
ABSTRACT

Loess in eastern Colorado covers an esti-
mated 14 000 km2, and is the westernmost
part of the North American midcontinent
loess province. Stratigraphic studies indicate
there were two periods of loess deposition in
eastern Colorado during late Quaternary
time. The first period spanned ca. 20 000 to
12 000 14C yr B.P. (ca. 20–14 ka) and corre-
lates reasonably well with the culmination and
retreat of Pinedale glaciers in the Colorado
Front Range during the last glacial maximum.
The second period of loess deposition oc-
curred between ca. 11000 and 9000 14C yr B.P.
This interval may be Holocene or may corre-
late with a hypothesized Younger Dryas
glacial advance in the Colorado Front Range.
Sedimentologic, mineralogic, and geochemical
data indicate that as many as three sources
could have supplied loess in eastern Colorado.
These sources include glaciogenic silt (derived
from the Colorado Front Range) and two
bedrock sources, volcaniclastic silt from the
White River Group, and clays from the Pierre
Shale. The sediment sources imply a generally
westerly paleowind during the last glacial
maximum. New carbon isotope data, com-
bined with published faunal data, indicate
that the loess was probably deposited on a cool
steppe, implying a last glacial maximum July
temperature depression, relative to the pre-
sent, of at least 5–6 °C. Overall, loess deposi-

tion in eastern Colorado occurred mostly to-
ward the end of the last glacial maximum, un-
der cooler and drier conditions, with generally
westerly winds from more than one source.

INTRODUCTION

In recent studies of Quaternary climate change
there has been a renewed interest in loess. Much
of this attention stems from new studies of long,
possibly continuous, loess sequences that contain
detailed records of Quaternary glacial-inter-
glacial cycles, thought to be a terrestrial equiva-
lent to the foraminiferal oxygen isotope record in
deep-sea sediments (e.g., Hovan et al., 1989).
Loess is also a direct record of atmospheric cir-
culation, and identification of loess paleowinds in
the geologic record can test atmospheric general
circulation models (Broccoli and Manabe, 1987;
COHMAP Members, 1988; Kutzbach et al.,
1993, 1998; Bartlein et al., 1998).

Most previous work on North American
loess has focused on deposits adjacent to valleys
that drained the Laurentide ice sheet (Ruhe,
1983; Follmer, 1996). Fewer studies have been
conducted on the origin, stratigraphy, and age of
loess in the subhumid to semiarid Great Plains
area of Colorado, Nebraska, and Kansas, found
to the west of glaciated terrain (Fig. 1). Within
the Great Plains region, loess in northeastern
Colorado has received the least attention (see
review in Madole, 1995), despite the fact that
the area covered by this sediment is ~14 000
km2 (Fig. 2). In this paper we present new data
on the stratigraphy, geochronology, sedimentol-
ogy, geochemistry, stable isotope composition,
and paleoclimatic significance of northeastern
Colorado loess.

PREVIOUS STUDIES

Three late Quaternary loess units, from oldest
to youngest, the Gilman Canyon Formation, and
the Peoria and Bignell Loesses, have been iden-
tified and correlated on the Great Plains (Schultz
and Stout, 1945; Frye and Leonard, 1951). The
Gilman Canyon Formation is thin (usually <2 m)
and typically has an organic-rich soil developed
throughout. It is overlain by Peoria Loess, which
is the thickest (to ~50 m) and areally most exten-
sive of the Great Plains loess units. A dark,
organic-rich buried soil, referred to as the Brady
soil, caps the upper part of the Peoria Loess,
separating it from the overlying Bignell Loess.
The Bignell Loess is usually no more than ~2 m
thick, and occurs sporadically.

Most of the recent age estimates of Great
Plains loesses have been from localities in
Nebraska. In this paper, all radiocarbon ages are
given in 14C years B.P. and all thermolumines-
cence ages are given in thousands of calendar
years (ka). Based on radiocarbon ages of soil
organic matter reported by Martin (1993), May
and Holen (1993), and Maat and Johnson
(1996), and thermoluminescence (TL) analyses
by Pye et al. (1995) and Maat and Johnson
(1996), the age of the Gilman Canyon Forma-
tion is ca. 36 000 to ca. 22 000 14C yr B.P. Char-
coal from spruce (Picea), as well as bone,
snails, and detrital organic matter found within
Peoria Loess give ages ranging from about
21 000 to 10 000 14C yr B.P. (Wells and Stewart,
1987; Martin, 1993; May and Holen, 1993;
Feng et al., 1994; Maat and Johnson, 1996).
Direct dating of Peoria Loess in Nebraska, using
TL methods, gives ages ranging from ca. 24 to
12 ka (Pye et al., 1995; Maat and Johnson,
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1996). Direct dating of probable Peoria Loess at
a locality in eastern Colorado using TL methods
gives ages ranging from ca. 20 to 15 ka (Forman
et al., 1995). Maximum-limiting ages of the
Bignell Loess are based on radiocarbon ages of
organic matter from the Brady soil, and range
from ca. 11 000 to 8000 14C yr B.P. (Martin,
1993; Maat and Johnson, 1996). Direct dating
of the Bignell Loess using TL gives ages rang-
ing from ca. 9 to 3 ka (Pye et al., 1995; Maat and
Johnson, 1996).

The origin of loess on the Great Plains has
been debated for more than 50 yr. The un-
certainty of loess origins in this region stems
from the fact that although eolian silt is wide-
spread (Fig. 1) and often thick (to ~50 m), it is
not directly tied to the Laurentide ice sheet.
Although local occurrences of thin loess in parts
of the Great Plains have clear links to smaller
drainages (e.g., Reheis, 1980), large rivers that
drained the Laurentide ice sheet occur mostly to
the east of the Great Plains. Welch and Hale
(1987) reviewed all of the evidence for loess ori-

gins in Kansas, and thought that loess in that
state (and by extension, probably elsewhere in
the Great Plains) was derived from some com-
bination of Rocky Mountain glacial outwash,
dune sand, and deflation of bedrock sources
such as the Ogallala Formation.

METHODS

Loess in northeastern Colorado was exam-
ined in road cuts, natural exposures, and auger
borings at ~100 localities (Fig. 2). Samples for
particle size, carbonate, mineralogical, and geo-
chemical analyses were taken well below the
zone of pedogenesis, usually at depths of ~2 m.
At two localities in Colorado, and at Bignell
Hill, Nebraska, samples of buried soils were
collected for radiocarbon dating and carbon iso-
tope analyses. Accelerator mass spectrometry
(AMS) radiocarbon ages were determined on
humic acid extractions from organic matter in
buried soils (Table 1). Detailed descriptions of
the radiocarbon sample extraction steps were

given in Abbott and Stafford (1996); radio-
carbon abundance was measured by AMS at
Lawrence Livermore National Laboratory. For
carbon isotope analyses, splits of bulk buried
soils or loess samples were leached of carbon-
ates with 6N HCl, then washed and dried. The
samples were then combusted at 850 °C for 4 hr
in the presence of CuO in vacuo in individual
ampules. Resulting contaminating gases were
removed through an automated trapping box,
and the purified CO2 was analyzed on a triple-
collecting gas-source mass spectrometer. Re-
sults are reported in delta (δ) notation relative to
Peedee belemnite (PDB). Particle size analysis
of most samples was done by a sedigraph parti-
cle size analyzer after removal of organic matter
and carbonates and dispersion with Na-pyro-
phosphate. A few samples were analyzed by the
hydrometer method but with similar pretreat-
ments. Mineralogical and geochemical studies
of loesses and possible source sediments were
conducted using X-ray diffraction and energy-
dispersive X-ray fluorescence methods, respec-
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TABLE 1. RADIOCARBON AGES OF HUMIC ACID FRACTIONS OF PALEOSOLS IN LOESS

Section Field number Unit Depth University of Lawrence Livermore Radiocarbon age Calendar age*
(m) Colorado number National Laboratory (14C yr B.P.) (yr B.P., 2σ)

number

Last Chance, LI-12-9 Buried soil 3.55 NSRL-2756 CAMS-23133 21 060 ± 100 -–-
Colorado LI-12-10 Buried soil 4.05 NSRL-2757 CAMS-23134 22 090 ± 100 -–-

LI-12-11 Buried soil 4.55 NSRL-2758 CAMS-23135 22 940 ± 120 -–-

Beecher Island, LI-201 Modern soil A horizon 0.07 NSRL-2751 CAMS-23128 1480 ± 60 1284–1513
Colorado LI-202 Modern soil Bw1 horizon 0.22 NSRL-2752 CAMS-23129 6680 ± 60 7394–7585

LI-203 Modern soil Bw2 horizon 0.43 NSRL-2753 CAMS-23130 8160 ± 60 8955–9361
LI-204 Modern soil BC horizon 0.70 NSRL-2754 CAMS-23131 9250 ± 60 10 036–10 372
LI-207 Buried soil A1 horizon 1.63 NSRL-2072 CAMS-17300 11 090 ± 60 12 849–13 159
LI-208 Buried soil A2 horizon 1.88 NSRL-2073 CAMS-17297 11 810 ± 50 13 555–14 024
LI-229 Buried soil Btk1 horizon 12.24 NSRL-2755 CAMS-23132 20 520 ± 90 -–-

Bignell Hill, BH-5 Modern soil A horizon 0.06 NSRL-2954 CAMS-26399 1360 ± 60 1152–1366
Nebraska BH-6 Modern soil A horizon 0.19 NSRL-2955 CAMS-26400 1400 ± 50 1188–1393

BH-1 Brady soil, upper part 1.94 NSRL-2804 CAMS-24344 10 070 ± 60 11 007–12 054
BH-2 Brady soil, lower part 2.17 NSRL-2805 CAMS-24345 10 490 ± 60 12 176–12 590
BH-7 Gilman Canyon Formation 50 NSRL-2956 CAMS-26401 30 770 ± 210 -–-
BH-3 Gilman Canyon Formation 51.5 NSRL-2806 CAMS-24346 40 600 ± 1100 -–-

*Calculated using conversion programs of Pearson and Stuiver (1993) and Stuiver and Pearson (1993).



tively. Carbonate content was measured by
either manometric or gravimetric methods.

STRATIGRAPHY AND 
GEOCHRONOLOGY OF LOESS IN
NORTHEASTERN COLORADO

Loess in northeastern Colorado is the western-
most part of an almost continuous loess blanket
in the North American midcontinent (Fig. 1).
Loess is distributed widely but discontinuously
to the southeast of the South Platte River, with
only isolated occurrences to the north of this
major drainage (Fig. 2). Interpretation of limited
well log data indicates that Colorado loess may
be as thick as ~40 m (Weist, 1964), but the
thickest deposit observed in this study, at
Beecher Island (Fig. 3), is ~12 m. Thicknesses
of 2–5 m are more typical, and in the north-
easternmost part of the study area, thin loess oc-
curs in a patchy distribution on the surface of
Ogallala Formation bedrock.

Although there are few exposures of loess in
eastern Colorado, two road cuts, near Last
Chance and Beecher Island, give some insight
into loess deposition history in the region (Figs.
2 and 3). Surface loesses in eastern Colorado
and western Nebraska are underlain by buried
soils, which can be identified on the basis of
high organic matter and low carbonate contents
in surface (A) horizons and relatively high clay
and carbonate contents in subsurface (Bt, Btk,
or Bk) horizons (Figs. 4 and 5). Humic acid
extractions from organic matter in buried soils
provide the basis for the radiocarbon ages re-
ported here.

We recognize the limitations of AMS 14C age
estimates of humic acid extractions. Some of
the problems with interpretation of radiocarbon

analyses of buried soil organic matter were
summarized by Martin and Johnson (1995),
Wang et al. (1996), and Abbott and Stafford
(1996). In studies conducted by Martin and
Johnson (1995), wherein total, humic acid, and
residue extractions of several buried soils were

analyzed, differences are reported for both
extractions in the same laboratory and similar
extractions from different laboratories. Unfortu-
nately, no systematic relation emerged from
these studies that could indicate the most reli-
able organic matter fraction. Modeling studies
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by Wang et al. (1996) indicate that radiocarbon
ages of buried soil organic matter could over-
estimate the time of burial. This hypothesis is
supported by our own studies and those of
Abbott and Stafford (1996). Analysis of humic
acids extracted from the upper parts of modern
soil A horizons at two localities gives apparent
AMS 14C ages of ca. 1400 yr B.P. (Fig. 3).
These data indicate that buried soil radiocarbon
ages may overestimate the time of initiation of
overlying loess deposition by as much as
1–2 k.y. However, a thorough AMS 14C study of
lake sediments and adjacent watershed soils and
peats led Abbott and Stafford (1996) to con-
clude that humic acid extractions are the best
alternative to plant macrofossils for AMS 14C
dating because: (1) this fraction is usually present
in large enough amounts for dating; (2) unlike
humin compounds, humic acids are formed
from lower molecular weight organic com-
pounds that are less likely to be composed of re-
worked refractory carbon; and (3) chemical sep-
aration of humic acids from refractory organic
matter and carbon-bearing clays is possible. We
take a conservative approach in this study,
where radiocarbon ages of buried soils are inter-
preted to be maximum limiting ages for any
overlying deposits, and minimum limiting ages
for the parent loess and any underlying deposits.

Loess of moderate thickness (~3–5 m) is
typical of the area near the town of Last Chance,
Colorado (Fig. 3). In a road-cut exposure, a pos-
sible clayey residuum from the Pierre Shale is
overlain by a clayey silt deposit in which a soil
with a Bt/Btk/Bk profile developed (Fig. 4), per-
haps mixed with part of the clayey residuum.
This buried soil is overlain by another possible

buried soil that is not easily seen in the field, but
that may be recognized on the basis of subtle
organic matter and clay content trends (Fig. 4).
Loess overlies this possible weak buried soil,
and the modern soil developed in this loess has
an A/Btk1/Btk2/C profile. Humic acids from the
weak buried soil at a depth of ~3.5 m give strati-
graphically consistent AMS radiocarbon ages
ranging from ca. 23 000 to 21 000 14C yr B.P.
(Fig. 3), suggesting that loess deposition began
sometime after ca. 21 000 14C yr B.P.

Thicker loess is found to the east, near the
Kansas and Nebraska state lines. At Beecher
Island, gray-green calcareous clays of unknown
origin are overlain by eolian(?) sands and silts in
which a strongly expressed buried soil devel-
oped (Fig. 3). This buried soil has a subangular
blocky to angular blocky structure with well-
expressed clay films, and as much as 22% clay
in the Bt horizon (Fig. 5). About 10 m of what is
interpreted to be Peoria Loess overlies this
buried soil, although a possible thin buried soil,
with strong, coarse prismatic structure and
12%–14% clay, is found at a depth of ~8 m.
Between a depth of ~1.5 m and 3.5 m, there is a
thick, though minimally developed, buried soil
with an A1/A2/AB/Bw1/Bw2/C profile (Fig. 5).
This buried soil is overlain by stratified eolian
silt and sand with a modern soil, characterized
by an A/Bw1/Bw2/C profile, in its upper part.
Land snails were found in both the upper part of
Peoria Loess and in the younger loess above the
uppermost buried soil. All snail specimens were
identified by G. Goodfriend (Carnegie Institu-
tion) as Succinea grosvenoriLea.

Humic acids from the upper part of the lower-
most buried soil at Beecher Island give a radio-

carbon age of 20 520 ± 90 14C yr B.P. This age
indicates that most loess deposition at Beecher
Island may have occurred at about the same time
as that at Last Chance. Humic acids from the A1
and A2 horizons of the buried soil between 1.5
and 3.5 m depth at Beecher Island give ages of
11 090 ± 60 and 11 810 ± 50 14C yr B.P., respec-
tively. Collectively, the radiocarbon ages indi-
cate that most (Peoria) loess deposition occurred
between about 20 000 and 12 000 14C yr B.P.
(Fig. 3). Radiocarbon age determinations were
also made on humic acids from the A, Bw1,
Bw2, and upper C horizons of the modern soil at
Beecher Island, in order to provide a minimum
age for the youngest sandy loess at this locality.
These ages are consistently younger upward
through the modern soil profile, and suggest that
the youngest loess was deposited between about
11 000 and 9000 14C yr B.P.

On the basis of the stratigraphic position of
the youngest loess at Beecher Island, it was ex-
pected that the bracketing buried soil radio-
carbon ages would suggest a correlation with
the Bignell Loess of Nebraska, recently shown
by TL and radiocarbon methods to be Holocene
age (Pye et al., 1995; Maat and Johnson, 1996).
In order to test whether interlaboratory differ-
ences in dating methods might account for the
differences in ages, we also dated humic acids
from organic matter in Gilman Canyon buried
soils, the Brady soil, and the modern soil at
Bignell Hill, Nebraska, the type locality for the
Brady soil and the Bignell Loess (Fig. 3). The
results are in good agreement with both conven-
tional radiocarbon and TL ages reported by
Maat and Johnson (1996) for this locality. The
new radiocarbon results from Bignell Hill indi-
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cate that Peoria Loess deposition in western
Nebraska may have begun earlier (ca. 30 000
14C yr B.P. as opposed to ca. 20 000 14C yr B.P.)
and ended slightly later (ca. 10500 14C yr B.P.,
compared to ca. 11800 14C yr B.P.) than in 
Colorado. In addition, the new AMS radio-
carbon ages confirm that the Bignell Loess is
Holocene age. Therefore, it appears that the
youngest loess at Beecher Island could be truly
older than the Bignell Loess at its type locality.
An alternative explanation is that the organic
matter that gave ages of ca. 9000 and 8000 14C
yr B.P. from the Bw2 and C horizons of the
modern soil is not derived from in situ organic
matter accumulation during pedogenesis, but
rather is detrital organic matter transported to
the site during loess fall. In this interpretation,
the upper loess could be of early or mid-Holo-
cene age and correlative with the Bignell Loess.
However, the humic acid extraction method
used minimizes the potential danger associated
with this kind of problem (Abbott and Stafford,
1996). Another explanation is that the upper-
most loess at Beecher Island is correlative with
the Bignell Loess in Nebraska, but loess deposi-
tion was time transgressive. Because of these

alternative explanations, the older loess at Beecher
Island, bracketed by ages of ca. 20 000 and
11 810 14C yr B.P., is correlated with the Peoria
Loess of Nebraska and Kansas, but the youngest
loess at Beecher Island is informally referred to
as the Beecher loess.

A common soil-mapping unit in loess depos-
its of the western Great Plains is the Kuma
series, a Pachic Argiustoll. Typical descriptions
of the Kuma series indicate that surface hori-
zons are developed in loess, but that the lower B
horizon of the soil is developed in an older
loess. These descriptions led Welch and Hale
(1987) to speculate that in Kansas, the soil is
developed in thin Bignell Loess over thicker
Peoria Loess. The Kuma series is also mapped
in Colorado and western Nebraska. Plots of
organic carbon as a function of depth in Kuma
soils from eastern Colorado and Nebraska and
Kansas counties immediately to the east of Colo-
rado show two maxima, one at the surface and
the other at shallow depths (Fig. 6). It is sug-
gested that the Kuma series in Colorado and
adjacent parts of Nebraska and Kansas may rep-
resent the two periods of loess deposition, as
proposed by Welch and Hale (1987).

SEDIMENTOLOGY OF LOESS IN
NORTHEASTERN COLORADO

Loess of northeastern Colorado has sedi-
mentologic characteristics that are distinct from
other eolian sediments in the Great Plains. The
average particle size is fine silt, as opposed to
an average particle size of medium silt for loess
of adjacent Kansas (Fig. 7). However, Colorado
loess shows a much wider range of mean par-
ticle sizes, and individual samples are much
less well sorted than Kansas loess. Colorado
eolian sands and loess deposits also show no
overlap in particle size or degree of sorting,
suggesting that they are not different facies of
the same deposit, but rather distinct sedimen-
tary bodies with different origins.

Pye (1987) summarized loess particle size
data from many parts of the world and most
loesses show a prominent mode in the 20–
30 µm range with a tail to the fine side. Particle
size histograms of Colorado loess commonly
show a mode in the same size range, but the
clay (<4 µm) fraction also shows a prominent
mode (Fig. 8). Such a distinct mode following
a more typical fine tail on particle size histo-
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grams suggests a clay-rich sediment source dif-
ferent from that of the silt fraction. This inter-
pretation is supported by the spatial distribution
of clay in eastern Colorado loess, which shows
a distinct northeastward-diminishing trend
(Fig. 9). The clay content is generally <10% in
the northeastern part of the study area, and is
generally >30% in the southwestern part. This
spatial pattern suggests a clay-rich source in the
southwestern or western parts of the study area,
and is consistent with the relatively low clay
contents reported by Swineford and Frye
(1951) in western Kansas loess. It is possible,
even likely, that the clay-sized particles were
transported as silt-sized aggregates of clay, in
much the same manner as suggested for the
clay-rich eolian parna deposits of Australia
(Dare-Edwards, 1984).

MINERALOGY AND GEOCHEMISTRY
OF LOESS AND SOURCE SEDIMENTS

Mineralogical and geochemical studies of
eastern Colorado loess were conducted in order
to make comparisons to Nebraska loess, Colo-
rado dune sands, and possible source sediments.
Loess in eastern Colorado could have its origins
in glacial silt derived from Front Range glaciers,
which were more extensive during late Pinedale
(late Wisconsin) time (Fig. 2). Meltwaters from
these glaciers were drained by the South Platte
River and its tributaries (Madole et al., 1998).
Another possible source sediment for eastern

Colorado loess is the White River Group
(Eocene-Oligocene), found over much of north-
ern Colorado (Fig. 2), as well as southwestern
South Dakota, western Nebraska, and south-
eastern Wyoming. Denson and Bergendahl
(1961) reported that the White River Group,
which is mostly volcaniclastic, contains be-
tween 63% and 86% silt in the noncarbonate
fraction, and has carbonate contents of 20%–
30%. If either glacial silt carried by the South
Platte River or volcaniclastic sediments from
the White River Group were sources, northerly
or northwesterly paleowinds would be required,
because these sources are situated mostly to the
north of loess occurrences. However, the high
clay content of Colorado loess argues for contri-
butions from a clay-rich source, such as
residuum from the Pierre Shale. This rock unit
is found at the surface over a wide area immedi-
ately to the west and southwest (and over lesser
areas to the north) of the westernmost loess in
the study area (Scott, 1978; Sharps, 1980), and
would therefore require a westerly or south-
westerly wind.

Mineralogical analyses indicate that quartz,
K-feldspar, plagioclase, calcite, and dolomite
are all important components in eastern Colo-
rado loess. Quartz is more abundant in loess
compared to eolian sand in eastern Colorado.
Carbonates, minimal in eolian sand in this
region, are abundant in loess, as determined by
both manometric and X-ray diffraction methods.
Total carbonate (calcite plus dolomite) contents

range from 3% to 12%, although most samples
analyzed have values between 7% and 9%.
Calcite-to-dolomite values range from 1 to 4;
most values are between 1.2 and 1.8. Modern
fine-grained (silt and clay rich) overbank allu-
vium of the South Platte River and sediments of
both the White River Group and the Pierre Shale
all contain carbonates, so the presence of car-
bonates says little about source sediments.

Geochemical data reinforce the sedimento-
logical evidence indicating that eolian sand and
loess in eastern Colorado are distinctly different
sedimentary bodies. Loess has much greater
abundances of Ca and Sr compared to eolian
sand (Fig. 10). The much higher Ca/Sr values in
loess compared to eolian sand also indicate that
these elements are found in different minerals in
the two sediments. Carbonates are important
minerals in loess but not in eolian sand, so much
of the Ca and Sr in eolian sand are most likely
found in noncarbonate minerals. K and Rb have
much lower concentrations in loess compared to
eolian sand, but the two sediments have similar
K/Rb values. This observation suggests that K
and Rb are found in the same mineral, likely
K-feldspar, but that K-feldspar is more abun-
dant in eolian sand. X-ray diffraction analyses
confirm that loess has lower K-feldspar contents
than eolian sand in eastern Colorado, supporting
the K and Rb data. Ti and Zr concentrations, and
Ti/Zr values, are higher in loess than in eolian
sand. Collectively, the data indicate that eastern
Colorado loess has a different mineralogy than
eolian sand found in the same region.

Muhs et al. (1996), using mineralogical, geo-
chemical, and sedimentological data, suggested
that the most likely source of most eolian sand
in eastern Colorado is the South Platte River. In
contrast, fine-grained overbank alluvium from
the South Platte River, consisting of fine sand,
silt, and clay, has geochemical characteristics
distinct from those of eastern Colorado loess
(Fig. 11). Colorado loess is higher in Ca, and
lower in Rb, Ti, and Zr concentrations than
South Platte River alluvium. Samples of the
White River Group collected in northern Colo-
rado show a wide range of Ca, Sr, K, and Rb
values, but overlap the range of values for east-
ern Colorado loess (Fig. 11). Ti and Zr concen-
trations of eastern Colorado loess are intermedi-
ate between White River Group sediments and
South Platte River alluvium. We conclude from
these data that sediments from both the South
Platte River and the White River Group must be
considered as possible source sediments for
eastern Colorado loess.

Although loess appears to form a nearly con-
tinuous blanket from Ohio to Colorado (Fig. 1),
few studies have attempted interregional com-
parisons of loess composition. Peoria Loess

LATE QUATERNARY LOESS IN NORTHEASTERN COLORADO: PART I

Geological Society of America Bulletin, December 1999 1867

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
ta

nd
ar

d 
de

vi
at

io
n 

(φ
)

1 2 3 4 5 6 7 8

Mean particle size (φ)

Western Kansas 
loess

Eastern Colorado
loess

Eastern Colorado
eolian sand

M
ed

iu
m

sa
nd

F
in

e
sa

nd

V
er

y 
fin

e
sa

nd

C
oa

rs
e

si
lt

M
ed

iu
m

si
lt

F
in

e 
si

lt

V
er

y 
fin

e
si

lt

Figure 7. Plot showing mean particle size and apparent sorting for northeastern Colorado
loesses compared to Kansas loesses and northeastern Colorado eolian sands. Colorado loess
data are from this study, Kansas loess data are from Swineford and Frye (1951), and Colorado
eolian sand data are from Muhs et al. (1996).



MUHS ET AL.

1868 Geological Society of America Bulletin, December 1999

north and south of the Platte River in Nebraska
and adjacent northern Kansas was sampled
(Fig. 12) to compare with eastern Colorado
loess. Results of geochemical analyses support
the findings of Winspear and Pye (1995) that
there is no significant difference in composition
between loess found north and south of the
Platte River in Nebraska and adjacent Kansas
(Fig. 13). Ca and Sr (which largely reflect car-
bonate contents), K and Rb (found in mica and
K-feldspar), and Ti and Zr (found in heavy min-
erals) show no significant differences on either
side of the Platte River. Similar findings for
other elements in Nebraska loess reported by
Winspear and Pye (1995) led them to hypothe-
size the existence of an ancestral North Platte
River to the north of the northernmost occur-
rences in Nebraska that served as the source for
all the loess found to the south. However, the

presence of loess-mantled, probable late Wis-
consin river terraces in the North Platte, South
Platte, and Platte River valleys (Swinehart et al.,
1994), suggests that all three rivers were situ-
ated fairly close to their present positions during
the time of Peoria Loess deposition, and would
require a loess source located elsewhere.

Colorado loess differs only slightly from
Nebraska loess in its chemical composition. Con-
centrations of Ca and K, and therefore Ca/Sr and
K/Rb values, are somewhat higher in Colorado
than in Nebraska (Fig. 13). Ti and Zr values are
not significantly different between Colorado and
Nebraska, and indicate roughly similar heavy
mineral compositions. Despite the minor differ-
ences in Ca and K concentrations, however, the
overall compositions of Colorado and Nebraska
loess are similar, and suggest some overlap in
source sediments for the two regions.

CARBON ISOTOPE COMPOSITION 
OF ORGANIC MATTER IN LOESS 
AND SOILS

Recent studies have shown that carbon iso-
topes in organic matter in loess and buried
loess-derived soils can provide data for paleo-
climatic interpretations over the past inter-
glacial-glacial cycle (Wang et al., 1997; Hatté
et al., 1998). Two types of photosynthetic path-
ways, C3 and C4, fractionate carbon isotopes in
distinctly different ways. C3 plants, which in-
clude cool-season grasses and all trees, have
δ13C values that range from about –22‰ to
about –34‰ and average about –26‰, whereas
C4 plants, which include most warm-season
grasses, range from about –9‰ to about –20‰
and average about –12‰ (O’Leary, 1988). Teeri
and Stowe (1976) found that the relative pro-
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portion of C4 grasses in North America is posi-
tively correlated with summer temperatures and
length of growing season. Fredlund and Tieszen
(1997a) and Follett et al. (1997) measured the
carbon isotopic composition of soil organic
matter from native grassland sites throughout
the Great Plains and found that δ13C values are
in general positively correlated with mean July
temperature. The northern Great Plains area is
dominated by cool-season C3 grasses, and the
central and southern Great Plains region, in-
cluding eastern Colorado, is dominated by
warm-season C4 grasses.

Carbon isotopic composition of in situ de-
rived organic matter in buried soils and in situ or
detrital organic matter in loess show major
changes in dominant vegetation types over the
last glacial-interglacial cycle. At Last Chance,
the lowermost buried soil underlying the loess
has δ13C values of about –22‰, indicating a
probable mixture of C3 and C4 vegetation (but

with more C3 vegetation), and the buried soil
above this, dated as ca. 23 000–21 000 14C yr
B.P., has δ13C values of about –24‰, indicating
a dominance of C3 vegetation (Fig. 14). In con-
trast, the modern soil has values of about –17‰
in the Bk horizon and as high as about –14‰ in
the A horizon, indicating a dominance of C4
vegetation, such as covered the region in pre-
settlement time. A similar sequence of changes
is evident at Beecher Island. The lowermost
buried soil, dated as ca. 20 000 14C yr B.P., has
δ13C values of –23‰ to –19‰, indicating a
probable mix of C3 and C4 vegetation (Fig. 14).
In the overlying Peoria Loess, detrital organic
matter has δ13C values ranging from about
–23‰ to –25‰, indicating a dominance of C3
vegetation at the time of loess fall. However, the
A horizon of the ca. 11 000 14C yr B.P. buried
soil and the loess and modern soil above it have
δ13C values of –16‰ to –17‰, indicating a
dominance of C4 vegetation. Overall, the carbon

isotopic compositions indicate a dominance of
C3 vegetation from about 23 000–12 000 14C yr
B.P., and a dominance of C4 vegetation after ca.
12 000 14C yr B.P.

DISCUSSION

Timing of Loess Deposition

The ages of Peoria Loess in eastern Colorado
and western Nebraska reported here suggest that
although there is a general agreement in the tim-
ing of last-glacial loess deposition in various
parts of the midcontinent, there are differences in
detail. In central and western Illinois, Peoria
Loess deposition probably began sometime after
about 25 000 14C yr B.P. (Curry and Follmer,
1992), and was still in progress ca. 12 000 14C yr
B.P. (Grimley et al., 1998). To the west in Iowa,
Peoria Loess deposition began sometime after
about 24 000–19 000 14C yr B.P., depending on
locality, but was completed by about 14 000 14C
yr B.P. (Ruhe, 1983). Loess deposition in Illi-
nois, Iowa, and areas eastward was to a great ex-
tent a function of source sediment availability
from the Laurentide ice sheet via the Mississippi
and Missouri Rivers, and the timing of loess
deposition closely followed the history of move-
ment of the ice sheet. Based on the AMS radio-
carbon ages from Bignell Hill reported here, and
other ages reported by May and Holen (1993),
Martin (1993), Feng et al. (1994), and Maat and
Johnson (1996), Peoria Loess deposition in
western Nebraska could have begun earlier
(sometime after ca. 30 000 14C yr B.P.) and con-
tinued until significantly later (ca. 10 500 14C yr
B.P.), suggesting that sources of loess were un-
related to the specific dynamics of the Lauren-
tide ice sheet. The Laurentide ice sheet advanced
to just north of the present position of the Mis-
souri River at the Nebraska–South Dakota state
line during the last glacial (Fig. 1), but it is un-
likely that the ice sheet was anywhere near the
drainage of the Missouri River ca. 30 000 14C yr
B.P. (see Andrews, 1987, p. 18), and was proba-
bly north of the Canadian border by ca. 10 500
14C yr B.P. (Dyke and Prest, 1987).

Loess deposition in eastern Colorado appar-
ently began after ca. 20 000 14C yr B.P., but
may have continued until ca. 12 000 14C yr B.P.
Thus, eolian sedimentation in Colorado may
have lagged that in Nebraska by as much as
~10 k.y., but continued ~2 k.y. later than in
Iowa. A pertinent question is whether the tim-
ing of loess deposition in Colorado was syn-
chronous with last-glacial (Pinedale) history in
the Front Range. An overall summary of the
Rocky Mountain glacial record suggests a cul-
mination of glacial advances ca. 23 000 14C yr
B.P. (Porter et al., 1983). The last Pinedale ad-
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vance in the Front Range is estimated to have
occurred from ca. 30 000 to 12 000 14C yr B.P.,
with a maximum advance ca. 22 000 14C yr B.P.
(Nelson et al., 1979; Madole, 1986). Somewhat
younger ages for the time of maximum advance
and deglaciation are estimated from 10Be dat-
ing of Pinedale moraines in the Wind River
Range of Wyoming by Gosse et al. (1995a).
The 10Be age estimates are, however, depen-
dent upon calibration of cosmogenic radiation
flux rates that are not known with certainty. If
all the age estimates of glacial events are ap-
proximately correct, then the stratigraphic data
and radiocarbon ages in this study indicate that
loess deposition began near the culmination of,
and occurred mostly during, the recession of
Rocky Mountain glaciers.

Other evidence suggests that the youngest
(Beecher) loess in eastern Colorado may also be
related to glacial events. Gosse et al. (1995b)
dated a slightly younger (i.e., younger than the
main part of the Pinedale) glacial advance in the
Wind River Range that they correlated to the
Younger Dryas event of Europe. Menounos and
Reasoner (1997) reported stratigraphic and
radiocarbon evidence of a possible Younger
Dryas event in the Front Range of Colorado.
The latter workers bracketed this event between
11 070 ± 50 and 9970 ± 80 14C yr B.P., ages that
are remarkably close to the bracketing ages for
the Beecher loess (their samples were also
humic acids extracted using the same methods
and in the same laboratory as those from
Beecher Island). However, establishment of
whether the hypothesized Younger Dryas events
in the Rocky Mountains and Great Plains are
real will require more well-dated sequences. We
note that the carbon isotope data from Beecher
Island do not suggest a return to a cooler, C3
vegetation type during the hypothesized Younger
Dryas period (Fig. 14).

Sources of Loess

Particle size, mineralogical, and geochemical
data suggest that eastern Colorado loess proba-
bly had at least two and possibly three sources.
Both glacially derived silt from the Front
Range, carried to the Great Plains by the South
Platte River, and volcaniclastic silt from the
White River Group are potential sources for
eastern Colorado loess. Pye (1987) pointed out
that fluvial systems provide a very efficient
means by which silt can be segregated from
clay, which suggests that the South Platte River,
carrying glaciogenic silt from the Front Range,
could be the most important source. This is re-
inforced by studies that suggest that sediment
yield is greatly increased (see review by Hallet
et al., 1996) with expanded glaciers, such as

those in the Front Range during Pinedale time.
However, the White River Group has a very
high silt content and chemical composition that
overlap that of eastern Colorado loess. A clay-
rich source must be invoked to explain the
anomalous clay modes in the particle size distri-
bution of Colorado loess, and the best candidate
to explain the generally higher clay contents is
the Pierre Shale. Colton (1978) mapped defla-
tion basins to the northwest of the loess belt in
northeastern Colorado. He interpreted these fea-
tures to have formed from wind erosion, and
many of them are found in the Pierre Shale.
Thus, it is possible that some of the clay-sized
material in northeastern Colorado loess was de-
rived from such deflation basins.

We conclude that the methods in this study
cannot be used to determine which source, if any,
was dominant during loess deposition. However,
isotopic methods (Aleinikoff et al., 1999, com-
panion paper in this volume) provide a means by
which to make this determination. Given that
multiple sources are potentially responsible for
eastern Colorado loess, it is not possible to gen-
erate the classical loess distance-decay equations
summarized by Ruhe (1983). However, if all

three eastern Colorado source sediments made at
least some contribution to late Pleistocene loess,
paleowinds were most likely from the northwest,
west, and southwest (Fig. 2).

ENVIRONMENT OF LOESS 
DEPOSITION

The climatic and ecological conditions ac-
companying loess fall in the central Great Plains
have been studied by several workers. Wells and
Stewart (1987) suggested, on the basis of fossil
snails and Piceamacrofossils, that during the
period of Peoria Loess deposition in western
Nebraska and Kansas there was a mix of boreal
forest and aspen parkland. They did not en-
vision a loess steppe during the main period of
loess deposition in late Pleistocene time. In con-
trast, Rousseau and Kukla (1994) interpreted
snail assemblages in western Nebraska to indi-
cate a progressive cooling and drying through
the period of loess deposition and a cold steppe
vegetation, with only scattered, if any, trees. A
cool steppe ca. 18 000 14C yr B.P. is also in-
ferred for the Colorado Piedmont near Denver
based on fossil beetle assemblages (Elias and
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Toolin, 1990). Fredlund and Tieszen (1997b) re-
ported phytolith and some pollen data from sev-
eral loess sites in Nebraska and Kansas, ranging
in age from ca. 14 500 to ca. 10 400 14C yr B.P.
Although pollen from a 12 600 14C yr B.P.

locality is dominated by Picea, there are signif-
icant amounts of grassland pollen types, and
phytolith data support the interpretation that a
parkland-type of environment existed in the re-
gion. Phytolith data indicate that C3 grasses

were dominant, indicating relatively cool condi-
tions compared to present. Using both phytolith
and carbon isotope data, Fredlund and Tieszen
(1997a) reported that near Wind Cave in the
southern Black Hills area of South Dakota, C3
grassland was dominant until ca. 11 000 14C yr
B.P., at which time C4-dominated grassland be-
came prominent and persisted until the present.

We hoped to use the snails found in both the
upper Peoria Loess and Beecher loess to recon-
struct the environment at the time of loess depo-
sition, following the approach of Rousseau and
Kukla (1994). Unfortunately, the only taxon
present,Succinea grosvenori, apparently has a
very wide modern geographic distribution
(Pilsbry, 1948), and therefore says little about
paleoclimate. However, two faunal localities in
Peoria Loess very close to Beecher Island stud-
ied by Graham (1981) provide a more detailed
picture of the environment at the time of loess
deposition. Fossil ungulates and rodents were
recovered from Peoria Loess at these localities;
the ungulates (Camelops, Platygonus, and
Equus) are all grazers, and the rodents (Sper-
mophilus richardsoni, Spermophilussp.,Cyno-
mys ludovicianus, and Thomomys talpoides) are
indicative of a grassland environment. On the
basis of faunal data, Graham (1981) concluded
that grassland was the predominant vegetation
in eastern Colorado during the time of Peoria
Loess deposition. Carbon isotope data from the
present study indicate that this vegetation was
dominated by cool-season grasses.

The vegetation reconstruction from this
study is consistent with evidence from other
workers that latest Pleistocene time was signifi-
cantly cooler than present in eastern Colorado.
If our reconstruction of a cool steppe vegetation
is correct, Fredlund and Tieszen’s (1997a) cor-
relation of grassland soil carbon isotopic
composition with July temperature can be used
to calculate a minimum-limiting last glacial
temperature depression compared to present.
Mean July temperatures near Beecher Island are
~23.7 °C, but the closest locality with modern
carbon isotopic compositions similar to those of
last glacial time in eastern Colorado is Stavely,
Alberta, which has a modern mean July temper-
ature of 18.4 °C (Fredlund and Tieszen, 1997a).
This comparison indicates a last glacial July
temperature depression of at least 5–6 °C, and is
consistent with fossil evidence (Elias, 1996) and
glacial modeling estimates of summer tempera-
ture depressions (Leonard, 1989) from else-
where in Colorado. In nearby southeastern
Wyoming, fossil ice wedge and sand wedge casts
indicate mean annual temperature depressions of
10–16 °C during glacial maxima (Mears, 1997).

The carbon isotope data and reconstructed
cool steppe presented here for eastern Colorado
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and elsewhere in the Great Plains have interest-
ing implications for the effects of lower CO2 on
vegetation during the last glacial maximum.
During the last glacial maximum, atmospheric
CO2 concentrations were on the order of
185–205 ppmv (parts per million volume) (Nef-
tel et al., 1988), compared to modern, preindus-
trial concentrations of 270–280 ppmv. Street-
Perrott et al. (1997) pointed out that lower
atmospheric CO2 values favor the spread of C4
plants, because these taxa have a CO2-concen-
trating mechanism. These workers reported evi-
dence from high-altitude lake sediments in East
Africa that C4 plants, including grasses, in-
creased in abundance and range during the last
glacial maximum, and attributed this increase to
a lower CO2 concentration in the atmosphere.
Peng et al. (1998) also suggested that C4-domi-
nated grasslands may have expanded at the ex-
pense of forest during the last glacial maximum
due to lower CO2 concentrations. However, data
reported here, as well as from South Dakota and
Texas, indicate that C3 grasses were dominant
over much of the western part of the Great Plains
during the last glacial maximum (Fig. 15). Ap-
parently, the lower temperatures on the Great
Plains during the last glacial maximum were
more important than the lower concentrations of
CO2 in the determination of which grass taxa
would be dominant.

Although the sediments of bedrock loess
sources—such as the White River Group and the
Pierre Shale—are widely exposed at the surface
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over northeastern Colorado (Scott, 1978; Sharps,
1980), there is, at present, little or no eolian
movement of silt from these sediments. An argu-
ment could be made that the present stability of
these sediments is due to a lower degree of wind
erosive power compared to the last glacial maxi-
mum. Persistence of stronger winds during
glacial periods compared to interglacial periods
was cited by Phillips et al. (1993) as a rationale
to explain greater dust flux from loess source
areas in China during the last glacial maximum.
Based on daily wind measurements at a height
of 3 m from 1984–1991 records, mean wind
velocity at Akron, Colorado, is ~4 m/s; however,
winds during some springs (e.g., 1988) have
mean values as high as ~5 m/s, and often are in
excess of 9 m/s. During the drought of the 1950s,

winds that generated dust storms in eastern
Colorado had (at heights of ~2.5 m) velocities of
6–14 m/s (Chepil and Woodruff, 1957). These
values agree closely with wind velocities of
4–14 m/s that have been recorded in modern
dust storms in periglacial environments in
Alaska, Canada, Iceland, and New Zealand
(Péwé, 1951; Nickling, 1978; Ashwell, 1986;
McGowan et al., 1996). We conclude that
stronger winds, if they existed during the last
glacial maximum, could have enhanced the
potential for eolian entrainment of silt in eastern
Colorado. However, such winds were probably
not the major factor for loess deposition in east-
ern Colorado, because present winds are strong
enough to entrain silt, at least seasonally.

Erosion of the White River Group and Pierre

Shale by the wind during the last glacial maxi-
mum could imply that the vegetation cover was
absent or greatly diminished, which implies con-
ditions drier than present. Alternatively, if tem-
peratures were much lower, increased frost
action may have generated greater sediment
delivery to streams without drier-than-present
conditions. In either case, it is unlikely that all
sediment was eroded directly by wind from
bedrock sources during the last glacial maxi-
mum; many particles were probably first deliv-
ered to tributaries of the South Platte River by
hillslope erosion via overland flow or frost
action over short distances, followed by eolian
transport from stream valleys. However, the
presence of eolian deflation basins to the west of
loess occurrences in northeastern Colorado
(Colton, 1978) indicates that some direct eolian
erosion of bedrock residuum may have occurred.

Collectively, the sedimentological, geochemi-
cal, and carbon isotope data indicate that during
the last glacial maximum, eastern Colorado was
probably both colder and drier than present. A
likely vegetation type might be a sparsely vege-
tated cool steppe, similar to that found today in
parts of the prairie provinces of Canada. Colder
and drier conditions during the last glacial maxi-
mum are in agreement with atmospheric general
circulation model reconstructions of temperature
and precipitation for the region summarized by
Thompson et al. (1993), Kutzbach et al. (1993,
1998), and Bartlein et al. (1998).

CONCLUSIONS

1. Loess, previously not well studied in east-
ern Colorado, covers an estimated 14 000 km2,
and is the westernmost part of the North Amer-
ican midcontinent loess belt.

2. Stratigraphic studies indicate there were
two periods of loess deposition in eastern Colo-
rado during late Quaternary time. The first
spanned ca. 20 000 to 12000 14C yr B.P., and cor-
relates reasonably well with the culmination and
recession of Pinedale glaciers in the Colorado
Front Range. This period of loess fall also corre-
lates with the main period of Peoria Loess depo-
sition in Illinois, but lasted longer than in Iowa,
and not as long as in Nebraska. The second pe-
riod of loess deposition occurred between
ca. 11 000 and ca. 9000 14C yr B.P., and may be
Holocene age or correlate with a hypothesized
Younger Dryas glacial advance in the Colorado
Front Range. However, carbon isotope data argue
against cooler conditions in eastern Colorado
during the hypothesized Younger Dryas period.

3. Sedimentologic, mineralogic, and geo-
chemical data suggest that as many as three
sources could have supplied loess in eastern
Colorado, including glaciogenic silt, volcani-
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clastic silt from the White River Group, and
probably clay from the Pierre Shale. If these were
the sources of loess, then northwesterly, westerly,
and southwesterly paleowinds during full-glacial
time are implied. Bedrock residuum sources for
eastern Colorado loess may also imply a lesser
vegetation cover and therefore drier conditions
during the last glacial maximum.

4. Carbon isotope data from soil and loess
organic matter, combined with published faunal
data, imply a cooler, C3-dominated vegetation
type, most likely cool steppe, during the time
of loess deposition. This vegetation recon-
struction suggests that temperature, rather than
concentration of carbon dioxide, is a more im-
portant control over the type of grassland com-
munity in this region, in contrast to the tropics,
where C4 vegetation expanded during the last
glacial period.
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