DIVISION S-5—PEDOLOGY

Impact of Climate and Parent Material on Chemical Weathering in Loess-derived Soils
of the Mississippi River Valley

D. R. Muhs,* E. A. Bettis, III, J. Been, and J. P. McGeehin

ABSTRACT

Peoria Loess-derived soils on uplands east of the Mississippi River
valley were studied from Louisiana to Iowa, along a south-to-north
gradient of decreasing precipitation and temperature. Major element
analyses of deep loess in Mississippi and Illinois show that the composi-
tion of the parent material is similar in the northern and southern
parts of the valley. We hypothesized that in the warmer, wetter parts
of the transect, mineral weathering should be greater than in the cooler,
drier parts of the transect. Profile average values of CaO/TiO,, MgO/
TiO,, K,O/TiO, and Na,O/TiO,, Sr/Zr, Ba/Zr, and Rb/Zr represent
proxies for depletion of loess minerals such as calcite, dolomite, horn-
blende, mica, and plagioclase. All ratios show increases from south to
north, supporting the hypothesis of greater chemical weathering in
the southern part of the valley. An unexpected result is that profile
average values of AL, Oy/TiO; and Fe,0,/TiO, (proxies for the relative
abundance of clay minerals) show increases from south to north. This
finding, while contrary to the evidence of greater chemical weathering
in the southern part of the transect, is consistent with an earlier study
which showed higher clay contents in Bt horizons of loess-derived
soils in the northern part of the transect. We hypothesize that soils
in the northern part of the valley received fine-grained loess from
sources to the west of the Mississippi River valley either late in the
last glacial period, during the Holocene or both. In contrast, soils in
the southern part of the valley were unaffected by such additions.
ONE OF THE MOST pressing issues in society today is

the possibility of human-induced climate change.
Addition of greenhouse gases to the atmosphere may
result in global warming, based on atmospheric general
circulation models (AGCMs) (Hansen et al., 1988). How-
ever, because AGCMs produce simplified forecasts of
future climates, it is imperative that they undergo valida-
tion tests. An effective method for validation is to com-
pare AGCM models of past climates with geologic data
on past climates, particularly warm periods. A com-
monly studied, recent warm-climate interval is the last,
or Sangamon, interglacial period that had its peak warm-
ing ~125 000 yr ago (Muhs and Szabo, 1994). The pedo-
logic record potentially contains paleoclimatic informa-
tion about the last interglacial period in the form of the
Sangamon paleosol or its stratigraphic equivalent (e.g.,
the Eemian paleosol in Europe). There have been at-
tempts to infer a longer, warmer, or wetter last intergla-
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cial period from studies of this soil or its equivalent in
the midcontinent of North America (Ruhe, 1969; Hall
and Anderson, 2000), Alaska (Mubhs et al., 2001), and
China (Maher et al., 1994). Critical to paleoclimatic inter-
pretations, using paleosols, are reliable climofunctions
for modern soils, which give an understanding of soil
formation as a function of climate, all other factors be-
ing equal.

The importance of climate as a soil-forming factor has
been appreciated by pedologists for more than 100 yr,
starting with Dokuchaev (1883) and emphasized by Jenny
(1941, p. 281) 60 yr ago. Since that time, there have been
many soil climosequence studies. Much of the work of
the past two decades has been summarized recently by
Birkeland (1999, p. 430). One of the most commonly used
geologic settings for soil climosequence studies is loess
that covers a large region and spans gradients of temper-
ature and precipitation. Such studies have been con-
ducted in loess-dominated landscapes in China (Maher
et al., 1994), Argentina (Alvarez and Lavado, 1998),
and New Zealand (Webb et al., 1986). In the USA, soil
climosequence studies have been made across the east-
west precipitation gradient in the prairie-dominated
loess belt (Jenny and Leonard, 1934; Wells and Riecken,
1969; Ruhe, 1984a) and across the north-south precipita-
tion and temperature gradients in the forested loess
uplands along the Mississippi River Valley (Torrent and
Nettleton, 1979; Ruhe, 1984b,c). It is fortunate that many
soil climosequences have been conducted in loess, as
this is also the parent material for the Sangamon soil
in much of the midcontinent of North America (Frye
et al., 1968; Ruhe, 1969; Pye and Johnson, 1988; Rut-
ledge et al., 1996; Markewich et al., 1998).

Several studies along the Mississippi River Valley
suggest that significant chemical weathering of primary
minerals has taken place in soils developed in last-glacial
(Peoria) loess. Krinitzsky and Turnbull (1967), Snowden
and Priddy (1968), Pye and Johnson (1988), and Mar-
kewich et al. (1998) all reported loss of both carbonate
minerals and feldspars in soils derived from Peoria
Loess in Mississippi and Arkansas. Beavers et al. (1963),
Jones and Beavers (1966), Fehrenbacher et al. (1965),
and Jones et al. (1967) reported alteration of silt-sized
minerals and loss of soluble elements (Ca and K) rela-
tive to an insoluble element (Zr) in loess-derived soils
in Illinois. These workers attributed the spatial variabil-
ity in CaO/ZrO, and K,0O/ZrO, values in Illinois to dis-
tance from the loess source, with higher (less weathered)

Abbreviations: AGCM, atmosphere general circulation models.
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values close to the source and lower values distant from
the source. Although this interpretation is certainly rea-
sonable, it is difficult to decouple the parent material
factor (loess-thinning) from the climate factor, because
many of the transects studied in Illinois also span a precip-
itation gradient. For example, the lower CaO/ZrO, and
K,0O/ZrO, values in southern Illinois that Jones and Bea-
vers (19606) attribute to thinner loess also occur in a re-
gion of significantly higher precipitation than in northern
Illinois, where CaO/ZrO, and K,O/ZrO, values are higher.

By far the most comprehensive study of loess-derived
soils in the Mississippi River Valley is a transect from
southern Mississippi to southern Minnesota studied by
Ruhe (1984b,c). Ruhe attempted to decouple loess sedi-
mentation from climate variables by limiting his sample
sites to areas immediately adjacent to the Mississippi
River Valley, where presumably there would be a uni-
form parent material. He reported that soils in the north-
ern part of the transect are thinner, less deeply leached,
and have higher clay contents and base status than those
in the southern part. Ruhe (1984c¢) attributed the differ-
ences in leaching depth and base status to climate; he
felt the difference in clay content was because of local dif-
ferences in loess sedimentation (Ruhe, 1984b). In con-
trast to other workers (Beavers et al., 1963; Fehren-
bacher et al., 1965; Jones and Beavers, 1966; Jones et
al., 1967; Krinitzsky and Turnbull, 1967; Snowden and
Priddy, 1968; Pye and Johnson, 1988; Markewich et al.,
1998), Ruhe thought that Mississippi River Valley loess-
derived soils had experienced little chemical weathering
and thought that the impact of climate was limited to the
southward trend of decreasing base status. Nevertheless,
evidence for chemical weathering of primary minerals
reported by other workers (cited above), using either
mineralogical or major element abundance data, suggests
that a climate influence is detectable. Ruhe’s (1984c)
interpretations of moderate chemical weathering using
only base status is debateable, because it is an indirect
and partial indicator of primary mineral weathering.
Furthermore, Ruhe’s pedons were cultivated; base sta-
tus could have been altered by fertilizer additions and
soil amendments (e.g., liming).

We report results of a new soils study along the Missis-
sippi River Valley, similar to Ruhe’s (1984b,c) transect.
Major element chemistry of bulk soil samples is used to
assess degree of chemical weathering. New stratigraphic
data and geochemical analyses of deep loess provide the
baselines for comparison of soils with a similar parent
material. Our major study goal is to assess which chemi-
cal parameters are most useful in inferring past climates
from buried soils, particularly the Sangamon soil.

MATERIALS AND METHODS

We sampled soils from northern Louisiana to northern Iowa
on well-drained but uneroded upland localities where deep
Peoria Loess exists (Fig. 1). With the exception of pedons 3,
4,5, 6, and 11, the soils were uncultivated. In the southern
part of the transect, soils were described and sampled from
hand-dug pits or deep roadcuts; in the northern part of the
transect, soils were described and sampled from cores taken

with a hydraulic drilling rig. Abbreviated soil descriptions and
complete chemical data are given for all pedons in Table 1.

Pedons sampled in Louisiana, Mississippi, Tennessee, and
Kentucky are in the Memphis series (fine-silty, mixed, active,
thermic Typic Hapludalfs), those in southern Illinois are in
the Alford series (fine-silty, mixed, superactive, mesic Ultic
Hapludalfs), and those in northern Illinois and Towa are in
the Fayette series (fine-silty, mixed, superactive, mesic Typic
Hapludalfs). All soils are Typic (Memphis and Fayette) or
Ultic (Alford) Hapludalfs developed primarily under what
was oak (Quercus)-hickory (Carya) deciduous forest in pre-
settlement time (Kuchler, 1964). Past vegetation and climate
differed from that of the present, but based on pollen studies,
most of the region has probably been in mesic deciduous forest
at least since about 9000 “C yr BP, with perhaps some mid-
Holocene prairie occupation in parts of the northern Missis-
sippi River Valley (Webb et al., 1993; Baker et al., 1996). In
the southern portion of the transect, northern Louisiana, mean
annual precipitation is ~1550 mm and mean January and July
temperatures are 10°C and 28°C, respectively (based on 1961—
1990 means for Baton Rouge, LA; all climatic data cited herein
are from National Climatic Data Center, Asheville, NC, un-
published data, 1991). In northern Iowa, mean annual precipi-
tation is as low as ~780 mm and mean January and July
temperatures are —8°C and 23°C, respectively (based on 1961—
1990 means for Prairie du Chien, WI, immediately east of our
northernmost pedon). The southernmost part of the valley
rarely has freezing temperatures, whereas the northern valley
has 5 mo with mean daily minima below freezing (0°C). Precip-
itation has a winter maximum in the southern part of the
valley, up to southern Illinois. From central to northern Illinois
and [owa, there is a very distinct summer maximum for precipi-
tation. Ruhe (1984b,c) pointed out that effective moisture is
greater in the southern valley not only because of greater
overall precipitation, but also because maximum precipita-
tion occurs during cooler months, when evapotranspiration
is lower.

After description and sampling, total-soil splits from each
horizon were pulverized in a shatterbox; major element chem-
istry was determined by wavelength-dispersive x-ray fluores-
cence and trace element chemistry was determined by energy-
dispersive x-ray fluorescence. Abundances of soluble elements
were normalized to relatively insoluble Ti and Zr to develop
weathering ratios (Birkeland, 1999, p. 430). Profile average
weathering ratios were determined by weighting all horizons
in a pedon by horizon thicknesses and summing, similar to
the approach used by Ruhe (1984b,c) for other parameters.

Major element composition of deep, unaltered loess was
determined for samples obtained by drilling at two localities
near Moline and Morrison (4 and 5 on Fig. 1) in northern
Illinois, one locality (8 on Fig. 1) in southwestern Illnois, and
published geochemical data from three localities at Natchez
and Vicksburg, Mississippi (near pedons 21 and 22 on Fig. 1)
reported by Pye and Johnson (1988). Pedon localities 5 and
4 correspond to the Rapids City B and Morrison sections
originally described by Frye et al. (1968); loess geochemical
data for these sections are in Muhs and Bettis (2000). Pedon
8 is at the Greenbay Hollow loess section described by Hajic
(1990) and Grimley et al. (1998); geochemical data are re-
ported here for the first time. Organic matter, charcoal, and
conifer needle macrofossils from the Rapids City B loess were
processed for accelerator mass spectometric radiocarbon dat-
ing at the USGS graphite extraction line laboratory in Reston,
VA. After preparation at the USGS, abundances of *C in the
Rapids City B samples were determined at the Lawrence
Livermore National Laboratory.
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Fig. 1. Map showing the distribution of loess in the central USA, location of pedons sampled, and last-glacial paleowinds (Muhs and Bettis,
2000). Peoria Loess distribution slightly modified from Thorp and Smith (1952); Bignell Loess distribution compiled by the authors using
data from Caspall (1972), Martin (1993), Johnson (1993), Kuzila (1995), Pye et al. (1995), and Mubhs et al. (1999).

RESULTS
Loess Stratigraphy and Geochemistry

Loess stratigraphy and new radiocarbon ages agree
well with previous studies of loess in the Mississippi River
valley (Fig. 2 and 3). At the Rapids City B loess section
in northern Illinois (Fig. 2), radiocarbon ages of the Farm-
dale soil, which underlies Peoria Loess, indicate that last-
glacial loess deposition began sometime after ~23 000
“C yr BP and spruce (Picea) needles farther up in the
section indicates Peoria Loess deposition was in prog-
ress by ~21 000 “*C yr BP. Radiocarbon ages around
clay-rich marker beds from a section ~37 km southwest
of Greenbay Hollow reported by Grimley et al. (1998)
indicate that Peoria Loess deposition was still in prog-
ress ~18 000 “C yr BP (Fig. 3). The youngest Peoria
Loess deposition in Illinois may have occurred some-
time after ~13 000 “C yr BP and could be as young as
~10000 *C yr BP (Frye et al., 1968; Grimley et al.,
1998; Wang et al., 2000). These ages are in reasonable
agreement with “C and thermoluminescence ages of
Peoria Loess reported from Tennessee, Arkansas, and

Mississippi (Snowden and Priddy, 1968; Pye and John-
son, 1988; Oches et al., 1996; Rutledge et al., 1996; Rod-
bell et al., 1997; Markewich et al., 1998).

Comparison of deep, unweathered loess geochemistry
in the Illinois sections with data reported by Pye and
Johnson (1988) from localities in Mississippi shows that
loess composition does not differ significantly in the
northern and southern portions of the valley (Fig. 2, 3,
and 4). Plots of individual samples of deep, unweathered
loess show that concentrations of CaO, MgO, K,O,
Na,O, Al,0Os,and Fe,0; in northern Mississippi Valley
loesses (from Illinois) are similar to those in southern
Mississippi Valley loesses, from sections at Vicksburg
and Natchez (Fig. 4). Furthermore, both northern and
southern Mississippi Valley loesses have distinctly dif-
ferent concentrations of CaO, MgO, AL O;, and Fe,0;
than loesses found either to the west (Iowa) or the east
(Indiana). Mean values and ranges for CaO/TiO,, MgO/
TiO,, K,O/TiO,, Na,O/TiO,, ALO;/TiO,, and Fe,0,/TiO,
are not significantly different among the northern Illi-
nois (Rapids City B and Morrison) sections, the central
Illinois (Greenbay Hollow) section, and the southern
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Fig. 2. Stratigraphy of Rapids City B, Illinois loess section (locality 5 on Fig. 1), new accelerator mass spectrometric (AMS) radiocarbon ages,
major element ratios (data from Muhs and Bettis, 2000, except for TiO,, reported for the first time here), and ranges of major element ratios
in deep, unleached Peoria Loess from the southern Mississippi River valley (data from Pye and Johnson, 1988).
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Fig. 3. Stratigraphy of Greenbay Hollow, Illinois loess section (locality 8 on Fig. 1), major element ratios (data from this study) and ranges of
major element ratios in deep, unleached Peoria Loess from the southern Mississippi River valley (data from Pye and Johnson, 1988).
Radiocarbon ages shown are from correlative flood deposits from a locality in adjacent Missouri and are from Grimley et al. (1998).
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Mississippi (Natchez and Vicksburg) sections. We con-
clude, therefore, that loess composition (soil parent ma-
terial) was initially similar throughout the valley and,
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based on the radiocarbon chronologies above, pedo-
genesis began at about the same time, perhaps around
13000 to 10000 “C yr BP.

Soil Morphology and Chemistry

Ruhe (1984b,c) reported that soils along the Missis-
sippi River valley are thicker, redder, and lower in clay
in the southern portion of the valley compared with the
northern portion of the valley. Our observations are in
agreement with some of the trends reported by Ruhe.
Ruhe (1984b) reported that soil B horizon colors be-
come redder, from 10YR to 7.5YR to 5YR as one moves
from the north to south in the valley. Most northern
valley pedons we studied have 10YR hues and most
southern valley soils have 7.5YR hues (Table 1). This
is in agreement with Ruhe’s observations and loess soil
studies by Lindbo et al. (1997) and Rhoton et al. (1998).
The Bt horizons of most soils in the southern part of
the valley are silt loams whereas many of the Bt horizons
in soils of the northern part of the valley are silty clay
loams. Geochemical evidence for higher clay content
in northern valley soils, which we discuss below, is in
agreement with Ruhe’s observations. Ruhe (1984b,c)
reported that sola in the southern valley are thicker
than those in the northern valley. We tested this conclu-
sion by detailed measurements of solum thickness. In
our studies, we considered the solum depth to terminate
where there was no evidence of subangular blocky, co-
lumnar, or prismatic structure (Table 1). This depth
usually occurs well below where the deepest clay films
occur. On the basis of this definition of solum thickness,
we observed no systematic geographic relation for over-
all solum thickness. Soil Bt horizons, defined by those
depths where there are well-defined clay films, are actu-
ally thicker in the northern valley (Fig. 5).

In soil climosequence studies, it is generally assumed
that in regions with higher rainfall, there should be
greater depletion of primary minerals (Birkeland, 1999,
p. 430). We therefore compared soluble elements that
proxy for primary minerals (Ca and Mg for calcite, dolo-
mite, and other Ca- and Mg-bearing minerals such as
hornblende, Na for plagioclase and hornblende, and K
for mica) with Ti and Zr. Profile average CaO/TiO,
shows an inverse relation to mean annual precipitation
(Fig. 6). The coefficient of determination shows that
the precipitation gradient explains about 75% of the
variation in this weathering ratio. The same relation is
obtained if Zr is used as the stable element instead of
Ti. Profile average MgO values show similar trends and

Fig. 4. Plots of concentrations of CaO, MgO, K,0, Na,0, AL,O;, and
Fe,0; in deep, unweathered loess from the northern Mississippi
Valley, the southern Mississipi Valley, western Iowa, and south-
western Indiana. Northern Mississippi Valley loess samples are
Peoria loess from the Morrison, Rapids City B, and Greenbay
Hollow sections in Illinois (this study); southern Mississippi Valley
loess samples are unleached Peoria loess from the Vicksburg and
Natchez sections, Mississippi reported by Pye and Johnson (1988).
Shown for comparison are ranges of concentrations for the same
elements from the Loveland, Iowa loess section (Muhs and Bettis,
2000), and the Mount Vernon, Indiana loess section (section de-
scribed by Hayward and Lowell, 1993; geochemical data are from
the present authors).
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Fig. 5. Solum and Bt horizon thicknesses shown as a function of mean annual precipitation (1961-1990 means) in the transect.

a similar degree of explanation, whether we use Ti or
Zr as the stable element (Fig. 6).

Plagioclase is the main Na carrier, and profile average
Na,O/TiO, values show a logarithmic decline with in-
creasing precipitation (Fig. 7). Profile average Na,O
values, normalized to ZrO,, also show a decline with
increasing precipitation, although the relation is linear.
Na,O/ZrO, values have a high coefficient of determina-
tion that explains nearly 90% of the variability. The two
primary minerals that are the main carriers of K are
potassium feldspar and mica (biotite, muscovite, and
illite). Profile average K,O/TiO, and K,O/ZrO, both
show linear declines with increasing precipitation, al-
though the coefficients of determination are not as high
as for the other elements (Fig. 7). The lower coefficient
of determination for K vs. precipitation could be be-
cause of the fact that K is found in both weatherable
(mica) and resistant (potassium feldspar) minerals.

Concentrations of soluble trace elements, relative to
stable Zr, are consistent with the major element weath-

ering ratios (Fig. 8). Strontium substitutes for Ca in
Ca-bearing minerals and shows a decline in abundance
relative to Zr with mean annual precipitation. Both Ba
and Rb substitute for K in potassium feldspar and mica
and both elements show significant decreases in abun-
dance with mean annual precipitation, although neither
has the degree of explanation shown for K.

Ruhe (1984b) showed that profile average clay con-
tents of loess-derived soils in the Mississippi River valley
decrease with increasing precipitation. He attributed
this counterintuitive finding to the effects of local sedi-
ment supply rather than any pedogenic process. Because
total (as opposed to dithionite or oxalate-extractable)
Al,O; and Fe,0; are highly correlated with clay content
(Markewich et al., 1998; Mason and Jacobs, 1998; Muhs
and Bettis, 2000), these values, normalized to TiO,, tend
to be highest in soil Bt horizons (Fig. 2 and 3; Table 1).
Profile average Al,O5/TiO, and Fe,05/TiO, values are
thus indirect measures of profile average clay content.
In our transect, profile average Al,O5/TiO, and Fe,O;/
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Fig. 6. Profile average values of CaO/TiO,, MgO/TiO,, CaO/ZrO,, and MgO/ZrO, as a function of mean annual precipitation in the transect.
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Fig. 7. Profile average values of K,O/TiO,, Na,0/TiO,, K,0/ZrO,, and Na,0/ZrO, as a function of mean annual precipitation in the transect.
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Fig. 8. Profile average values of Sr/Zr, Ba/Zr, and Rb/Zr as a function of mean annual precipitation in the transect.

TiO, values are negatively correlated with precipitation,
in agreement with Ruhe’s finding of higher clay contents
in the northern part of the valley (Fig. 9).

DISCUSSION

Profile average values of CaO/TiO,, MgO/TiO,, K,0O/
TiO,, Na,O/TiO,, Sr/Zr, Ba/Zr, and Rb/Zr in loess-de-
rived soils of the Mississippi River Valley all show de-

creases as a function of precipitation. The trends for
the major elements are unchanged if Zr is used as a
stable index element rather than Ti. Because these soils
all lack carbonates, the systematic decreases in CaO/
TiO, and Sr/Zr are probably because of greater deple-
tion of noncarbonate, Ca-bearing minerals, such as
hornblende or Ca-plagioclase in the southern part of
the valley. Hornblende and biotite weathering might
explain the similar trend for MgO/TiO, values.
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Muhs and Bettis (2000).

Both feldspars and micas are common primary miner-
als in Mississippi Valley loess (Snowden and Priddy,
1968; Pye and Johnson, 1988; Markewich et al., 1998).
Previous studies suggest that plagioclase feldspar has un-
dergone depletion in modern soils in at least the south-
ern part of the valley (Krinitzsky and Turnbull, 1967;
Pye and Johnson, 1988; and Markewich et al., 1998).
The trend of decreasing Na,O/TiO, with increasing pre-
cipitation supports these observations, although some
of the Na depletion may also come from alteration of
hornblende. Both potassium feldspar and mica are carri-
ers of K, Ba, and Rb. Theoretical concepts of mineral
stability (such as the Goldich stability series, discussed
in Birkeland, 1999, p. 430) combined with empirical
studies of rock and loess weathering (Colman, 1982,
p- 51 and Markewich et al., 1998) suggest that potassium
feldspar is a fairly stable mineral in midlatitude soils.
Therefore, we interpret the declines in K,O/TiO,, Ba/Zr,
and Rb/Zr as a function of increasing precipitation to
be primarily the result of mica weathering. Mica is found
in both the silt and clay fractions of Mississippi River
Valley loess (Snowden and Priddy, 1968).

Many soil climosequence studies, including those con-
ducted in loess, have shown an increase in clay content
with increasing precipitation (Birkeland, 1999, p. 430).
The usual interpretation of this trend is that greater
precipitation produces greater chemical weathering of

primary, silt-sized minerals and alteration to clay miner-
als. Because Ca, Mg, Na, and K all show depletions
relative to either stable Ti or Zr in the more humid
southern part of the Mississippi Valley, we would have
expected that this part of the valley should also show
higher clay contents, the usual products of chemical
weathering. However, both Ruhe’s (1984b) and our re-
sults show the opposite trend. Although local sedimen-
tation variability (e.g., loess with higher clay contents
at certain points along the transect) could explain this
trend, a more random pattern of geographic variability
might be expected. Furthermore, deep loess profiles
in Illinois show Al,O; concentrations and ALO,/TiO,
values similar to those in Mississippi (Fig. 2, 3, and 4).
This is supported by Ruhe’s (1984b) data, which show
that clay contents in the C horizons of loess-derived
soils have no systematic relation to latitude. We con-
clude from these observations that soils in the northern
part of the Mississippi River Valley may have received
secondary additions of clay-rich sediment, a conclusion
also reached by Mason and Jacobs (1998), based on
mass balance calculations of chemical data from mod-
ern, loess-derived soils.

As pointed out by Mason and Jacobs (1998), there
could be at least two explanations for the clay enrich-
ment in northern Mississippi Valley soils. One possibil-
ity is that during the final stages of Peoria Loess sedi-
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mentation, fine-grained loess derived from a distant
source (as well as coarse-grained loess from the local
source) was deposited in the upper Mississippi Valley.
Recent particle-size and geochemical data suggest that
clay and fine silt-enriched dust from a source west of the
Missouri River (most likely Nebraska) was deposited in
western Iowa during the final stages of Peoria Loess
sedimentation (Muhs and Bettis, 2000). It is possible
that even finer-grained components of loess from this
distant source, or from western Iowa, traveled as far
east as western Illinois and added clay minerals enriched
in Al and Fe to coarser-grained loess derived from the
Mississippi River. Radiocarbon ages show that Peoria
Loess deposition in Nebraska did not cease until ~10 500
“C yr BP (Maat and Johnson, 1996; Muhs et al., 1999),
similar to or younger than the final stages of loess depo-
sition in Illinois (Frye et al., 1968; Grimley et al., 1998).
This hypothesis could be tested by Pb-isotope composi-
tions of coarse silt, fine silt, and clay fractions of loess
in northern Illinois, following the methods outlined by
Aleinikoff et al. (1998, 1999).

Another explanation for the high clay mineral content
of the northern valley soils is that there have been sec-
ondary, fine-grained dust additions to soil surfaces dur-
ing the Holocene. There is stratigraphic and geochrono-
logic evidence for Holocene loess deposition (referred
to as the Bignell Loess; Fig. 1) in the Great Plains region
of Nebraska, Kansas, and Colorado (Pye et al., 1995;
Maat and Johnson, 1996; Muhs et al., 1999). Even where

the Bignell Loess is not identified as a discrete strati-
graphic unit in the field, both silt and clay mineralogical
differences show that it comprises the upper part of
modern soils in some areas of Nebraska (Kuzila, 1995).
Because the Great Plains region lies upwind of the
northern Mississippi River Valley (Fig. 1), fine-grained
components of Bignell Loess could have traveled east-
ward to Illinois and Iowa. The sediment record from
Elk Lake, MN contains Al-rich clays and fine silts that
are interpreted to be distant-source eolian sediments
that date from a mid-Holocene warm and dry period
(Dean, 1997).

It is difficult to determine whether fine-grained eolian
additions to soils of the northern Mississippi River Val-
ley occurred during the last glacial period or the Holo-
cene, and it is possible that deposition occurred during
both periods. Use of immobile element ratios or Pb-iso-
topic compositions of potassium feldspars could identify
a secondary source that is distinct from the local source,
but such data say little about the timing of secondary,
fine-grained dust additions. The addition of such mate-
rial, however, most likely came from a source west of
the Mississippi River. The distribution of both Pleisto-
cene and Holocene loess to the west of the Mississippi
River Valley and dominantly westerly modern winds
and paleowinds (Fig. 1) could explain why soils in Illi-
nois were affected by fine-grained dust additions, but
soils south of Illinois were not.

Despite the possible freshening effect that fine-
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grained late-glacial or Holocene additions of loess may
have had, northern valley soils nevertheless show evi-
dence of chemical weathering. Ratios of Na,O/TiO,, a
proxy for degree of plagioclase depletion, are shown as
a function of depth for four pedons in the northern
valley in Fig. 10; also plotted is the range of Na,O/
TiO, for unweathered loess in eastern Nebraska (same
localities as those in Fig. 9). These plots show that in
the upper horizons of all pedons, Na,O/TiO, values are
lower than the range of values for eastern Nebraska
loess. Thus, even in the northern valley, where weather-
ing rates may be slowest, the rate of plagioclase deple-
tion has kept ahead of the rate of younger eolian ac-
cretion.

CONCLUSIONS

Profile average weathering ratios of mobile elements
(Ca, Mg, Na, K, Sr, Ba, and Rb) to immobile elements
(Ti and Zr) show that loess-derived soils of the Missis-
sippi River Valley are more chemically weathered in
the humid, southern part of the valley. Depletion of the
primary minerals calcite, dolomite, hornblende, plagio-
clase, and mica are the likely causes of these chemical
trends. Greater alteration of primary minerals in the
southern part of the valley may be a function of higher
rainfall and warmer temperatures, which promote
greater chemical weathering.

If primary mineral weathering is greater in the humid
southern part of the valley, clay mineral content is ex-
pected to be higher there than in the drier, northern
part of the valley. Both Al and Fe are highly correlated
with clay mineral content. Our studies indicate higher
profile average Al and Fe relative to Ti or Zr in the
northern part of the valley. These results, while unex-
pected, are consistent with similar chemical and particle-
size data reported by other workers. The trend observed
in this study suggests that the northern valley soils may
have received fine-grained secondary additions of clay-
sized particles from a distant source west of the Missis-
sippi River, based on modern and paleowind directions.
Testing of the distant-source hypothesis could be accom-
plished with Pb-isotopic analyses of different size frac-
tions of the loess and soils (Aleinikoff et al., 1998, 1999).

Our results differ from those of Ruhe (1984b,c), who
concluded that climate had little impact on modern
loess-derived soils of the Mississippi River Valley and
that soils in this region have experienced little chemical
weathering. Primary mineral alteration is shown by a
number of elemental ratios, and all show a high degree
of correlation with mean annual precipitation. However,
a trend of higher clay content with northern valley soils
suggests that the assumption of a uniform parent mate-
rial for all soils along the valley may not be valid. Thus,
extreme care must be used in interpreting chemical data
of paleosols for paleoclimatic interpretations. Neverthe-
less, the results indicate that major and trace element
weathering ratios, when utilized with caution, could be
useful paleoclimatic indicators in the interpretation of
loess-derived paleosols, such as the Farmdale and San-
gamon soils.
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