C yr B.P. (Ruheet al.,

Ha(ljlierget fsla' 9(:99'\1), Whitflielfgs :I- (ngc?:)ieswliniggr;t i/'l- (§994)|, 1L§Si)%h 1971). In central lowa, Peoria Loess is buried by a surficia
an nox , Masoat al. , Rodbelkt al. , Muhset al. y H H
and AIeini(koff e)t al. (1998, &999)? Inferred minE)r pal)eowinds taken fromSpruce trlfes rooted in the loess have radiocarbon ag
Fehrenbacheet al. (1965, 1986), Hallbercet al. (1991), Whitfieldet al. —14,000°C yr B.P. (Ruhe, 1969). In western lowa, alluvi
(1993), and Swinehagt al. (1994). as old as 11,600-10,006C yr B.P. is not mantled by Peol
Loess (Danielet al.,1963; Bettis, 1990). From all of these ¢
Loess, ranging from~110,000 to~165,000 cal yr B.P., sup- estimates, we conclude that Peoria Loess deposition in wi
port this correlation (Formaet al., 1992) and are in good lowa may have begun-27,000-24,000“C yr B.P. Loes
agreement with TL ages of Loveland Loess from Nebrask&position could have ended as early as 14,60@r B.P., bu
(Maat and Johnson, 1996). The last interglaciation is repreertainly ended before-11,000™C yr B.P.

Loveland paratype

41°50° 96°00" ( locality 95°30" 95°00"
'. \ ] | B4 7 ]
._\__ 1 8 1 s H l ! | I IIIII |
il \ Q!‘ £ / / { -J / Walnut \% H/Qal?/ l ;"f
=l | 4 Ql H V f >
%/ Qal{ - N R B
- i e Y . B 1 Pt
5) y Ul lift . e o o Jo ,5‘?}' Ql ||I th// Aﬂa;mc
{ . / Y = el ! 7 (P
‘3{.\ il | . ] /'|l Qal J / i‘g./ f Qa' ‘ | l%E QI
"N /a /o SN [LEE
// | Y / v )£ | I/\\{_ ~Lewis
a1e15 (R v | . 1
e T ST
KILOMETERS

FIG. 2. Surficial geologic map of a part of southwestern lowa, showing locations of the Loveland paratype section, loess transect samples (fil
and loess thickness contours in meters (from Halllegral., 1991). Surficial geology inferred from soil surveys of Jetyal. (1969) and Branham (1989), wi
field checking by the authors. QI, loess; Qal, alluvium.
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FIG. 3. Stratigraphy, generalized radiocarbon and thermoluminescence (TL) ages, and fine and coarse silt contents shown as a function of dey
Loveland paratype locality. Particle sizes were determined by sieve (sand) and pipette (silt and clay) after removal of organic magtes, wimdval of
carbonates with acetic acid, and dispersion with Na—hexametaphosphate. Age data were generalized fromat Bhr(h882).

LOVELAND PARATYPE LOCALITY layers, generally have higher &), and FeO; contents com-

pared to primary rock-forming aluminosilicates. The differenc

Detailed grain-size, geochemical, and mineralogical studigsclay content between the middle and upper Peoria zones
show that Peoria Loess at Loveland is not uniform with deptiirrored by their AJO, and FgO, contents (Fig. 5).

(Figs. 3—6). Coarse silt (20—50m) is the modal particle-size  The lower carbonate content in the lower Peoria Loess cou

fraction at all depths (Fig. 3), but there are significant diffelye the result of either relatively low carbonate content in th

ences within the section. Fine silt (2-20m) shows three goyrce sediments or syndepositional leaching as a result of I

distinct zonations (informally termed “lower,” “middle,” andsegimentation rates. Lower Peoria Loess in Kansas also

“upper”). The lower zone, be_tween the contact with the _Fa”]b'ss carbonate compared to upper Peoria Loess, which w

dale Geosol and a depth just below30 m, shows high jnerhreted by Frye and Leonard (1952) to represent a period

variability_, With fine_ silt values ranging from-12 to ~322/°' low deposition rate and syndepositional carbonate leachin
Above this is a middle zone of relatively low-{0-15%) Later work in lowa and lllinois (Ruhe, 1969, 1983; Kleiss,

amounts of fine silt up to a depth ef20 m, in turn overlain by 1973) and this study support this interpretation.

I I - 0,
an upper zone O.f variable, but generally high2@—34%) The difference in grain-size properties between the midd
amounts of fine silt.

The contact between the lower zone of variable fine silt ar%'d_ upper Peoria Loe§s Zones n Iowa can be interpreted
the middle zone of low fine silt corresponds closely to thdaVing either a paleoclimatic or a sediment source cause. T
depth of the “deoxidized and leached” zone of Peoria LoeRigner fine silt content in the upper Peoria could result from
that has been identified in many western lowa loess sectichdft in source sediment without a change in source locatiol
(Ruhe, 1969, 1983). Quartz/calcite and quartz/dolomite (aHEfter refative input from more distant sources, and/or
Si0,/Ca0 + MgO) values are similar in middle and uppePha”ge in wind strength. We favor the distant-source hypotl
Peoria Loess, but both are significantly lower than in lowésis and tested this in two ways.

Peoria Loess, indicating a much lower carbonate content inT he first test of the distant-source hypothesis is a comparis:
lower Peoria Loess (Fig. 4). of the chemical composition of Peoria Loess at Loveland wit

Both particle-size and chemical data show the boundaRgoria Loess found to the west of lowa (eastern Nebraska) a
between middle and upper Peoria Loess. Upper Peoria Lotsghe east of lowa (western lllinois). We chose three loes
has a higher clay content than middle Peoria Loess (Fig. Sections in eastern Nebraska (Fig. 6): near Plattsmouth
Clay minerals, because of the composition of their octahedmkviously undescribed section), just north of Lincoln (Mande
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FIG. 4. Quartz/calcite, SigCaO + MgO, and quartz/dolomite values in bulk (i.e., whole-sediment, without pretreatments) loess samples shown
function of depth at the Loveland paratype locality. Mineral ratios are derived from the 2@ @fuartz), 29.4° 2 (calcite), and 31.0° @ (dolomite) X-ray
diffraction peak heights; chemistry was done by wavelength-dispersive X-ray fluorescence.

and Bettis, 1995), and north of Elba (Ma&t al., 1995). In McKay, 1979; Grimleyet al.,1998). The chemical differences
Illinois, we sampled two previously described (Frge al., observed here support this interpretation. Western lllinois loe:
1968) sections, one at Morrison and another called “Rapitlas higher CaO and MgO contents (from calcite and dolomite
City B,” just northeast of Moline (Fig. 6). New isotopic studieshan eastern Nebraska loess (Fig. 7). In contrast, Nebras
by Aleinikoff et al. (1998) suggest that much of the loess itoess has higher F®; and AlLO; contents (from clay miner-

Nebraska may be derived from a nonglaciogenic source amld) than western lllinois loess. These differences largely r
therefore should be chemically distinct from loess that hasflact a carbonate dilution effect: higher carbonate contents
glaciogenic origin, such as in lllinois (Fryet al., 1968; lllinois loess translate to relatively lower clay contents com
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FIG. 5. Clay, Al,Os;, and FgO; contents from bulk loess samples shown as a function of depth at the Loveland paratype locality.
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104° 96° pared to Nebraska loess. However, Nebraska loess also |
higher K,O content (K-feldspar and micas) and generally
higher NaO content (plagioclase), which suggest difference
in silicate mineralogy unrelated to the carbonate dilution effec
Overall, Peoria Loess at Loveland has compositions that fall
between Nebraska and lllinois loess, indicating that it coul
contain a mixture of both Laurentide-derived source sedimen
and nonglaciogenic source sediments (Fig. 7). In additiol
upper Peoria Loess at Loveland hagX FgO;, and ALO,

contents that are closer to values for Nebraska loess than

Loess thickness 0 500 ; - ;

values for middle Peoria Loess at Loveland. This suggests tt

B -om@l 53m | | . .

S KILOMETERS there may be a greater component of nonglaciogeni

e R Nebraska-type source sediments in upper Peoria Loess thar
o Sample locality middle Peoria Loess at Loveland.

FIG. 6. Map showing loess distribution in lowa and surrounding states The second test of the distant-source hypothesis is an an
and localities in Nebraska and lllinois where upper Peoria Loess was collecysis of particle-size distribution in Nebraska loess. If the fine
for geochemical analyseg. Loess distribution from Linebatlal. (1983), grained upper Peoria Loess at Loveland is the result of
Hallberg et al. (1991), Swineharet al. (1994), and Muht al. (1999). L, q}gwnwmd component of Nebraska loess being predomina
Loveland paratype section; LI, Lincoln section; E, Elba section; P, Plattsmo Ver a Missouri River-derived source, then Peoria Loess at
section; R, Rapids City B section; M, Morrison section.

Iocallty near Loveland (but west of the Missouri River) shoulc
have a particle-size distribution that is similar to that of uppe
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FIG. 7. Concentrations of KO, N&,0O, Fg0,, Al,O;, MgO, and CaO in bulk samples of upper and middle Peoria Loess at Loveland, Peoria Loess in ea
Nebraska (Plattsmouth, Elba, and Lincoln sections), and Peoria Loess in western lllinois (Morrison and Rapids City B sections).
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Peoria Loess at Loveland. The Plattsmouth and Elba sectiofi®he, 1954). This observation is interpreted to be the result
described above, meet these requirements. Fine silt (2#/80 winnowing of coarse particles in a downwind direction. Be:
content in Peoria Loess at Plattsmouth is variable, but overedluse the clay fraction of loess is dominated by phyllosilicat
very high, never less than 20%, and sometimes more than 3Rty minerals rather than clay-sized primary minerals such :
(Fig. 8). These values are similar to, or higher than, fine sduartz and feldspars, it is expected that an eastward increase
values of upper Peoria Loess at Loveland and much higher trday mineral content should be reflected in major elemen
those in middle Peoria Loess at Loveland. At Elba, fine sisuch as Al and Fe) that are concentrated in phyllosilicate
content in Peoria loess ranges from 20 to 25% (Fig. 9).  Al,0; and FgO; contents show increases to the east, with
In eastern Nebraska, there is a 15- to 25-km-wide zone fifyh correlation with log-transformed distance for®} (r* =
westward-thinning loess (Hallbergt al., 1991; Swineharet 0.70) and alower (r*> = 0.50) butstill highly significant
al., 1994). It is difficult to explain this thickness trend othecorrelation for FeO; (Figs. 10b and 10c).
than by derivation from occasional eastward winds transport-Pioneering work on the geochemistry of loess by workers i
ing loess from a Missouri River valley source (Handy, 1976)llinois identified silt-size fractions where certain elements ar
Plattsmouth is within this narrow zone of westward-thinningoncentrated. Beaverst al. (1963) and Jonest al. (1967)
loess, and therefore it could be argued that the higher fine &duind that Zr has the highest concentrations in coarse s
content there is a function of relatively weak easterly wind$0—-20um), whereas Ti and K have the highest concentratior
from a Missouri River valley source. However, Elbai485 in fine silt (20—2um), when size fractions are separated b
km west of the Missouri River (Fig. 6), well west of thissedimentation. Therefore, it is expected that Zr concentratiol
narrow zone of westward-thinning loess, and yet has a fine silight to decrease away from a source whereas K and
content similar to that at Plattsmouth. We conclude that Peodancentrations should increase away from a source. In weste
loess in Nebraska has, overall, a relatively high content of fih@wa, geochemical data for silt-related elements support tf
silt and that the upper Peoria loess at Loveland containseegpected trends. Concentrations of(K show an eastward
component of Nebraska-derived loess. increase with a relatively highr{ = 0.61) degree of expla-
nation; Rb, a trace element that follows K, shows a simila
UPPER PEORIA LOESS TRANSECT IN WESTERN IOWA trend with a moderater( = 0.51)degree of explanation (Fig.
11). Concentrations of TiQalso show eastward increases with
Early studies by Hutton (1947) and Simonson and Huttanhigh ¢> = 0.70) correlation, whereas Zr shows decrease:
(1954) demonstrated that loess thins systematically away fr@oncentrations to the east (Fig. 11). Collectively, the silt
the Missouri River in western lowa. Ruhe (1954) measuredlated elements suggest paleowinds from the west.
loess thickness from railroad cuts in western lowa and showedCarbonate content in loess was reported by Smith (1942)
how both lower Peoria Loess and middle-plus-upper Peodacrease away from source areas in lllinois. His interpretatic
Loess (our terminology) thin to the east of the Missouri Riveof this trend is that, farther from the source, deposition rates a
bluffline. Ruhe’s study did not include any thick loess depositsw enough that carbonate leaching can keep pace with loe
found immediately to the east of the Missouri River valleyaccumulation. Ruhe (1954) reported ianreasein carbonate
Adding Loveland section thickness data to Ruhe’s strengtherentent with distance east of the Missouri River and attribute
the correlation coefficients for loess thickness with distantleis to a secondary concentration at depth. In the present stu
east of the Missouri River bluffline (Fig. 10a). This supports admoth CaO and Sr (a trace element that follows Ca) sho
interpretation that the Missouri River valley was an importamastward decreases with moderate but significant correlatio
source of both lower and upper middle Peoria Loess. (Fig. 12). In the same transect, MgO also shows an eastwe
In addition to eastward thinning of loess deposits, certaifecrease, but the correlation is not nearly as high= 0.35)
grain-size properties of loess show very high correlations wiets for CaO and Sr. Although Mg substitutes for Ca in calcit
distance from river valleys that are thought to be their maj€aCQ,], it is a more important element in dolomite
sources (Smith, 1942). Some of these trends, including d€aMg(CQ,),]. Because dolomite is not as soluble as calcite,
creases in coarse and medium silt and increases in fine silt aodrelation as high as that for CaO would not be expected. W
clay, are considered to be the result of downwind winnowirtgave no explanation for the difference between Ruhe’s (195
of coarse particles (Ruhe, 1954). In order to test these infearbonate content results and ours; geochemical trends
ences further, we conducted major and trace element geofted here support syndepositional weathering during loe
chemical analyses of loess in an east—west transect (Fig.a2fumulation that is consistent with what Smith (1942) re
using many of the same localities studied by Ruhe (1954), lpdrted for lllinois.
also with several new localities closer to the bluffline. All The east-west transect trends for both clay-related al
samples were taken well below the modern soil zone, generathrbonate-related elements in western lowa are in good agreern
at depths of 2-3 m, and therefore represent unweathered uppin the only other loess geochemistry study of which we ar
Peoria Loess. aware for the Missouri River basin. Ebens and Connor (198!
In western lowa, clay content of loess increases to the eagidied changes in loess geochemistry in northwest Missouri
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three east—west transects east of the Missouri River (Fig. 1). Tleeysidered to be desert areas found to the north and northwes
also found that AlO; and FgO; contents increased and CaO anthe Loess Plateau (Zharg al., 1999). Ederet al. (1994) found
MgO contents decreased eastward from the Missouri River. thrat MgO contents decrease from north to south across the Lot
addition, the geochemical trends for western lowa are similar Rlateau, whereas,K, TiO,, Al,O;, and FgO; all show increases
those from China (Edeet al.,1994), where loess source areas afeom north to south.

Stratigraphy, CaO content, and fine and coarse silt contents shown as a function of depth at the Elba, Nebraska locality.
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a 40 p— y v 1947; Simonson and Hutton, 1954; Ruhe, 1954, 1969, 198
£ - paralgype Pg’f,’ﬁ;*[;’esse ® Hallberg, 1979). These results are also in agreement with
£ 50 localy y= -9.6LOG(X) + 23 r2=0.99 compilation of published loess studies from the midcontiner
§ that have been conducted over the past several decades.
< 20 Lower Peoria Loess H this compilation, we chose those localities where detailed fie
£ y= -26LOG(x) +5.4 r2=0.96 studies of loess thickness were conducted (e.g., Fehrenbac
> et al., 1965, 1986), detailed particle-size analyses were mas
§ 103 (e.g., Smith, 1942), or detailed thickness studies can be col
— Lﬂ}ﬁm bined with provenance studies using isotopes (e.g., Swineh
WE—M

0 5 A A P 20 et al., 1994, along with Aleinikoffet al., 1998). Results indi-
cate that south of the Laurentide ice sheet, from Colorado
Ohio, winds over the North American midcontinent were dom
inantly from the west or northwest during loess transport (Fic
1). Itis important to note that results of this compilation largely
reflect the sampling scheme of the individual studies. Fc
example, had an investigator chosen a northwest-to-southe
y = 1.6LOG(X) + 8.8 r2=0.71 sampling design rather than a west-to-east one, results col
still yield a high correlation, but an interpretation might be
made for a “northwesterly” rather than a “westerly” paleowind
Hence, our overall interpretation of the compilation shown i
Figure 1 is that winds had at least some westerly componel
but it is possible the dominant winds were westerly, northwes
erly, or even southwesterly. Furthermore, it is important t
8.004 : : : emphasize that winds shown as northwesterly in one area ne
0 20 40 60 80 winds shown as westerly do not necessarily reflect local var
ation; more likely, they simply reflect the sampling design o
the original investigators.

A few areas show differences from the overall westerl
paleowind that seems to be characteristic of the region. Thic
ness data reported by Fehrenbachkeral. (1965, 1986) for
areas west of the Wabash and lllinois Rivers in lllinois an
those reported by Hallbergt al. (1991), Whitfield et al.
(1993), and Swineharet al. (1994) for areas west of the
Missouri River in Nebraska and Kansas show decreases to t
west (Fig. 1). Fehrenbachet al. (1965) interpreted the de-
y=06LOG(K) +32 r2=051 creasing loess thickness to the west of the Wabash River
200 . . . Illinois to be the result of deposition from easterly winds,

0 20 40 60 80 although their overall conclusion was that west and northwe
winds were the most important paleowinds over most of th

Distance east of the Missouri River bluffline (km)  Mississippi River valley region. They suggested that loes

deposition in southern lllinois and Indiana was probably th
FIG. 10. (a) Thickness of the upper-plus-middle Peoria Loess and lower P P y

(“leached”) Peoria Loess in western lowa as a function of distance east of {ﬁesu't O_f CYC'O“'C and antlcyc_lonlf: circulation, as well as
Missouri River bluffline. Derived from stratigraphic data given in Ruhe (1983Katabatic winds off the Laurentide ice sheet.

except for the Loveland paratype locality, which is from this study. (b) and (c) In one of the most comprehensive comparisons of LG\

Concentrations of AD, and FeOs in bulk samples of loess shown as apaleoclimate data and a simulated LGM paleoclimate derive

function of distance east of the Missouri River bluffline. from an atmospheric general circulation model, COHMAF

members (1988) concluded that the Laurentide ice sheet ge

DISCUSSION erated a strong glacial anticyclone over the interior of Nort

America (Fig. 13). Hobbs (1943) was perhaps the first t

The data from the Loveland paratype locality and the eadtypothesize the existence of such a feature over the Laurenti

west transect data support the interpretation that paleowinds sheet and attempted to explain loess distribution in Nor

that deposited lower, middle, and upper Peoria Loess were Atherica as a function of anticyclonic circulation. According to

from the west, or at least had a strong westerly componenttire COHMAP (1988) reconstruction, winds generated fror

agreement with previous loess studies in western lowa (Huttahis high pressure cell would have been easterly or northea
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FIG. 11. Concentrations of KO, Rb, TiG,, and Zr in bulk samples of loess shown as a function of distance east of the Missouri River bluffline.

erly to the south of the ice sheet, including lowa and othelicate the presence of a LGM glacial anticyclone in both winte
areas in the midcontinent. The contrast between what we cafld summer (Kutzbactet al., 1998; Bartleinet al., 1998),
dominant loess-derived paleowinds and AGCM-generated asonal differences in wind regime cannot reconcile the moc
leowinds under a glacial anticyclone is striking (Fig. 13) ancksults with the loess-derived paleowinds.
requires discussion.

At least five explanations for the disparity between Ioesg
derived paleowinds and AGCM paleowinds are possible.

3. The glacial anticyclone, as reported by COHMAP mem
ers (1988), is incorrectly simulated.This explanation seems
unlikely, because virtually all AGCMs that have modeled the
1. Loess was not being deposited-a21,000 cal yr B.P. | M have produced a glacial anticyclone over the Laurentid
(~18,000*“C yr B.P.). Both radiocarbon and TL dating fromce sheet. For example, in addition to COHMAP, Broccoli ant
a number of localities clearly indicate that this explanation §§anabe (1987) also produced a glacial anticyclone over tr
not correct. At rpost localities, loess deposition began aroupg rentide ice sheet in their AGCM, although they reporte
1242,000—20,0001 C yr B.P. and ended about 14,000-12,00Qorthwesterly winds immediately to the south of the ice she
C yrB.P. (Follmer, 1983; Formaet al., 1992; Grlmleye.t al., in winter, and less vigorous circulation, with only minor alter-
1998; Maat and Johnson, 1996; Mandel and Bettis, 199%i5ns from control experiments, in summer. Importantly, dif
McKay, 1979; Muhset al., 1999; Rodbellet al., 1997; Ruhe, tgrent AGCM experiments by the COHMAP group with a
1969; Ruheet al.,1971), a time interval that brackets the LGMoq,ced ice sheet height and lower S@lues did not produce
2. Loess was deposited in a season when there was significantly different results from the 1988 study (Kutzbath
glacial anticyclone. COHMAP members (1988, p. 1052,al., 1993). This conclusion is also supported by new exper
note 42) recognized the disparity between their model antents with the later (CCM1) version of this AGCM, where the
interpretation of loess-derived paleowinds and suggested thktcial anticyclone is not as well developed as in an earlie
the northwesterly winds which transported loess were a sé&CMO0) version, but is still apparent in both summer anc
sonal phenomenon. Because the latest AGCM simulations winter at the LGM (Kutzbachet al., 1998; Bartleinet al.,
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FIG. 12.

1998). The presence of the glacial anticyclone in several
AGCMs, with different boundary conditions, suggests that it is
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Concentrations of CaO, MgO, and Sr in bulk samples of loess
shown as a function of distance east of the Missouri River bluffline.

a robust feature of circulation during full-glacial time.

Coriolis force) that creates northeasterly surface winds. Tt
locations of many loess transects with westerly or northwes
erly winds very close to the Laurentide ice sheet (Fig. 1), &
well as significantly to the south of it, suggest that this was
dominant wind pattern over the entire region.

5. Northwesterly winds, which transported the loess, wer
high-velocity but low-frequency eventsAlthough the
COHMAP model simulated northeasterly winds to the south c
the ice sheet as a general condition during the LGM, it i
possible that infrequent northwesterly winds, unrelated to tt
glacial anticyclone, were responsible for most loess transpo
It is important to note that surface winds generated by th
glacial anticyclone (as simulated by AGCMs) are relatively
weak (e.g., Kutzbachkt al., 1998, Fig. 3a). These weak winds
may explain the few transects that show loess thickness c
creases over short~25 km) distances to the west of the
Wabash, lllinois, and Missouri rivers. However, another fea
ture of COHMAP model simulations is southward displace
ment of the jet stream from its present position during th
LGM, due to the presence of the ice sheet. The trajectories
these upper-air winds are good indicators of the general po:
tion of storm tracks. Although the jet stream during the LGM
as generally modeled by COHMAP, would have been locate
well to the south of most areas of loess deposition, it is possib
that infrequent shifts of the jet to the north would have brougt
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FIG. 13. Map of North America showing extent of the Laurentide ice

4. Northeasterly winds were limited to the ice sheet itself @Sheet at the last glacial maximum and wind patterns derived from a models

to a very narrow band to the south of itlt is unlikely that glacial anticyclone (COHMAP Members, 1988) compared to those derive

northeasterly winds were limited to the area over the ice sh

m loess distributions. Extent of last-glacial loess from Thorp and Smitl

fr
e@ 52) and Peé (1975); loess paleowinds from references in Figure 1 legenc

because it is the pressure gradient from the air mass over {Bfis et al. (1975), Lewis and Fosberg (1982), Pieree al. (1983), and
ice sheet itself and the region to the south of it (as modified Bysacca and McDonald (1994).
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storm tracks (and with them, high-velocity winds) that weris that loess deposition may be a function of infrequent bt
capable of transporting silt. A modern example of such sirong northwesterly winds generated by low-pressure systel
process might be the low-pressure system that passed overas®ociated with the jet stream and unrelated to winds genera
Great Plains in February 1977 (McCauley al., 1981). The by the glacial anticyclone.

strong (up to 145 km/h) winds that accompanied this low-
pressure system generated large dust storms (to heights of up to
4000 m) in eastern Colorado and parts of the Southern High
Plains. A factor that was critical to the generation of the large < study was suonorted fointlv by the lowa. Debartment of Natura
dust storms was a long, dry period _prewous 0 t_he passa'geRgsources—)(lseologicalpgurveyJBureyau ).;nd the Earth Spurface Dynamics P
the low pressure system. AGCMs simulate relatively dry COBFam of the U.S. Geological Survey. Vern Souders introduced us to the Ell
ditions to the south of the Laurentide ice sheet during the LGMkss section. We thank the landowners at Morrison (Pauline Meakins) a
(Kutzbachet al., 1998; Bartleinet al.,1998). Such conditions, Rapids City (Dan Van Besien) for access to their property. Robert an
combined with abundant sediment supplies in major Vam??rothea Muhs provided logistical support during field work. Josh Been, Sco

trains. could have “set the stage” for Iarge-scale dust entra owherd, and Shannon Mahan assisted with laboratory work. We appreci
! elpful discussions of climate models with Pat Bartlein and Tony Broccoli

ment during periods when mfreql_Jent, but strong, low_press"’ﬁ%eph Mason, Leon Follmer, John Aleinikoff, Ralph Shroba, and Ken Pierc
systems passed through the region. provided constructive comments on an earlier version of the paper.
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