2002 Pavement Design

Federal Highway Administration June 2001

Thomas P. Harman

Asphalt Team Leader

HIGHWAY RESEARCH CENTER

4 U.S Department of Transportation Federal Highway Administration

Predicting Pavement Performance

• Pavements are designed to fail

• But how do they perform?

U.S Department of Transportation Federal Highway Administration

.★.★.★.★.★

Defining Performance

- Structural vs. functional
 - Structural: load carrying capacity
 - Functional: ride quality and safety
- Associated failures
 - Load: caused by traffic
 - Non-load: caused by climate, materials, and construction

HIGHWAY RESEARCH CENTER

★,**★**,**★**,**★**

Performance Modeling

U.S Department of Transportation Federal Highway Administration

Our Project

• State of Confusion

`**★**,**★**,**★**,**★**

- 10 mile section
- 36 feet wide

U.S Department of Transportation Federal Highway Administration

Our Project

- * * * * * *
 - Materials
 - Environment
 - Traffic
 - Modeling
 - Performance Prediction

U.S Department of Transportation Federal Highway Administration

O U.S Department of Transportation Federal Highway Administration

Materials

U.S Department of Transportation Federal Highway Administration

- - Response to. . . Load

U.S Department of Transportation Federal Highway Administration

$\star,\star,\star,\star,\star,\star$

• Response to. . . Load, Temperature

U.S Department of Transportation Federal Highway Administration

$\star,\star,\star,\star,\star,\star$

 Response to Load, Temperature, Moisture

U.S Department of Transportation Federal Highway Administration

$\star,\star,\star,\star,\star,\star$

- Response to Load,
 - Temperature,
 - Moisture, &
 - Time.

U.S Department of Transportation Federal Highway Administration

Glooptonyte

- All Glooptonyte is the same
- It is homogeneous, isotropic, and elastic
- It is <u>not</u> effected by moisture
- It is <u>not</u> effected by time

O U.S Depa. ransportation Federal Highway Administration

 $\star \star \star \star \star \star$

Glooptonyte

U.S Department of Transportation Federal Highway Administration

★,★,★,★,★

Material Characterization Model

- Modulus, E = Stress / Strain
- Predictive Model
 - Strain = Stress / E

• Does our model work?

 $\star \star \star \star \star \star$

Strain

U.S Department of Transportation Federal Highway Administration

Environmental Effects

O U.S Department of Transportation Federal Highway Administration

Glooptonyte

Environmental Effects Model ★,★,★,★,★

HIGHWAY RESEARCH CENTER

• Modulus, E = 20 - 0.5 (T)

-T is the temperature in °C

• Does our model work?

U.S Department of Transportation Federal Highway Administration

Testing the Model

Temperature

U.S Department of Transportation Federal Highway Administration

<u>,★,★,★,</u>★,★

Inputs

O U.S Department of Transportation Federal Highway Administration

Traffic

,,*,*,*,*

- No more ESAL's
- Traffic input by
 - Vehicle type
 - Axle weight
- Load Spectra

U.S Department of Transportation Federal Highway Administration

Traffic Conditions

- - State of Confusion
 - Unicycles only
 - Two loadings

U.S Department of Transportation Federal Highway Administration

Traffic Conditions

 $\star \star \star \star \star \star \star$

- <u>Category A Unicycle</u>
 - Load, P 750 lbs
 - Pressure, *p* 60 psi

- Contact, a

2 in

- <u>Category B Unicycle</u>
 - Load, P 1250 lbs
 - Pressure, *p*
 - Contact, a

100 psi 2 in

a, contact radius $p = P / (\pi r^2)$

U.S Department of Transportation Federal Highway Administration

Traffic Conditions

Category A

 AADT 600,000

 \star \star \star \star \star

Category B
AADT 400,000

Time, years

U.S Department of Transportation Federal Highway Administration

• 20 years

 \star \star \star \star \star

- Total anticipated traffic:
 - Category A = 12 million
 - Category B = <u>8 million</u>
 - TOTAL = 20 million

U.S Department of Transportation Federal Highway Administration

> TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Design Life

Pavement Response

O U.S Department of Transportation Federal Highway Administration

Pavement Response

U.S Department of Transportation Federal Highway Administration

`**★**`**★**`**★**`**★**

To Load

U.S Department of Transportation Federal Highway Administration

 $\star \star \star \star \star \star \star$

Pavement Response Tools

- Analytical solutions (e.g. Burmister)
- Multi-layer elastic theory
- Finite element analysis
 - 2D, 3D

 \star , \star , \star , \star , \star

• Hybrid methods

U.S Department of Transportation Federal Highway Administration

Analytical Solution (Burmister)

- Assumptions
 - $-\mu = 0.5$ (Poisson's ratio)
 - $E_{BASE} = \frac{1}{10} E_{Glooptonyte}$

Surface deflection =
$$1.5 p a$$
 F₂
E_{BASE} F₂= $f(a, E_2/E_1, t_1)$

U.S Department of Transportation Federal Highway Administration

Burmister

- Glooptonyte, t = 8 inches
- Category A Unicycle, p = 60 psi, a = 2
- Summer time, $T = 20^{\circ}C$

$$-E_1 = 20 - 0.5$$
 (T) = 10 ksi

$$-E_2 = \frac{1}{10}E_1 = 1$$
 ksi = 1000 psi

 $-F_2 = f(a, E_2 / E_1, t_1) = 0.20$ (from a Table)

HIGHWAY RESEARCH CENTER

TURNER-FAIRBANK

Surface Deflection = 0.04"

O U.S Department of Transportation Federal Highway Administration

Pavement Sections

U.S Department of Transportation Federal Highway Administration

 $(\star,\star,\star,\star,\star,\star)$

Pavement Response Model

×									
		E ₁ / E ₂	Category A	Category B					
	Season	psi	<i>p</i> = 60 psi	<i>p</i> = 100 psi					
	Winter / Spring		$\delta_{4,} = 0.03$	$\delta_{4,} = 0.045$					
	$(T_p = 0^{\circ}C)$	20 / 2	δ_{6} , = 0.025	$\delta_{6,} = 0.038$					
			$\delta_{8"} = 0.02$	$\delta_{8,} = 0.03$					
	Summer / Fall		$\delta_{4,} = 0.06$	$\delta_{4,} = 0.09$					
	$(T_p = 20^{\circ}C)$	10 / 1	$\delta_{6}, = 0.05$	$\delta_{6,} = 0.075$					
s D idei			$\delta_{8"} = 0.04$	$\delta_{8,} = 0.06$					

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

@ U

Distress

O U.S Department of Transportation Federal Highway Administration

Glooptonyte

• Only fails in <u>rutting</u>

U.S Department of Transportation Federal Highway Administration

Pavement Distress Model

• Empirical

`**★**,**★**,**★**,**★**

- Mechanistic
- Mechanistic-Empirical

U.S Department of Transportation Federal Highway Administration

Empirical Model

U.S Department of Transportation Federal Highway Administration

,,*,*,*,*

Empirical Model

- Log (δ_P / δ_B) = C₁ + C₂ Log (N)
- Where:

.★.★.★.★

- $-\,\delta_P$, Permanent deformation
- $-\delta_B$, Burmister deflection
- $-C_1$ and C_2 , Constants (-3.1, 0.5)
- N, load applications

U.S Department of Transportation Federal Highway Administration

Performance Criteria

• What is acceptable performance?

• Rutting ≤ 0.3 inches

U.S Department of Transportation Federal Highway Administration

 $\times \times \times \times \times$

Performance Prediction

U.S Department of Transportation Federal Highway Administration

Empirical Model

	*				Rutting		
Session	Cat	t	δΒ	N design	δΡ		
W/S	А	4	0.030	6,000,000	0.06		
S / F	А	4	0.060	6,000,000	0.12		
W/S	В	4	0.045	4,000,000	0.07		
S/F	В	4	0.090	4,000,000	0.14		
I a a (0.39						
$Log(o_P / o_B) = C_1 + C_2 Log(N)$							

HIGHWAY RESEARCH CENTER

U.S Department of Transportation Federal Highway Administration

Performance Prediction

O U.S Department of Transportation Federal Highway Administration

 $\star,\star,\star,\star,\star$

Performance Prediction

U.S Department of Transportation Federal Highway Administration

Models Calibration

• Log $(\delta_P / \delta_B) = \beta_1 C_1 + \beta_2 C_2 Log (N)$

• Where:

 $(\star,\star,\star,\star,\star,\star)$

 $-\beta_1,\beta_2$ calibration factors

U.S Department of Transportation Federal Highway Administration

Models Calibration

U.S Department of Transportation Federal Highway Administration

Performance Modeling

U.S Department of Transportation Federal Highway Administration

Thank You

U.S Department of Transportation Federal Highway Administration

