§264.1032

not extract energy in the form of steam or process heat.

Vented means discharged through an opening, typically an open-ended pipe or stack, allowing the passage of a stream of liquids, gases, or fumes into the atmosphere. The passage of liquids, gases, or fumes is caused by mechanical means such as compressors or vacuum-producing systems or by processrelated means such as evaporation produced by heating and not caused by tank loading and unloading (working losses) or by natural means such as diurnal temperature changes.

[55 FR 25494, June 21, 1990, as amended at 62 FR 64657, Dec. 8, 1997; 64 FR 3389, Jan. 21, 1999]

§264.1032 Standards: Process vents.

(a) The owner or operator of a facility with process vents associated with distillation, fractionation, thin-film evaporation, solvent extraction, or air or steam stripping operations managing hazardous wastes with organic concentrations of at least 10 ppmw shall either:

(1) Reduce total organic emissions from all affected process vents at the facility below 1.4 kg/h (3 lb/h) and 2.8 Mg/yr (3.1 tons/yr), or

(2) Reduce, by use of a control device, total organic emissions from all affected process vents at the facility by 95 weight percent.

(b) If the owner or operator installs a closed-vent system and control device to comply with the provisions of paragraph (a) of this section the closed-vent system and control device must meet the requirements of §264.1033.

(c) Determinations of vent emissions and emission reductions or total organic compound concentrations achieved by add-on control devices may be based on engineering calculations or performance tests. If performance tests are used to determine vent emissions, emission reductions, or total organic compound concentrations achieved by add-on control devices, the performance tests must conform with the requirements of §264.1034(c).

(d) When an owner or operator and the Regional Administrator do not agree on determinations of vent emissions and/or emission reductions or total organic compound concentrations

40 CFR Ch. I (7–1–04 Edition)

achieved by add-on control devices based on engineering calculations, the procedures in §264.1034(c) shall be used to resolve the disagreement.

§264.1033 Standards: Closed-vent systems and control devices.

(a) (1) Owners or operators of closedvent systems and control devices used to comply with provisions of this part shall comply with the provisions of this section.

(2)(i) The owner or operator of an existing facility who cannot install a closed-vent system and control device to comply with the provisions of this subpart on the effective date that the facility becomes subject to the provisions of this subpart must prepare an implementation schedule that includes dates by which the closed-vent system and control device will be installed and in operation. The controls must be installed as soon as possible, but the implementation schedule may allow up to 30 months after the effective date that the facility becomes subject to this subpart for installation and startup.

(ii) Any unit that begins operation after December 21, 1990, and is subject to the provisions of this subpart when operation begins, must comply with the rules immediately (i.e., must have control devices installed and operating on startup of the affected unit); the 30month implementation schedule does not apply.

(iii) The owner or operator of any facility in existence on the effective date of a statutory or EPA regulatory amendment that renders the facility subject to this subpart shall comply with all requirements of this subpart as soon as practicable but no later than 30 months after the amendment's effective date. When control equipment required by this subpart can not be installed and begin operation by the effective date of the amendment, the facility owner or operator shall prepare an implementation schedule that includes the following information: Specific calendar dates for award of contracts or issuance of purchase orders for the control equipment, initiation of on-site installation of the control equipment, completion of the control equipment installation, and performance of any testing to demonstrate

Environmental Protection Agency

that the installed equipment meets the applicable standards of this subpart. The owner or operator shall enter the implementation schedule in the operating record or in a permanent, readily available file located at the facility.

(iv) Owners and operators of facilities and units that become newly subject to the requirements of this subpart after December 8, 1997, due to an action other than those described in paragraph (a)(2)(ii) of this section must comply with all applicable requirements immediately (i.e., must have control devices installed and operating on the date the facility or unit becomes subject to this subpart; the 30month implementation schedule does not apply).

(b) A control device involving vapor recovery (e.g., a condenser or adsorber) shall be designed and operated to recover the organic vapors vented to it with an efficiency of 95 weight percent or greater unless the total organic emission limits of §264.1032(a)(1) for all affected process vents can be attained at an efficiency less than 95 weight percent.

(c) An enclosed combustion device (e.g., a vapor incinerator, boiler, or process heater) shall be designed and operated to reduce the organic emissions vented to it by 95 weight percent or greater; to achieve a total organic compound concentration of 20 ppmv, expressed as the sum of the actual compounds, not carbon equivalents, on a dry basis corrected to 3 percent oxygen; or to provide a minimum residence time of 0.50 seconds at a minimum temperature of 760 °C. If a boiler or process heater is used as the control device, then the vent stream shall be introduced into the flame zone of the boiler or process heater.

(d) (1) A flare shall be designed for and operated with no visible emissions as determined by the methods specified in paragraph (e)(1) of this section, except for periods not to exceed a total of 5 minutes during any 2 consecutive hours.

(2) A flare shall be operated with a flame present at all times, as determined by the methods specified in paragraph (f)(2)(iii) of this section.

(3) A flare shall be used only if the net heating value of the gas being com-

busted is 11.2 MJ/scm (300 Btu/scf) or greater if the flare is steam-assisted or air-assisted; or if the net heating value of the gas being combusted is 7.45 MJ/ scm (200 Btu/scf) or greater if the flare is nonassisted. The net heating value of the gas being combusted shall be determined by the methods specified in paragraph (e)(2) of this section.

(4) (i) A steam-assisted or nonassisted flare shall be designed for and operated with an exit velocity, as determined by the methods specified in paragraph (e)(3) of this section, less than 18.3 m/s (60 ft/s), except as provided in paragraphs (d)(4) (ii) and (iii) of this section.

(ii) A steam-assisted or nonassisted flare designed for and operated with an exit velocity, as determined by the methods specified in paragraph (e)(3) of this section, equal to or greater than 18.3 m/s (60 ft/s) but less than 122 m/s (400 ft/s) is allowed if the net heating value of the gas being combusted is greater than 37.3 MJ/scm (1,000 Btu/scf).

(iii) A steam-assisted or nonassisted flare designed for and operated with an exit velocity, as determined by the methods specified in paragraph (e)(3) of this section, less than the velocity, V_{max} , as determined by the method specified in paragraph (e)(4) of this section and less than 122 m/s (400 ft/s) is allowed.

(5) An air-assisted flare shall be designed and operated with an exit velocity less than the velocity, V_{max} , as determined by the method specified in paragraph (e)(5) of this section.

(6) A flare used to comply with this section shall be steam-assisted, air-assisted, or nonassisted.

(e)(1) Reference Method 22 in 40 CFR part 60 shall be used to determine the compliance of a flare with the visible emission provisions of this subpart. The observation period is 2 hours and shall be used according to Method 22.

(2) The net heating value of the gas being combusted in a flare shall be calculated using the following equation:

$$H_{T} = K\left[\sum_{i=1}^{n} C_{i}H_{i}\right]$$

where:

 H_{T} =Net heating value of the sample, MJ/scm; where the net enthalpy per mole of offgas

§264.1033

is based on combustion at 25 $^{\circ}$ C and 760 mm Hg, but the standard temperature for determining the volume corresponding to 1 mol is 20 $^{\circ}$ C;

- K=Constant, 1.74×10^{-7} (1/ppm) (g mol/scm) (MJ/kcal) where standard temperature for (g mol/scm) is 20 °C;
- C_i=Concentration of sample component i in ppm on a wet basis, as measured for organics by Reference Method 18 in 40 CFR part 60 and measured for hydrogen and carbon monoxide by ASTM D 1946-82 (incorporated by reference as specified in §260.11); and
- $\begin{array}{l} H_i = Net \ heat \ of \ combustion \ of \ sample \ component \ i, \ kcal/9 \ mol \ at \ 25 \ ^{\circ}C \ and \ 760 \ mm \ Hg. \\ The \ heats \ of \ combustion \ may \ be \ determined \ using \ ASTM D \ 2382-83 \ (incorporated \ by \ reference \ as \ specified \ in \ \$260.11) \ if \ published \ values \ are \ not \ available \ or \ cannot \ be \ calculated. \end{array}$

(3) The actual exit velocity of a flare shall be determined by dividing the volumetric flow rate (in units of standard temperature and pressure), as determined by Reference Methods 2, 2A, 2C, or 2D in 40 CFR part 60 as appropriate, by the unobstructed (free) cross-sectional area of the flare tip.

(4) The maximum allowed velocity in m/s, V_{max} , for a flare complying with paragraph (d)(4)(iii) of this section shall be determined by the following equation:

 $Log_{10}(V_{max}) = (H_T + 28.8)/31.7$

where:

28.8=Constant,

31.7=Constant,

 $H_{T}\mbox{=}\mbox{The net heating value as determined in paragraph (e)(2) of this section.$

(5) The maximum allowed velocity in m/s, V_{max} , for an air-assisted flare shall be determined by the following equation:

 V_{max} =8.706+0.7084 (H_T)

where:

8.706=Constant,

0.7084=Constant,

 H_T =The net heating value as determined in paragraph (e)(2) of this section.

(f) The owner or operator shall monitor and inspect each control device required to comply with this section to ensure proper operation and maintenance of the control device by implementing the following requirements:

(1) Install, calibrate, maintain, and operate according to the manufacturer's specifications a flow indicator that

40 CFR Ch. I (7–1–04 Edition)

provides a record of vent stream flow from each affected process vent to the control device at least once every hour. The flow indicator sensor shall be installed in the vent stream at the nearest feasible point to the control device inlet but before the point at which the vent streams are combined.

(2) Install, calibrate, maintain, and operate according to the manufacturer's specifications a device to continuously monitor control device operation as specified below:

(i) For a thermal vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of ± 1 percent of the temperature being monitored in °C or ± 0.5 °C, whichever is greater. The temperature sensor shall be installed at a location in the combustion chamber downstream of the combustion zone.

(ii) For a catalytic vapor incinerator, temperature monitoring device а equipped with a continuous recorder. The device shall be capable of monitoring temperature at two locations and have an accuracy of ±1 percent of the temperature being monitored in °C or ±0.5 °C, whichever is greater. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed outlet.

(iii) For a flare, a heat sensing monitoring device equipped with a continuous recorder that indicates the continuous ignition of the pilot flame.

(iv) For a boiler or process heater having a design heat input capacity less than 44 MW, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of ± 1 percent of the temperature being monitored in °C or ± 0.5 °C, whichever is greater. The temperature sensor shall be installed at a location in the furnace downstream of the combustion zone.

Environmental Protection Agency

(v) For a boiler or process heater having a design heat input capacity greater than or equal to 44 MW, a monitoring device equipped with a continuous recorder to measure a parameter(s) that indicates good combustion operating practices are being used.

(vi) For a condenser, either:

(A) A monitoring device equipped with a continuous recorder to measure the concentration level of the organic compounds in the exhaust vent stream from the condenser, or

(B) A temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature with an accuracy of ± 1 percent of the temperature being monitored in degrees Celsius (°C) or ± 0.5 °C, whichever is greater. The temperature sensor shall be installed at a location in the exhaust vent stream from the condenser exit (i.e., product side).

(vii) For a carbon adsorption system that regenerates the carbon bed directly in the control device such as a fixed-bed carbon adsorber, either:

(A) A monitoring device equipped with a continuous recorder to measure the concentration level of the organic compounds in the exhaust vent stream from the carbon bed, or

(B) A monitoring device equipped with a continuous recorder to measure a parameter that indicates the carbon bed is regenerated on a regular. predetermined time cycle.

(3) Inspect the readings from each monitoring device required by paragraphs (f)(1) and (2) of this section at least once each operating day to check control device operation and, if necessary, immediately implement the corrective measures necessary to ensure the control device operates in compliance with the requirements of this section.

(g) An owner or operator using a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device shall replace the existing carbon in the control device with fresh carbon at a regular, predetermined time interval that is no longer than the carbon service life established as a requirement of \$264.1035(b)(4)(iii)(F).

(h) An owner or operator using a carbon adsorption system such as a carbon canister that does not regenerate the carbon bed directly onsite in the control device shall replace the existing carbon in the control device with fresh carbon on a regular basis by using one of the following procedures:

(1) Monitor the concentration level of the organic compounds in the exhaust vent stream from the carbon adsorption system on a regular schedule, and replace the existing carbon with fresh carbon immediately when carbon indicated. breakthrough is The monitoring frequency shall be daily or at an interval no greater than 20 percent of the time required to consume the total carbon working capacity established as a requirement of §264.1035(b)(4)(iii)(G), whichever is longer.

(2) Replace the existing carbon with fresh carbon at a regular, predetermined time interval that is less than the design carbon replacement interval established as a requirement of \$264.1035(b)(4)(iii)(G).

(i) An alternative operational or process parameter may be monitored if it can be demonstrated that another parameter will ensure that the control device is operated in conformance with these standards and the control device's design specifications.

(j) An owner or operator of an affected facility seeking to comply with the provisions of this part by using a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser, or carbon adsorption system is required to develop documentation including sufficient information to describe the control device operation and identify the process parameter or parameters that indicate proper operation and maintenance of the control device.

(k) A closed-vent system shall meet either of the following design requirements:

(1) A closed-vent system shall be designed to operate with no detectable emissions, as indicated by an instrument reading of less than 500 ppmv above background as determined by the procedure in §264.1034(b) of this subpart, and by visual inspections; or (2) A closed-vent system shall be designed to operate at a pressure below atmospheric pressure. The system shall be equipped with at least one pressure gauge or other pressure measurement device that can be read from a readily accessible location to verify that negative pressure is being maintained in the closed-vent system when the control device is operating.

(l) The owner or operator shall monitor and inspect each closed-vent system required to comply with this section to ensure proper operation and maintenance of the closed-vent system by implementing the following requirements:

(1) Each closed-vent system that is used to comply with paragraph (k)(1) of this section shall be inspected and monitored in accordance with the following requirements:

(i) An initial leak detection monitoring of the closed-vent system shall be conducted by the owner or operator on or before the date that the system becomes subject to this section. The owner or operator shall monitor the closed-vent system components and connections using the procedures specified in §264.1034(b) of this subpart to demonstrate that the closed-vent system operates with no detectable emissions, as indicated by an instrument reading of less than 500 ppmv above background.

(ii) After initial leak detection monitoring required in paragraph (l)(1)(i) of this section, the owner or operator shall inspect and monitor the closedvent system as follows:

(A) Closed-vent system joints, seams, or other connections that are permanently or semi-permanently sealed (e.g., a welded joint between two sections of hard piping or a bolted and gasketed ducting flange) shall be visually inspected at least once per year to check for defects that could result in air pollutant emissions. The owner or operator shall monitor a component or connection using the procedures specified in §264.1034(b) of this subpart to demonstrate that it operates with no detectable emissions following any time the component is repaired or replaced (e.g., a section of damaged hard piping is replaced with new hard pip40 CFR Ch. I (7–1–04 Edition)

ing) or the connection is unsealed (e.g., a flange is unbolted).

(B) Closed-vent system components or connections other than those specified in paragraph (l)(1)(ii)(A) of this section shall be monitored annually and at other times as requested by the Regional Administrator, except as provided for in paragraph (o) of this section, using the procedures specified in §264.1034(b) of this subpart to demonstrate that the components or connections operate with no detectable emissions.

(iii) In the event that a defect or leak is detected, the owner or operator shall repair the defect or leak in accordance with the requirements of paragraph (l) (3) of this section.

(iv) The owner or operator shall maintain a record of the inspection and monitoring in accordance with the requirements specified in §264.1035 of this subpart.

(2) Each closed-vent system that is used to comply with paragraph (k)(2) of this section shall be inspected and monitored in accordance with the following requirements:

(i) The closed-vent system shall be visually inspected by the owner or operator to check for defects that could result in air pollutant emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in ductwork or piping or loose connections.

(ii) The owner or operator shall perform an initial inspection of the closed-vent system on or before the date that the system becomes subject to this section. Thereafter, the owner or operator shall perform the inspections at least once every year.

(iii) In the event that a defect or leak is detected, the owner or operator shall repair the defect in accordance with the requirements of paragraph (l)(3) of this section.

(iv) The owner or operator shall maintain a record of the inspection and monitoring in accordance with the requirements specified in §264.1035 of this subpart.

(3) The owner or operator shall repair all detected defects as follows:

(i) Detectable emissions, as indicated by visual inspection, or by an instrument reading greater than 500 ppmv above background, shall be controlled

Environmental Protection Agency

as soon as practicable, but not later than 15 calendar days after the emission is detected, except as provided for in paragraph (1)(3)(iii) of this section.

(ii) A first attempt at repair shall be made no later than 5 calendar days after the emission is detected.

(iii) Delay of repair of a closed-vent system for which leaks have been detected is allowed if the repair is technically infeasible without a process unit shutdown, or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be completed by the end of the next process unit shutdown.

(iv) The owner or operator shall maintain a record of the defect repair in accordance with the requirements specified in §264.1035 of this subpart.

(m) Closed-vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.

(n) The owner or operator using a carbon adsorption system to control air pollutant emissions shall document that all carbon that is a hazardous waste and that is removed from the control device is managed in one of the following manners, regardless of the average volatile organic concentration of the carbon:

(1) Regenerated or reactivated in a thermal treatment unit that meets one of the following:

(i) The owner or operator of the unit has been issued a final permit under 40 CFR part 270 which implements the requirements of subpart X of this part; or

(ii) The unit is equipped with and operating air emission controls in accordance with the applicable requirements of subparts AA and CC of either this part or of 40 CFR part 265; or

(iii) The unit is equipped with and operating air emission controls in accordance with a national emission standard for hazardous air pollutants under 40 CFR part 61 or 40 CFR part 63.

(2) Incinerated in a hazardous waste incinerator for which the owner or operator either:

(i) Has been issued a final permit under 40 CFR part 270 which implements the requirements of subpart O of this part; or

(ii) Has designed and operates the incinerator in accordance with the interim status requirements of 40 CFR part 265, subpart O.

(3) Burned in a boiler or industrial furnace for which the owner or operator either:

(i) Has been issued a final permit under 40 CFR part 270 which implements the requirements of 40 CFR part 266, subpart H; or

(ii) Has designed and operates the boiler or industrial furnace in accordance with the interim status requirements of 40 CFR part 266, subpart H.

(o) Any components of a closed-vent system that are designated, as described in \$264.1035(c)(9) of this subpart, as unsafe to monitor are exempt from the requirements of paragraph (l)(1)(ii)(B) of this section if:

(1) The owner or operator of the closed-vent system determines that the components of the closed-vent system are unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (l)(1)(ii)(B) of this section; and

(2) The owner or operator of the closed-vent system adheres to a written plan that requires monitoring the closed-vent system components using the procedure specified in paragraph (l)(1)(ii)(B) of this section as frequently as practicable during safe-to-monitor times.

[55 FR 25494, June 21, 1990, as amended at 56 FR 19290, Apr. 26, 1991; 59 FR 62927, Dec. 6, 1994; 61 FR 4911, Feb. 9, 1996; 61 FR 59950, Nov. 25, 1996; 62 FR 64657, Dec. 8, 1997]

§264.1034 Test methods and procedures.

(a) Each owner or operator subject to the provisions of this subpart shall comply with the test methods and procedures requirements provided in this section.

(b) When a closed-vent system is tested for compliance with no detectable emissions, as required in §264.1033(l) of this subpart, the test shall comply with the following requirements:

(1) Monitoring shall comply with Reference Method 21 in 40 CFR part 60.