
Finding minimal herbicide concentrations in 

ground water? Try looking for the degradates

By Dana W. Kolpin, E. Michael Thurman, and S. Michael Linhart

ABSTRACT

Extensive research has been conducted regarding the occurrence of herbicides in the hydrologic 
system, their fate, and their effects on human health and the environment. Few studies, however, have 
considered the degradates of herbicides. In this study of Iowa ground water, herbicide degradates were 
frequently detected. In fact, herbicide degradates were 8 of the 10 most frequently detected compounds. 
The total residue concentration (sum of parent compound plus degradates) was substantially greater than 
the concentration of just the parent compound for every herbicide examined. 

The frequencies of herbicide detection and concentrations varied substantially among the major 
aquifer types sampled. These differences, however, were much more pronounced when herbicide 
degradates were included. Aquifer types having the most rapid recharge rates (alluvial and bedrock/karst 
region aquifers) were those most likely to contain detectable concentrations of herbicide compounds.

Two indirect estimates of ground-water age (depth of well completion and dissolved-oxygen 
concentration) were used to separate the sampled wells  into general vulnerability classes (low, 
intermediate, and high). The results show that the frequencies of herbicide detection and concentrations 
varied substantially among the vulnerability classes regardless of whether or not herbicide degradates 
were considered. Nevertheless, when herbicide degradates were included, the frequency of herbicide 
compound detection within the highest vulnerability class  approached 90 percent, and the median total 
herbicide residue concentration increased over an order of magnitude to 2 micrograms per liter.   The 
results of this study indicated that obtaining data on herbicide degradates is critical in attempting to 
understand not only the fate of a specific herbicide but also its overall effect on human health and the 
environment.

INTRODUCTION

Extensive research has been conducted 
regarding the occurrence of herbicides in the 
hydrologic system (Holden and others,1992; Walls 
and others, 1996), their fate (Bintein and Devillers, 
1996; Kruger and others, 1997), and their effects on  
human health (Carbonell and others, 1995; Bain 
and LeBlanc,1996; Ribas and others, 1997) and the 
environment (Longley and Sotherton, 1997; Pratt 
and others, 1997; Carder and Hoagland, 1998; 
Howe and others, 1998). However, the 
understanding of the total consequences from 
herbicide use are limited by the fact that most 
investigations have focused on the active ingredient 
(parent compound) and did not consider their 
transformation products (degradates). 

Complete mineralization of most parent 
herbicide compounds has not been established 
(Stamper and others, 1997). However, relatively 
stable and persistent degradates can be formed 
during the transformation of many herbicides 
(Coats,1993). These degradates can, in some cases, 
be more toxic than their parent compounds (La 
Clair and others, 1998; Belfroid and others, 1998).

This paper describes the results of a study to 
determine the relative transport of selected 
herbicide degradates to ground water compared to 
that of their parent compounds. Results from the 
sampling of 131 municipal wells from the major 
aquifer types in Iowa during 1995-98 are presented 
(fig. 1). The degradates analyzed include acetochlor 
ethanesulfonic acid (acetochlor ESA), acetochlor 



oxanilic acid (acetochlor OA), alachlor oxanilic 
acid (alachlor OA), deethylatrazine (DEA), 
deisopropylatrazine (DIA), cyanazine amide, 
hydroxyatrazine, metolachlor ethanesulfonic acid 
(metolachlor ESA), and metolachlor oxanilic acid 
(metolachlor OA). This research is an extension of 
the multi-agency Iowa Ground Water Monitoring 
Program (IGWM) (Detroy 1985; Kolpin, Sneck-
Fahrer, and others, 1997). 

Figure 1. Location of wells sampled in Iowa during 
1995-98.

MATERIALS AND METHODS

The 131 wells sampled were randomly 
selected within each major aquifer type (alluvial, 
glacial drift, bedrock/karst region, and bedrock/
nonkarst region) for the IGWM from a population 
of over 2000 Iowa municipal wells. The 328 water 
samples collected from these 131 wells represent 
the annual sample collection carried out for the 
IGWM during 1995-98. The sampling protocol for 
this study was identical to that reported in previous 
discussion of these data (Kolpin, Kalkhoff, and 
others, 1997; Kolpin, Thurman, and Linhart, 1998). 
All wells were pumped a minimum of 30 minutes 
prior to obtaining measurements of dissolved 
oxygen, pH, specific conductance, and water 
temperature. Once the values for the above 
parameters stabilized, the water samples were 
collected. Water samples were filtered through a 0.7 
micrometer glass-fiber filter into amber baked-glass 
bottles and immediately chilled. 

All water samples were sent to the U.S. 
Geological Survey, Organic Research Laboratory in 
Lawrence, Kansas, to determine concentrations of 

13 herbicides and 10 herbicide degradates (table 1). 
The 13 parent compounds and 3 of the triazine 
degradation products (table 1) were analyzed from 
125 milliliter (mL) water samples by gas 
chromatography / mass spectrometry (GC/MS) 
following solid-phase extraction on C18 cartridges 
(Thurman and others, 1990; Meyer and others, 
1993). The analytical reporting limit for this 
method was 0.05 microgram per liter (µg/L) for all 
target compounds. The other seven herbicide 
degradates (table 1) were analyzed from 125-mL 
water samples by high-performance liquid 
chromatography (HPLC) with diode-array 
detection following solid-phase extraction on C18 
cartridges (Hostetler and Thurman, 1999). 
Complete separation of all analytes was achieved 
using this method. The analytical reporting limit for 
all target compounds was 0.2 µg/L for this method. 
Confirmation was achieved for alachlor OA, 
acetochlor OA, metolachlor OA, and metolachlor 
ESA by negative ion spray mass spectrometry 
(Ferrer and others, 1997).

The variation in the total number of samples 
collected per well for this study (from 1 to 4 
samples) would have created a spatial bias in the 
dataset if left unmodified.Thus, average 
concentrations for each of the 23 compounds were 
calculated from all water samples collected from 
each well. 

RESULTS AND DISCUSSION

The most important finding of this study was 
that herbicide degradates were detected frequently. 
In fact, herbicide degradates were 8 of the 10 most 
frequently detected compounds (fig. 2). Atrazine 
was the only herbicide in which the parent 
compound was found more frequently than any of 
its degradates analyzed, perhaps because of the 
greater environmental persistence of atrazine 
compared to the other parent compounds under 
investigation (Wauchope and others, 1992; Stamper 
and others, 1997). However, the total residue 
concentration (sum of parent compound plus 
degradates analyzed) was substantially greater than 
the concentration of just the parent compound for 
every herbicide examined (fig. 3). Whereas 
previous investigations of herbicides generally 
found concentrations of the parent compounds to be 
less than 0.5 µg/L in ground water (Holden and 



others, 1992; Kolpin and others, 1994; Kolpin, 
Barbash, and Gilliom, 1998), it was common for the 
total residue concentrations for this study to exceed 
this concentration (fig. 3). 

Figure 2. Frequency of detection for selected 
herbicide compounds (adjusted to a common 
detection threshold of 0.20 µg/L). See table 1 for 
compound abbreviation definitions.

Although no analyte concentrations exceeded 
their respective U.S. Environmental Protection 
Agency (USEPA) maximum contaminant levels or 
health advisory levels for drinking water (table 1), 
over half of the herbicide compounds under 
investigation had no such levels established. 
Furthermore, these drinking-water criteria only 
apply to individual compounds and do not consider 
the effects of more than one herbicide compound. 
Studies have shown that some combinations of 
compounds may exhibit additive or synergistic 
toxic effects (Marinovich and others, 1996; 
Thompson, 1996; Pape-Lindstrom and Lydy, 1997). 
The presence of multiple compounds in ground 
water was common during this study, particularly 
when herbicide degradates were included. An 
average of two herbicides was  found in each 
ground-water sample in which a herbicide parent 
compound was detected. As many as 6 parent 
compounds were detected in a single sample; the

Figure 3. Distributions of concentrations of 
herbicide parent compounds and parent compound 
plus degradates.
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 maximum total herbicide concentration exceeded 
12 µg/L (fig. 4). When herbicide degradates were 
considered, the number of compounds detected and 
total concentrations greatly increase. An average of 
five herbicide compounds was found in each 
ground-water sample in which either a herbicide 
parent compound or one of its degradates was 
detected. As many as 15 herbicide compounds were 
detected in a single sample; the maximum total 
herbicide residue concentration exceeded 78 µg/L 
(fig. 4).

Figure 4. Relation between total herbicide residue 
concentration (parent plus degradates) and number 
of herbicide compounds detected per water 
sample.

Although herbicides were commonly 
detected in ground water across Iowa during this 
study, their frequencies of detection and 
concentrations varied substantially among the 
major aquifer types sampled (fig. 5). These 
differences were much more pronounced when 
herbicide degradates were included (fig. 5). Aquifer 
types having the most rapid recharge rates (alluvial 
and bedrock/karst region aquifers) were those most 
likely to contain detectable concentrations of 
herbicide compounds, indicating that ground-water 
age could be an important factor in explaining these 
variations in herbicide contamination. 

Although no direct measures of ground-water 
age were obtained for this study, two indirect 
estimates of age were available -- dissolved-oxygen 

concentrations and well depth. These two factors 
can be used as general indicators of water age 
because oxygen tends to be consumed through 
biotic and abiotic processes as water travels from 
zones of recharge to greater depths, and well depth 
provides a general indication of distance from the 
recharge zone (Kolpin, Kalkhoff, and others, 1997). 
The detection and concentration of herbicides for 
this study were significantly related to these indirect 
estimates of ground-water age (fig. 6). In general, 
these indicators of younger ground water 
corresponded to more frequent detections and 
higher concentrations of herbicide compounds.

Figure 5. Total herbicide concentration by aquifer 
type (ALLUV = alluvial, GD = glacial drift, BK = 
bedrock/karst region, BNK = bedrock/nonkarst 
region). Numbers in brackets are the frequency of 
herbicide detection for that aquifer type. An 
explanation of a boxplot is provided in figure 3.
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Figure 6. The relation between total herbicide 
residue concentration (parent plus degradates) and 
the two indirect estimates of ground-water age. 
Numbers in brackets are the frequency of herbicide 
compound detection for that group. Dissolved-
oxygen concentrations could not be measured in 
water from nine of the municipal wells sampled. An 
explanation of a boxplot is provided in figure 3.

The two indirect estimates of ground-water 
age were used to separate the sampled wells into 
general vulnerability classes (low = well depth >50 
m and dissolved-oxygen concentration < 0.5 mg/L; 
intermediate = well depth >50 m and dissolved-
oxygen concentration ≥0.05 mg/L, or well depth 
≤50 m and dissolved-oxygen concentration <0.5 
mg/L;  and high = well depth  ≤50 m and dissolved-

oxygen concentration ≥0.5 mg/L). The results show 
that the frequencies of detection and concentrations 
varied substantially among the vulnerability classes 
regardless of whether or not herbicide degradates 
were considered (fig. 7). Nevertheless, when 
herbicide degradates were included, the frequency 
of herbicide compound detection within the highest 
vulnerability class approached 90% and the median 
total herbicide residue concentration increased over 
an order of magnitude to 2 µg/L (Figure 7).

Figure 7. The relation between total herbicide con-
centration and vulnerability class (Low = well depth 
>50 m and dissolved-oxygen concentration <0.5 
mg/L; Intermediate = well depth >50 m and dis-
solved-oxygen concentration Š0.5 mg/L, or well 
depth ≤50 m and dissolved-oxygen concentration 
<0.5 mg/L; High = well depth ≤50 m and dissolved-
oxygen concentration Š0.5 mg/L). Numbers in brack-
ets are the frequency of herbicide detection for that 
group.The nine wells where dissolved-oxygen data 
were not available were not used for this analysis. 
An explanation of a boxplot is provided in figure 3.

This study documents that obtaining data on 
herbicide degradates is critical in attempting to 
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understand not only the fate of a specific herbicide, 
but also its overall effect on human health and the 
environment. 
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