§ 264.179

requirements of parts 262 through 266 of this chapter].

§ 264.179 Air emission standards.

The owner or operator shall manage all hazardous waste placed in a container in accordance with the applicable requirements of subparts AA, BB, and CC of this part.

[61 FR 59950, Nov. 25, 1996]

Subpart J—Tank Systems

SOURCE: 51 FR 25472, July 14, 1986, unless otherwise noted.

§ 264.190 Applicability.

The requirements of this subpart apply to owners and operators of facilities that use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a), (b), and (c) of this section or in §264.1 of this part.

- (a) Tank systems that are used to store or treat hazardous waste which contains no free liquids and are situated inside a building with an impermeable floor are exempted from the requirements in §264.193. To demonstrate the absence or presence of free liquids in the stored/treated waste, the following test must be used: Method 9095 (Paint Filter Liquids Test) as described in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, as incorporated by reference in §260.11 of this chapter.
- (b) Tank systems, including sumps, as defined in §260.10, that serve as part of a secondary containment system to collect or contain releases of hazardous wastes are exempted from the requirements in §264.193(a).
- (c) Tanks, sumps, and other such collection devices or systems used in conjunction with drip pads, as defined in §260.10 of this chapter and regulated under 40 CFR part 264 subpart W, must meet the requirements of this subpart.

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986, as amended at 53 FR 34086, Sept. 2, 1988; 55 FR 50484, Dec. 6, 1990; 58 FR 46050, Aug. 31, 1993]

§264.191 Assessment of existing tank system's integrity.

- (a) For each existing tank system that does not have secondary containment meeting the requirements of \$264.193, the owner or operator must determine that the tank system is not leaking or is unfit for use. Except as provided in paragraph (c) of this section, the owner or operator must obtain and keep on file at the facility a written assessment reviewed and certified by an independent, qualified registered professional engineer, in accordance with \$270.11(d), that attests to the tank system's integrity by January 12, 1988.
- (b) This assessment must determine that the tank system is adequately designed and has sufficient structural strength and compatibility with the waste(s) to be stored or treated, to ensure that it will not collapse, rupture, or fail. At a minimum, this assessment must consider the following:
- (1) Design standard(s), if available, according to which the tank and ancillary equipment were constructed;
- (2) Hazardous characteristics of the waste(s) that have been and will be handled;
- (3) Existing corrosion protection measures:
- (4) Documented age of the tank system, if available (otherwise, an estimate of the age); and
- (5) Results of a leak test, internal inspection, or other tank integrity examination such that:
- (i) For non-enterable underground tanks, the assessment must include a leak test that is capable of taking into account the effects of temperature variations, tank end deflection, vapor pockets, and high water table effects, and
- (ii) For other than non-enterable underground tanks and for ancillary equipment, this assessment must include either a leak test, as described above, or other integrity examination, that is certified by an independent, qualified, registered professional engineer in accordance with §270.11(d), that addresses cracks, leaks, corrosion, and erosion.

[Note: The practices described in the American Petroleum Institute (API) Publication, Guide for Inspection of Refinery

Environmental Protection Agency

Equipment, Chapter XIII, "Atmospheric and Low-Pressure Storage Tanks," 4th edition, 1981, may be used, where applicable, as guidelines in conducting other than a leak test.]

- (c) Tank systems that store or treat materials that become hazardous wastes subsequent to July 14, 1986, must conduct this assessment within 12 months after the date that the waste becomes a hazardous waste.
- (d) If, as a result of the assessment conducted in accordance with paragraph (a), a tank system is found to be leaking or unfit for use, the owner or operator must comply with the requirements of § 264.196.

[51 FR 25472, July 14, 1986; 51 FR 29430, Aug. 15, 1986]

§ 264.192 Design and installation of new tank systems or components.

- (a) Owners or operators of new tank systems or components must obtain and submit to the Regional Administrator, at time of submittal of part B information, a written assessment, reviewed and certified by an independent, qualified registered professional engineer, in accordance with §270.11(d), attesting that the tank system has sufficient structural integrity and is acceptable for the storing and treating of hazardous waste. The assessment must show that the foundation, structural support, seams, connections, and pressure controls (if applicable) are adequately designed and that the tank system has sufficient structural strength, compatibility with waste(s) to be stored or treated, and corrosion protection to ensure that it will not collapse, rupture, or fail. This assessment, which will be used by the Regional Administrator to review and approve or disapprove the acceptability of the tank system design, must include, at a minimum, the following information:
- (1) Design standard(s) according to which tank(s) and/or the ancillary equipment are constructed;
- (2) Hazardous characteristics of the waste(s) to be handled;
- (3) For new tank systems or components in which the external shell of a metal tank or any external metal component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of:

- (i) Factors affecting the potential for corrosion, including but not limited to:
 - (A) Soil moisture content;
 - (B) Soil pH;
 - (C) Soil sulfides level;
 - (D) Soil resistivity;
- (E) Structure to soil potential;
- (F) Influence of nearby underground metal structures (e.g., piping);
- (G) Existence of stray electric current;
- (H) Existing corrosion-protection measures (e.g., coating, cathodic protection), and
- (ii) The type and degree of external corrosion protection that are needed to ensure the integrity of the tank system during the use of the tank system or component, consisting of one or more of the following:
- (A) Corrosion-resistant materials of construction such as special alloys, fiberglass reinforced plastic, etc.;
- (B) Corrosion-resistant coating (such as epoxy, fiberglass, etc.) with cathodic protection (e.g., impressed current or sacrificial anodes); and
- (C) Electrical isolation devices such as insulating joints, flanges, etc.

[Note: The practices described in the National Association of Corrosion Engineers (NACE) standard, "Recommended Practice (RP-02-85)—Control of External Corrosion on Metallic Buried, Partially Buried, or Submerged Liquid Storage Systems," and the American Petroleum Institute (API) Publication 1632, "Cathodic Protection of Underground Petroleum Storage Tanks and Piping Systems," may be used, where applicable, as guidelines in providing corrosion protection for tank systems.]

- (4) For underground tank system components that are likely to be adversely affected by vehicular traffic, a determination of design or operational measures that will protect the tank system against potential damage; and
- (5) Design considerations to ensure that:
- (i) Tank foundations will maintain the load of a full tank;
- (ii) Tank systems will be anchored to prevent flotation or dislodgment where the tank system is placed in a saturated zone, or is located within a seismic fault zone subject to the standards of §264.18(a); and
- (iii) Tank systems will withstand the effects of frost heave.