Bioproducts and Biocatalysis Research Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
 

Research Project: Microbial Catalysts to Produce Fuel Ethanol and Value Added Products

Location: Bioproducts and Biocatalysis Research

Title: Characterization of Carboxymethylcellulase Activity from Geobacillus Stearothermophilus

Authors

Submitted to: Meeting Abstract
Publication Type: Abstract
Publication Acceptance Date: August 25, 2005
Publication Date: August 25, 2005
Citation: Bischoff, K.M., Li, X., Rooney, A.P., Liu, S., Hughes, S.R. 2005. Characterization of carboxymethylcellulase activity from Geobacillus stearothermophilus [abstract]. Society for Industrial Microbiology. Paper #P38.

Technical Abstract: One of the technological impediments to widespread utilization of lignocellulosic biomass as a fermentation feedstock is the efficient and economical depolymerization of the polysaccharides found in cellulose and hemicellulose. A rational strategy toward overcoming this hurdle is the isolation of hydrolytic enzymes from thermophilic microorganisms to convert biomass to its constituent monomeric sugars. Twenty-nine strains of thermophilic bacteria that were deposited as Geobacillus stearothermophilus in the NCAUR culture collection were screened for the production of cellulolytic and xylanolytic activity by gel diffusion assay on selective media. One strain tested positive for cellulolytic activity, and cell-free culture supernatants were found to contain a carboxymethylcellulase (CMCase). Cultures grown in rich media supplemented with either glucose or xylose at 0.1% (w/v) produced approximately 4-fold more enzymatic activity than those grown in rich media alone or those supplemented with carboxymethylcellulose. The optimal temperature for activity was 55°C and the enzyme was remarkably stable at this temperature, retaining 90% of its activity following incubation for 18 h. Maximal activity was observed in the pH range of 4.5 ¿ 6.0, but samples retained approximately 60% and 70% of maximal activity at pH 4.0 and pH 8.0, respectively. Zymogram analysis following SDS-PAGE of extracellular protein indicated that the CMCase has a mass of approximately 48 kDa. The broad pH range and thermophilic properties of this enzyme may prove suitable for application in the conversion of biomass to glucose for production of fuel ethanol or other valuable fermentation products.

   

 
Project Team
Bischoff, Kenneth
Liu, Siqing
Hughes, Stephen
Rich, Joseph
 
Publications
   Publications
 
Related National Programs
  Bioenergy & Energy Alternatives (307)
  Quality and Utilization of Agricultural Products (306)
 
Related Projects
   Bioinformatics and Comparative Genomic Analyses F L. Buchneri Nrrl B-30929
   Automated Engineering of Lipase Enzymes for Covalent Attachment to Resin and Identification of Best Transesterification
 
 
Last Modified: 05/12/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House