
ABSTRACT

A new application of the Pb isotopic tracer
technique has been used to determine the rela-
tive importance of different silt sources for late
Wisconsin loess in the central Great Plains of
eastern Colorado. Samples of the Peoria Loess
collected throughout the study area contain
K-feldspar derived from two isotopically and
genetically distinct sources: (1) glaciogenic ma-
terial from Early and Middle Proterozoic crys-
talline rocks of the Colorado province, and
(2) volcaniclastic material from the Tertiary
White River Group exposed on the northern
Great Plains. Pb isotopic compositions of
K-feldspar in loess from two dated vertical sec-
tions (at Beecher Island and Last Chance, Col-
orado) vary systematically, implying climatic
control of source availability. We propose a
model whereby relatively cold conditions pro-
moted the advance of Front Range valley glac-
iers discharging relatively little glaciogenic silt,
but strong winds caused eolian erosion of
White River Group silt due to a decrease in
vegetation cover. During warmer periods, val-
ley glaciers receded and discharged abundant
glaciogenic silt, while surfaces underlain by
the White River Group were stabilized by veg-
etation. Isotopic data from eastern Colorado
loess sections record two warm-cold-warm cy-
cles during late Wisconsin time between about
21 000 and 11 000 radiocarbon yr B.P., similar
to results from other studies in the United
States and Greenland.

INTRODUCTION

Recent studies of Quaternary climate change
have emphasized the importance of thick, possibly
continuous, loess sequences in China and Tajik-
istan that contain detailed terrestrial records of
Quaternary glacial-interglacial cycles, compara-
ble to the foraminiferal oxygen isotope record in
deep-sea sediments (Kukla et al., 1988; Hovan
et al., 1989; Ding et al., 1994; Forster and Heller,
1994; Xiao et al., 1995; Shackleton et al., 1995).
In the Great Plains region of Nebraska, Kansas,
and eastern Colorado, late Quaternary loess is the
most extensive surficial sediment. At many local-
ities, the thickest loess stratigraphic unit is of late
Wisconsin age (i.e., latest Quaternary), deposited
between ca. 20 and 10 ka, based on numerous ra-
diocarbon and thermoluminescence ages (John-
son, 1993; May and Holen, 1993; Martin, 1993;
Maat and Johnson, 1996; Pye et al., 1995). These
ages agree reasonably well with radiocarbon and
thermoluminescence ages of the Peoria Loess in
the central lowland region (i.e., east of the Mis-
souri River in Iowa, Illinois, Missouri, Wiscon-
sin, and elsewhere) (Ruhe, 1983; Forman et al.,
1992; Grimley et al., 1998). Six new accelerator
mass spectrometry 14C ages from two localities
in eastern Colorado indicate that the thickest (to
10 m) loess deposits were laid down between
ca. 20.0 and 11.8 ka (Muhs et al., 1999, compan-
ion paper in this volume). This age range is close
to the estimated time of maximum extent of late
Wisconsin (Pinedale) glaciers in the Front Range
of Colorado and final Pinedale deglaciation
(Madole, 1986) and confirms earlier correlations
of loess in Colorado with the Peoria Loess to the
east (Scott, 1978; Sharps, 1980).

Loess east of the Missouri River is interpreted
as being glaciogenic in origin (Flint, 1971). Dur-
ing the last glacial maximum ca. 20–15 ka (the

late Wisconsin, or Pinedale glaciation), continen-
tal ice entered the headwaters of the Missouri,
Mississippi, Illinois, and Ohio Rivers. Fine-
grained particles from silt-rich outwash from this
ice were transported by northwesterly and west-
erly winds and deposited as loess over much of
Iowa, Missouri, Illinois, and Wisconsin, and to a
lesser extent over South Dakota, Minnesota, In-
diana, Ohio, Arkansas, Kentucky, Tennessee,
Mississippi, and Louisiana. Loess distribution,
thickness, and particle size have distinctive
downwind trends that support this model (Ruhe,
1983). The source of thick loess in the western
Great Plains is less apparent. Valley glaciers,
which occurred on both sides of the continental
divide in the Front Range of Colorado, were far
smaller than the Laurentide ice sheet (Madole
et al., 1998) and would have generated much less
silt-sized outwash sediment.

In this paper we document evidence for the
source of loess in eastern Colorado, using Pb
isotopic compositions of detrital K-feldspar as
tracers. From these data it is possible to infer
paleowind directions. In addition, the change in
sources is used to devise a model of climate
change over a period of about 10 k.y. in late
Pleistocene time.

POSSIBLE SOURCES OF LOESS 
IN COLORADO

The lack of an obvious glaciogenic link for
the Peoria Loess of the Great Plains has gener-
ated debate about the origin of this sediment for
at least 50 yr. Although no recent investigators
have doubted the eolian origin of loess of the
Great Plains, there is considerable divergence of
opinion about the source of the sediment. Some
workers have favored a glacial outwash origin,
suggesting that rivers having their headwaters in
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the Rocky Mountains of Colorado were major
sources (Bryan, 1945; Frye and Leonard, 1951;
Swineford and Frye, 1951; Pye et al., 1995).
Other workers downplayed (but did not exclude)
the importance of glacial outwash as a source and
emphasized alternative sources such as nonglacio-
genic alluvium, old till sheets, Tertiary bedrock
such as volcaniclastic siltstone of the White River
Group (major outcrops occur in southern Wyo-
ming and northern Colorado, Fig. 1), and eolian
sand seas, such as the Nebraska Sand Hills (Con-
dra and Reed, 1950; Lugn, 1968). Flint (1971)
challenged the single-source, glacial outwash hy-

pothesis, suggesting that Pinedale valley glaciers
in the Front Range were too small to produce the
large volume of loess in the Great Plains. Based
on new mapping, Welch and Hale (1987) con-
cluded that loess in Kansas probably had multi-
ple sources, including glacial outwash, dune
sand, and the Tertiary Ogallala Group.

In eastern Colorado, the possible sources for
the Peoria Loess are glaciogenic silt transported
by the South Platte River, and/or the White River
Group. The South Platte River drains the region
of Pinedale valley glaciers in the Front Range and
is west, north, and northwest of the main bodies

of loess in eastern Colorado (Fig. 1). Sediment in
the South Platte River (Aleinikoff et al., 1994) is
derived primarily from Early and Middle Prot-
erozoic (1.4 and 1.7 Ga) crystalline rocks of the
Colorado province (Tweto, 1987; Aleinikoff
et al., 1993). However, sediments of the White
River Group (upper Eocene to lower Oligocene)
are also appealing as possible sources for the cal-
careous, silt-rich loess of eastern Colorado be-
cause they are physically and chemically weath-
ered, contain 65%–85% silt and 20%–30%
CaCO3 (Denson and Bergendahl, 1961), have a
sparse vegetation cover, and have a broad surface
distribution north to northwest of most of the
loess deposits in eastern Colorado (Fig. 1). We do
not consider the Miocene Ogallala Formation a
likely source because it contains minimal silt-
sized material (Sato and Denson, 1967). Exten-
sive sand dunes in northeastern Colorado are also
unlikely sources because they are composed
dominantly of sand-sized material and are the
same age as, or younger than, the loess (Muhs
et al., 1996).

Geochemical methods, together with miner-
alogical studies, can sometimes identify eolian
sediment sources (e.g., Biscaye et al., 1997;
Eden et al., 1994; Gallet et al., 1996, 1998; Liu
et al., 1993; Muhs et al., 1990, 1996). Gallet
et al. (1996, 1998) and Biscaye et al. (1997) also
used isotopic data to discriminate sources of eo-
lian sediment. However, geochemical and min-
eralogical analyses do not result in unequivocal
evidence for the source of the Peoria Loess in
eastern Colorado (Muhs et al., 1999). Radio-
genic isotopic studies were initiated to resolve
the ambiguity of the geochemical data. This re-
gion is particularly attractive to test the applica-
tion of isotopic analysis for the determination of
loess source because the two proposed prove-
nances differ in age by about 1700 m.y. Thus, the
K-feldspar Pb isotopic compositions and zircon
U-Pb ages of the two sources are distinct.

ANALYTICAL METHODS

The Pb isotopic “fingerprinting” approach has
been used in applications as wide ranging as
identifying sources of glacial till in Manitoba and
Newfoundland (Bell and Murton, 1995) and dif-
ferentiation of tectonostratigraphic terranes in
Alaska (Aleinikoff et al., 1987). We sampled:
(1) Peoria Loess, (2) White River Group sedi-
ments, and (3) alluvium of two ages from the
South Platte River (modern sediments, and silt
deposited during the late Wisconsin on South
Platte River terraces) (Fig. 1). Samples of both
late Wisconsin and modern alluvium were col-
lected to verify our presumption that material
transported in the late Wisconsin is similar to
modern sediments in the South Platte River.
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Terrace samples consist of sediments that were
transported by the South Platte River during late
Wisconsin time and may be correlative with the
Peoria Loess. Care was taken to sample South
Platte River alluvium only upstream of loess de-
posits in order to avoid problems of fluvially re-
worked loess. We collected unaltered loess below
the zone of pedogenesis but within 2 m of the sur-
face throughout the study area (Fig. 1). We also
sampled at 0.5 m intervals from two dated verti-
cal sections of the Peoria Loess.

K-feldspars were isolated by flotation in
sodium polytungstate and purified by magnetic
separation to remove grains that contain opaque
inclusions. K-feldspars from modern alluvium
and late Wisconsin terrace deposits were sieved so
that only grains finer than 200 mesh (<0.074 mm)
were analyzed. Pb isotopic compositions of
K-feldspar fractions (weighing 5–15 mg) were
analyzed on a VG 54E mass spectrometer with a
single Faraday cup.

Very fine grained zircons were extracted from
samples of loess and prospective sources using
a Wilfley table (running slower than when pro-
cessing material from coarse-grained rocks),
magnetic separator, and methylene iodide. Most
grains have typical detrital characteristics such
as frosted, pitted, and rounded surfaces, and a
high degree of sphericity (Fig. 2). The U-Pb
ages were determined on individual zircons us-
ing the SHRIMP II ion microprobe at the Aus-
tralian National University following standard
procedures outlined by Compston et al. (1984)
and Williams and Claesson (1987). Most zir-
cons analyzed have diameters only slightly
larger than the 20 µm diameter of the primary
oxygen-ion beam spot.

The Pb isotopic compositions of K-feldspar
from the Peoria Loess are compared with that
from fractions of K-feldspar from the White
River Group, modern channel and overbank de-
posits of the South Platte River, and silt from late
Wisconsin terraces along the South Platte River
using standard common Pb plots (206Pb/204Pb
vs. 207Pb/204Pb; ISOPLOT program of Ludwig,
1991) (Fig. 3, A and B). Ion microprobe ages of
zircons from the Peoria Loess, the White River
Group, and the late Wisconsin South Platte River
terrace are compared using a relative probability
plot (essentially a nearly binless, weighted his-
togram) (Fig. 4). For zircons older than 1.0 Ga,
the 207Pb/206Pb age is plotted. Younger grains are
plotted using the 206Pb/238U age because Late
Proterozoic and Phanerozoic 207Pb/206Pb ages
have very large uncertainties due to the minimal
growth of radiogenic 207Pb in the past 1000 m.y.
Uncertainties (2σ) for 207Pb/206Pb ages are
1%–19%, and most are in the range of 2%–5%.
Uncertainties for 206Pb/238U ages, with two ex-
ceptions, are 5%–9%.

RESULTS

The Pb isotopic compositions of fine-grained
K-feldspar from the South Platte River channel
and overbank deposits, late Wisconsin terrace de-
posits, siltstone of the White River Group, and
the Peoria Loess are readily distinguishable
(Table DR11, Fig. 3). South Platte River silt has
206Pb/204Pb ranging from about 17.0 to 17.8,
whereas silt from late Wisconsin terraces of the
South Platte River has 206Pb/204Pb ranging from
about 17.4 to 18.6. The less radiogenic part of the
field of Pb isotopic ratios of silt from late Wiscon-
sin terraces overlaps with data from fine-grained
South Platte alluvium. However, about half of the
terrace samples have significantly higher ratios
than the alluvium, approaching ratios measured
on K-feldspars from the White River Group
(Fig. 3A). We conclude that the South Platte River
was carrying a higher proportion of K-feldspar
from the White River Group in late Wisconsin
time than at present, and the paleoclimatic impli-
cations for this change in composition of sus-
pended sediment are discussed in the following.
K-feldspars from volcaniclastic siltstone of the
White River Group have Pb isotopic ratios that are
typical of Tertiary volcanic material (Fig. 3A) and
are much more radiogenic than those of the South
Platte River and of some of our samples from late
Wisconsin terrace sediment. K-feldspars from the
Peoria Loess have Pb isotopic compositions that

span the entire range of ratios measured in both
possible sources (Fig. 3B), indicating that the
loess was derived from both glaciogenic silt in the
South Platte River (eroded from Front Range
crystalline rocks) and from silt of the Tertiary
White River Group.

The U-Pb ages of detrital zircons in one sam-
ple each from the Peoria Loess and late Wiscon-
sin terrace silt of the South Platte River and from
three samples of White River Group silt were de-
termined to provide independent evidence for the
source of the loess (Table 2 [see footnote 1],
Fig. 4). Our sampling strategy for zircon analysis
was to collect loess from a well-dated locality
within a relatively thick exposure of the Peoria
Loess. Loess sample CO-210 was collected at the
Beecher Island locality in eastern Colorado
(Fig. 1), about 1 m below a buried soil dated as
11–12 ka (Muhs et al., 1999). Zircon extracted
from a sample of South Platte River late Wiscon-
sin terrace silt was collected at a quarry exposure
about 15 km north of Denver, Colorado (Fig. 1).
Zircon from three samples of the White River
Group (collected southeast of Fort Morgan, Col-
orado, in Badlands National Park, South Dakota,
and southwest of Scottsbluff, Nebraska) were an-
alyzed because of the large geographic exposure
of this volcaniclastic sediment (data combined in
Fig. 4).

The relative probability plot of zircon from the
late Wisconsin terrace silt has three peaks of Prot-
erozoic age (1.7, 1.4, and 1.1 Ga), corresponding
closely with the ages of plutonic rocks in the Col-
orado province (Tweto, 1987), plus a small peak
at about 450 Ma and one grain with an age of
about 58 Ma (Fig. 4). In contrast, relative proba-
bility plots of the White River Group (composite
plot) and the Peoria Loess have many peaks be-
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Figure 2. Scanning electron microscope digital image of zircon from loess sample Li-210, col-
lected at a depth of about 5 m at the Beecher Island locality. Elongate prismatic zircon has mor-
phology characteristic of 34 Ma volcanic zircon from the White River Group. More rounded
grains are typical of the Proterozoic population found in both the loess and White River Group.



tween 1.0 and 2.8 Ga (including significant peaks
at about 1.4 and 1.7 Ga, plus a subordinate pop-
ulation at about 1.0 Ga) and between 20 and
150 Ma. A population of elongate, euhedral,
unabraded (i.e., igneous) zircons from the sample
of White River Group from Colorado yields a
composite age of 34 ± 1 Ma (weighted average of
206Pb/238U ages of 16 grains). This age agrees,
within analytical uncertainty, with a zircon fis-
sion-track age of 32 ± 3 Ma (Zielinski and Naeser,

1977) and 40Ar/39Ar ages ranging from 30.05
± 0.19 to 35.97 ± 0.45 Ma for the White River
Group in Nebraska and Wyoming (Swisher and
Prothero, 1990; Obradovich et al., 1995).

Two vertical sections were sampled in detail to
assess the degree of source variability throughout
late Wisconsin time. The Beecher Island section
in the easternmost part of the study area (Fig. 1) is
about 11 m thick (Fig. 5). Below the modern soil,
a thin loess layer caps a buried soil that is dated as

ca. 11.5 ka, separating the younger Beecher loess
from the Peoria Loess. A second buried soil near
the bottom of the section is ca. 20.5 ka, thus
bracketing the period of Peoria Loess deposition
to a maximum of about 9 k.y. To the west, the
Last Chance section (Fig. 1) is less complete than
the Beecher Island section because the 11.5 ka
buried soil and younger loess are missing, but a
buried soil dated as ca. 21.0 ka marks the bottom
of the Peoria Loess (Fig. 5). Because of the lack
of age control at the top of the Last Chance sec-
tion, we are unable to determine the maximum
total duration of loess deposition.

K-feldspars from the Peoria Loess in the two
vertical sections have Pb isotopic compositions
that span the entire range of ratios measured in
both possible sources (Fig. 6), suggesting that
the loess was derived from both glaciogenic silt
in the South Platte River (primarily from Early
to Middle Proterozoic crystalline rocks of the
Colorado province) and silt from the White
River Group. The isotopic ratios vary systemati-
cally within each section. In both sections, the
oldest loess (just above the ca. 21.0 ka paleosol)
has Pb isotopic compositions within the range of
ratios measured in silt-size K-feldspars from the
South Platte River. The ratios increase upsection
(to values corresponding to ratios measured in
K-feldspars from the White River Group) and
decrease twice. The occurrence of this bimodal
variation at both localities lends credence to the
conclusion that this variation is nonrandom.
However, we cannot correlate these sections be-
cause the Last Chance sequence does not have a
bracketing age at the top of the section.

A comparison of grain morphologies supports
the interpretation of multiple sources. K-feldspar
grains from loess with relatively nonradiogenic
Pb isotopic ratios (sample LI-226) (i.e., glacio-
genic source) are rounded (Fig. 7A), indicating
fluvial transport. In contrast, K-feldspar grains
from loess with relatively radiogenic ratios (sam-
ple LI-221) have sharp edges and angular tips
(Fig. 7B). These grains apparently have not un-
dergone significant fluvial abrasion and do not
have the features (such as rounding, pitting, and
frosting) that are characteristic of fluvial detrital
minerals. Although external morphology is not
uniquely diagnostic of source, the differences in
appearance of these two populations support the
conclusion of source variability, transport mode,
and/or distance of transportation.

PALEOCLIMATIC IMPLICATIONS

The identification of both South Platte River
and White River Group sources of the Peoria
Loess in eastern Colorado provides constraints
for the direction of paleowinds during latest
Pleistocene time. Because both sources occur to
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the north and northwest of the loess deposits,
paleowind directions were from the north and/or
northwest. However, this interpretation is con-
trary to the conclusions of certain atmospheric
general circulation models (e.g., COHMAP
Members, 1988) that have postulated the exis-
tence of anticyclonic winds (i.e., from the east
or northeast) in interior North America in re-
sponse to the Laurentide ice sheet. Thus, paleo-
wind data from Colorado are consistent with
other loess sequences indicating westerly or
northwesterly winds during full glacial time
(Muhs and Bettis, 1998).

To explain the variation in Pb isotopic compo-
sition of K-feldspar in loess in the two vertical
sections in eastern Colorado, we suggest the fol-
lowing scenario, assuming that the rate of loess
deposition was generally constant and that sig-
nificant amounts of loess were not removed from
the section by erosion. Under relatively cold con-
ditions of a glacial period, valley glaciers of the
Front Range advanced and glaciogenic silt de-
rived from Proterozoic crystalline rocks of the
Colorado province was entrained within the ice,
with relatively little sediment released to streams.
Concomitantly, the cold and arid glacial condi-
tions may have reduced plant cover and thereby
increased erosion of the White River Group. Al-
though there may have been some eolian erosion
directly from sediments of the White River
Group, it is more likely that reduced vegetation
cover would allow greater fluvial erosion and de-
livery to tributaries of the South Platte River. A
large part of the area where sediments of the
White River Group are found (Fig. 1) is highly
dissected by small ephemeral streams, and we
suspect that much eolian removal of White River
Group–derived sediments took place after deliv-
ery to these channels. Reduced vegetation cover
on sediments of the White River Group during
late Wisconsin time would also explain why there
is a greater proportion of White River Group–
derived K-feldspars in late Wisconsin terrace sed-
iments of the South Platte River. As conditions
became warmer, vegetation was reestablished on
surfaces of the White River Group, inhibiting
erosion, while valley glaciers of the Front Range
receded, generating more outwash in the process.
Thus, we suggest that there was an antithetic re-
lationship for the activation of sources of loess in
eastern Colorado, both of which occurred in re-
sponse to climatic variation. Highly radiogenic
Pb isotopic ratios in K-feldspars in loess (derived
from the Tertiary White River Group) indicate
relatively cold conditions, whereas low Pb iso-
topic ratios in loess K-feldspars (glaciogenic de-
rivation from the Proterozoic crystalline rocks,
via the South Platte River) indicate relatively
warm conditions.

The shifts in paleotemperatures inferred from

Pb isotope data agree with conclusions from other
proxy methods for evaluating past climatic condi-
tions. Estimates of late Pleistocene glacier equi-
librium lines in Colorado indicate summer tem-
perature depressions of at least 8.5 °C (Leonard,
1989). On the basis of changing fossil beetle as-
semblages,mean July temperatures and January
temperatures near Denver at 14.5 ka were 10–11°C
and 26–30 °C colder, respectively, than present
temperatures (Elias, 1996). However, by 10 ka the
beetle assemblages indicate warmer than present
summers and winters. Carbon isotopic values in
loess and paleosols at Beecher Island indicate a
minimum summer temperature depression of
5–6 °C in full-glacial time, with warming at about
12 ka (Muhs et al., 1999). This postulated warm-
ing trend agrees with data from Front Range
glacial deposits that indicate that final deglaciation

occurred between about 15 and 12 ka (Madole,
1986). Our interpretation of the Pb isotope data
from Beecher Island also suggests a warming
trend during this interval.

Because our model for the cause of change in
Pb isotopic ratios for the younger portion of our
data set agrees with other independent evidence,
we hypothesize that the method is also valid for
the older portion of the section. The data suggest
the occurrence of an earlier cycle of warming and
cooling between peak late Wisconsin glaciation
and final deglaciation. The mutual agreement of
the Pb isotope ratio curves from Last Chance and
Beecher Island provides additional confidence in
this proxy method. The rapid cycle of climatic
change (two warm-cold-warm cycles in a maxi-
mum of about 9000 yr) as suggested by the Pb
isotope data from eastern Colorado loess sections
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is similar to oxygen isotope and paleotempera-
ture data from Greenland ice cores (Johnsen
et al., 1992; Dansgaard et al., 1993). We conclude
that the application of Pb isotopes to problems of
climate change is a powerful tool if the appropri-
ate conditions for varying, isotopically distinct
loess sources exist.

CONCLUSIONS

1. The sources of loess in eastern Colorado are
the South Platte River, which transported glacio-
genic silt provided by late Wisconsin (Pinedale)
glaciers in the Front Range, and sediments of the
Tertiary White River Group.

2. Paleowind directions were predominantly
from the north or northwest. There is no evidence
for easterly or northeasterly paleowinds, contrary
to the glacial anticyclone hypothesis derived by
some atmospheric general circulation models.

3. The variation in dominant sediment source
was probably due to climate changes within the
last glacial period. Glaciogenic source sediments
were dominant during relatively warm periods as
glaciers retreated, whereas volcanogenic silt
from the White River Group was dominant dur-
ing relatively cold periods when vegetation cover
was minimal.

4. According to our model, two warm-cold-
warm cycles occurred in the central Great Plains
during late Wisconsin time (from about 22 to
10 ka), in agreement with evidence from Green-
land ice cores.
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Figure 7. Scanning electron microscope digital images of K-feldspars in loess from the
Beecher Island locality, Colorado. (A) K-feldspars with low 206Pb/204Pb, derived from Protero-
zoic rocks of the Colorado province, presumably by glacial erosion and fluvial transport via the
South Platte River. Note the high degree of abrasion and rounding. (B) K-feldspars with high
206Pb/204Pb, indicative of derivation from a Tertiary source. Note sharp edges and flat crystal
faces. Most of these grains are probably of volcanic origin and have only been moderately
abraded by fluvial and eolian processes.
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