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1. Introduction
Many economists have come to favor the \superla-
tive" Fisher and TÄornqvist price indexes over the
more traditional Laspeyres formula (see, for exam-
ple, Diewert 1996, Aizcorbe and Jackman 1993).
The US Bureau of Labor Statistics is now planning
the release of a new price index series targeting the
TÄornqvist formula. The choice between the Fisher
and TÄornqvist formulas may be based on a vari-
ety of factors, including other price index formulas
in use by the producer and sensitivity to extreme
values. In this note, we compare the two formulas
with respect to the latter criterion.

Extreme-valued price ratios often occur as a re-
sult of deep discounts or \free" promotional goods
or services. Such outliers can be either large or
small, depending on whether the discounted price
appears in the numerator or denominator of the
price ratio. Less often, extremely high prices ap-
pear with converse e®ects. The Laspeyres formula
is sometimes attacked as sensitive to extreme val-
ues because it is based on an arithmetic mean of
the price ratios. We will see, however, that such
sensitivity depends on the direction of the outlying
value (high or low) as well as on the weights used
in the selected mean.

In the next section, we consider the e®ect of an
extreme value on the unweighted arithmetic, har-
monic, and geometric means. Section 3 contains
a discussion of the corresponding e®ects on the
Fisher and TÄornqvist index formulas under di®er-
ing assumptions regarding the correlation between
the expenditure-share weights and the prices. This
correlation is related to the \elasticity of substitu-
tion," i.e., the extent to which consumers shift their
purchases toward lower priced items when relative
prices change. We present an empirical example in
Section 4 and summarize our conclusions in Section
5.

2. E®ects of Extreme Values on Unweighted Means
We use the following simple model to examine the
e®ects of an extreme value on three types of un-
weighted means. Let x1; :::; xn be a collection of
nonnegative values, where xi = ¹ for i = 1; :::; n¡1;
while xn = y¹ for some number very large or small
positive y; i.e., xn is an outlier in the collection. We
de¯ne the unweighted arithmetic, harmonic, and
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geometric means, respectively, as follows:
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It is easy to see that
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We ¯rst consider the rate at which the various
means approach ¹ as n approaches in¯nity. For
¯xed y; we have
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as n ! 1: Thus, as n becomes large, all three of
the means approach ¹ at approximately the same
rate.

Suppose now that n is ¯xed. We show that
the behavior of the various means di®ers as y ap-
proaches zero or becomes large. First note that

lim
y!1 fA (y) =1; while lim

y!0 fA (y) =
n¡ 1
n

;



indicating that A is much less sensitive to low out-
liers than to high outliers. Conversely,

lim
y!1 fH (y) =

n

n¡ 1 ; while lim
y!0

fH (y) = 0:

We may therefore conclude that H is quite robust
to high outliers but sensitive to low ones. For the
geometric mean, we have

lim
y!1 fG (y) =1; while lim

y!0 fG (y) = 0:

These limits suggest that, unweighted, G is about
equally sensitive to low outliers as to high outliers.
The geometric mean, however, is less sensitive than
the arithmetic mean to high outliers and less sensi-
tive than the harmonic mean to low outliers. Note
that

fA (y) =
n¡ 1 + y

n
= ­ (y)

as y !1; whereas

fG (y) = O
³
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´
as y ! 1; where n ¸ 1: Thus, although the geo-
metric and arithmetic means both approach in¯n-
ity as y becomes large, G grows much more slowly
than does A; given reasonably large n: Similarly, as
y ! 0; we have

fH (y) = O (y) ;

whereas
fG (y) = ­

³
y1=n

´
;

indicating that, as y becomes small, H approaches
zero more quickly than does G.

3. E®ects of Extreme Values on Price Indexes
The results in Section 2 may lead one to conclude
that price index formulas based on the geometric
mean are, overall, the most robust formulas avail-
able; at the very least, they represent a sensible
choice when both high and low outliers are expected
to occur. In most applications, however, price in-
dexes are not computed as unweighted means. In
this section, we examine the e®ect of expenditure-
share weights on the Laspeyres, Paasche, Fisher,
and TÄornqvist indexes, with special emphasis on
the latter two. We begin by stating the index for-
mulas.

The Laspeyres index measuring price change
between time periods 1 and 2 is de¯ned as

L =

PN
j=1 qj1pj2PN
j=1 qj1pj1

=
NX
j=1

wj1

µ
pj2
pj1

¶
;

where pjt denotes the price of item j at time t 2
f1; 2g ; qjt denotes the quantity of item j purchased

at time t; wjt = pjtqjt=
PN
k=1 pktqkt, and N denotes

the number of items in the target population. The
weight wjt is the expenditure share for item j in
period t; the price ratios pj2=pj1 are often called
price relatives. Clearly L is the arithmetic mean
of the price relatives with weights representing ¯rst
period expenditure shares. The Paasche index is a
harmonic mean of the price relatives, with second
period expenditure-share weights:

P =

PN
j=1 qj2pj2PN
j=1 qj2pj1

=
1PN

j=1wj2 (pj2=pj1)
¡1 :

The Fisher index is simply de¯ned as F =
p
LP;

while the TÄornqvist is a geometric mean of the price
relatives with weights representing the averages of
the period 1 and period 2 expenditure shares; i.e.,
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µ
pj2
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;

where wj;1;2 = (wj1 +wj2) =2:
To examine the e®ects of an outlier on the in-

dexes described above, suppose we have a collection
of n items priced in time periods 1 and 2. Suppose
further that, for j = 1; :::; n; we have pj1 = qj1 = 1
and that, for j = 1; :::; n¡ 1; we also have pj2 = 1;
while pn2 = y: (That is, we assume for simplicity
that the ¹ from the previous section is 1.) Let

¿ = 1¡ ln (pj2qj2)¡ ln (pj1qj1)
ln (pj2)¡ ln (pj1) ;

and assume that ¿ is constant across all items j:
Then

pj2qj2 = pj1qj1

µ
pj2
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¶1¡¿
for j = 1; :::; n: Given 0 · ¿ · 1; higher values of
¿ indicate less impact of price change (represented
by the price relatives) on second period item-level
expenditure levels. For j = 1; :::; n ¡ 1; we have
qj2 = qj1 = 1; and

qn2 = y
¡¿ :

The resulting ¯rst and second period expenditure-
share weights are as follows:
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n
; j = 1; :::; n;
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and
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y1¡¿
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The \average weights," used in the TÄornqvist in-
dex, are
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When ¿ is small (low or zero elasticity) and y
is large,

wn1 < wn;1;2; (3.1)

so the Laspeyres index gives less weight to high
outliers than does the TÄornqvist. Similarly, when
¿ and y are both small,

wn2 < wn;1;2; (3.2)

indicating that the Paasche index gives less weight
to low outliers than does the TÄornqvist. Under con-
ditions of low elasticity, we therefore observe the
following phenomena: although the Laspeyres in-
dex, based on the arithmetic mean, is sensitive to
high outliers, it assigns them weights that are low
relative to the TÄornqvist weights, while the Paasche
index, a harmonic mean, assigns lower weights to
low outliers. The weights in the Laspeyres and
Paasche indexes can therefore be expected to com-
pensate, at least partially, for the sensitivity of the
arithmetic and harmonic means to high and low
outliers, respectively.

Under this simple model, the values of the
Laspeyres, Paasche, Fisher, and TÄornqvist indexes
are as follows:
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Both the Fisher and TÄornqvist indexes are
known as superlative indexes, because economic
theory suggests that they approximate a \true
cost of living index" under relatively weak as-
sumptions regarding economic conditions (Diewert
1987). We therefore focus on the relative robust-
ness of F (n; y; ¿) and T (n; y; ¿) under the assump-
tions ¿ = 1 and ¿ = 0: The value ¿ = 1 indicates
that, to some degree, consumers shift their pur-
chases toward items (or item categories) whose rela-
tive prices have decreased between periods 1 and 2,

while ¿ = 0 represents the case of little or no change
in buying behavior in response to price change.

First consider the case ¿ = 1; a value of ¿ rep-
resenting the assumption that consumers alter the
quantities of the items they purchase so as to main-
tain the same share of expenditure on each item|a
situation corresponding to a fairly high level of elas-
ticity. In this case, we have, for ¯xed n and large
y;
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=
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while
T (n; y; 1) = y1=n: (3.4)

So, for reasonably large n; T is more robust than
F in the presence of high outliers. For the case of
low outliers, we have

F (n; y; 1) =
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³
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for ¯xed n as y approaches 0. Under our simple
model, we may therefore conclude that, with regard
to robustness, conditions of high elasticity favor the
TÄornqvist index over the Fisher.

With ¿ = 0, we have
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(Observe that F (n; y; 0) = L (n; y; 0) =
P (n; y; 0) :) For ¯xed n and large y;

F (n; y; 0) ¼ 1 + y

n
= ­ (y) ; (3.7)

while
T (n; y; 0) ¼ y(n+1)=2n: (3.8)

As a rough \rule of thumb," the above approxi-
mations suggest that T is likely to outperform F



whenever we have outliers as large as n2: The rela-
tive robustness of T and F thus depends on the rel-
ative values of y and n; which may, in turn, depend
on the aggregation level being considered. Expres-
sions (3.4) and (3.8) also indicate that, for large
values of n; T is much more robust to high outliers
under high elasticity than it is under low elasticity.
For low outliers, however, the elasticity assumption
has less impact on T:With n ¯xed and y small, we
have

F (n; y; 0) = ­

µ
n¡ 1
n

¶
; (3.9)

and
T (n; y; 0) = O

³
y1=2n

´
; (3.10)

revealing that, under conditions of low elasticity, T
is more sensitive to low outliers than is F: Equa-
tions (3.5), (3.6), (3.9), and (3.10) suggest that T
is somewhat more robust to low outliers for ¿ = 0
than for ¿ = 1; while F is much more robust.

The above results lead us to conclude that,
under conditions of low elasticity, the Fisher in-
dex may often be more robust to outliers than the
TÄornqvist: the Fisher is more robust to low out-
liers and, when n is su±ciently large relative to
any prices in the data set, the Fisher is also more
robust to high outliers. Conditions of high elastic-
ity (¿ close to 1) render both indexes more robust
to extremely high values. Under conditions of high
elasticity, the TÄornqvist is preferable to the Fisher,
as it is less sensitive to both high and low outliers.

The numerical examples shown in the Ap-
pendix illustrate these conclusions. Tables 1
through 4 give values of the Fisher and TÄornqvist
indexes under the single-outlier scenario described
above. (Note that these are not random values pro-
duced by a Monte Carlo simulation but simply the
values of the functions F (n; y; ¿) and T (n; y; ¿) for
the given parameters.) Table 1 gives index values
under the assumption that ¿ = 1 (high elasticity).
Under this assumption, the TÄornqvist is more ro-
bust than the Fisher to both high outliers (shown)
and low outliers. Tables 2 through 4 show values of
the indexes under the assumption that ¿ = 0: The
bold numbers in Tables 2 and 3 highlight points
at which y becomes large enough, relative to n; to
render the TÄornqvist better than the Fisher for ap-
proximating the mean 1 in the presence of a high
outlier. As expected, the \turning points" occur as
y approaches n2: For the parameter values in Ta-
ble 4, the Fisher always outperforms the TÄornqvist;
the table entries only illustrate the degree to which
the Fisher does better in the presence of low out-
liers under low elasticity. Under low elasticity, both
indexes are more sensitive to high outliers and less
sensitive to low outliers than they are under high

elasticity. The former tendency can be seen by com-
paring the last two columns of Table 1 (n = 30)
with the corresponding columns of Table 3.

4. An Empirical Example
To illustrate the practical e®ects of the results dis-
cussed above, the Appendix provides graphs of air
travel price index series for the various index for-
mulas. For these series, the apparent elasticity of
substitution is low|in some cases, even negative.
The series therefore exemplify only the behavior of
the di®erent indexes under conditions of low elastic-
ity (¿ close to 0). It is important to realize that the
elasticity re°ected in the sample data is the quan-
tity that a®ects the performance of the indexes; this
elasticity may di®er from that of the underlying
population (see Dorfman et al. 1999).

The air travel price index series shown in Fig-
ures 1 through 6 are based on data from the Bu-
reau of Transportation Statistics' quarterly Origin
and Destination (O&D) Survey. The sample for
the O&D Survey comprises about 10% of all pas-
senger itineraries having some US component (i.e.,
itineraries that include at least one °ight arriving
at or departing from a US airport) and includes
about two to four million itineraries per quarter.
The index series shown are based only on sample
itineraries °own on domestic carriers. For a de-
scription of the index estimation methodology, see
Lent and Dorfman (2001a).

The ¯gures show the Laspeyres, Paasche,
Fisher, and TÄornqvist index series for various
classes of service and for all classes combined. In
all ¯gures, the Paasche series runs close to the
Laspeyres series or even (for business class ser-
vice) above the Laspeyres, indicating low or neg-
ative elasticity of substitution. (Lent and Dorfman
2001b describe a method of estimating the elastic-
ity of substitution; elasticity estimates computed
by their method run close to 0 for these data.) In
examining Figures 1 through 6, it is important to
note that the \class of service" variable in the O&D
Survey was rede¯ned and standardized in 1997-98.
We therefore expect some unusual data values to
a®ect the index series during this period; indeed,
many of the series display a visible break between
the fourth quarter of 1997 and the ¯rst quarter of
1998. These breaks may be exacerbated by the fact
that a lower percentage of the O&D Survey obser-
vations were \matched" across time during 1997-
98 (see Lent and Dorfman 2001a for a description
of the across-time matching method), resulting in
lower than usual e®ective sample sizes.

Figures 1 and 2 show the series for all classes
of service combined and for restricted coach class
(by far the largest class), respectively. The se-



ries in Figure 2 behave in \typical" fashion: the
Laspeyres series runs slightly above the others, dis-
playing a slight upward drift, while the Paasche
shows a similar downward drift, and the two su-
perlative series run between them, closely tracking
each other. This type of behavior results from the
large number of observations and the fact that the
1997-98 break has relatively little impact on these
series. Figure 1 is similar to Figure 2, except for
the noticeably larger e®ect of the 1997-98 change,
which lifts the TÄornqvist series slightly above the
others. Recall that, under conditions of low elastic-
ity, the TÄornqvist index is often more sensitive to
outliers than is the Fisher.

Index series for other classes of service (cat-
egories comprising fewer observations) appear in
Figures 3 through 6. For the unrestricted ¯rst
and restricted ¯rst class indexes (Figures 3 and 4),
the Laspeyres series runs very slightly above the
Paasche, indicating low but positive elasticity. For
the unrestricted ¯rst class series, the 1997-98 break
sends the TÄornqvist above the other series, while
the TÄornqvist for restricted ¯rst class is \bumped
down" and runs well below the others for 1998 and
subsequent years. In both cases, the TÄornqvist con-
tinues to roughly parallel the Fisher after the break,
indicating that unusual data values generated the
level shifts. Note also that the TÄornqvist's upward
shift for unrestricted ¯rst class is noticeably less
severe than its downward shift for restricted ¯rst
class, perhaps due to its greater robustness to high
outliers than to low ones.

The business class index series (Figures 5 and
6) display the relatively rare phenomenon of nega-
tive elasticity. The Paasche series runs above the
Laspeyres, indicating that consumers are shifting
their purchases toward higher priced services as
relative prices change. We emphasize that sample
survey data may not always re°ect true popula-
tion elasticity; in this case, the \class of service"
categories are coarsely de¯ned, and many di®erent
types of restrictions may apply to tickets in the \re-
stricted" categories. Elasticity estimates based on
these data do not re°ect substitution within these
categories (for the same route and carrier) and may
therefore su®er a downward bias. On the other
hand, since business class service is typically paid
for by a third party (i.e., the passenger's employer),
very low elasticity is expected. Some business class
passengers may even choose higher priced tickets
assuming that \you get what you pay for," and such
behavior could also explain the negative elasticity
indicated. Under negative elasticity, quantities pur-
chased are positively correlated with price change,
and this correlation may cause expenditure shares
to increase dramatically when prices increase. The

TÄornqvist index, whose weights are \average" ex-
penditure shares, therefore assigns large weights to
some high price ratios. Apart from the negative
elasticity, the movements of the business class se-
ries appear similar to that of the ¯rst class series,
i.e., the TÄornqvist index is shifted up or down dur-
ing the 1997-98 period, while the other series are
less a®ected by the unusual values.

5. Conclusions
Practitioners may often consider robustness to out-
liers an important criterion in selecting a price in-
dex formula, especially for item categories such as
airfares, in which extreme prices may regularly re-
sult from \frequent °yer" awards and other price
discriminatory discounts. Although price index for-
mulas based on di®erent types of means inherit the
relative robustness of these means, the weights ap-
plied in price index calculation also play a crucial
role. We've seen that, under conditions of low elas-
ticity of substitution, the high correlation between
the weights and the price relatives may o®set the
sensitivity of the Laspeyres and Paasche indexes,
making the Fisher a more attractive option than
the TÄornqvist. The choice between index formulas
is therefore more complex than the mere selection
of an arithmetic, harmonic, or geometric mean. It
requires information on the elasticity of substitu-
tion re°ected in the data as well as an estimate of
the magnitude of outliers (high or low) that can be
expected.

Acknowledgment: Comments from Alan Dorfman of BLS
resulted in signi¯cant improvements to this note.
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Appendix:  Tables and Figures 
 

Table 1.  Index Values Given a Single Outlier, μ = 1, τ = 1 
n=10 n=30 Outlier 

y F T F T 

100 3.30 1.58 2.07 1.17 
200 4.57 1.70 2.76 1.19 
300 5.56 1.77 3.31 1.21 
400 6.39 1.82 3.78 1.22 
500 7.13 1.86 4.20 1.23 
600 7.80 1.90 4.58 1.24 
700 8.42 1.93 4.93 1.24 
800 8.99 1.95 5.26 1.25 
900 9.53 1.97 5.56 1.25 
1000 10.04 2.00 5.86 1.26 

 
Table 2. Index Values Given a Single Outlier, μ = 1, τ = 0 

n=5 n=10 Outlier 
y F T F T 

10 2.80 2.87 1.90 2.06 
20 4.80 4.70 2.90 3.26 
30 6.80 6.30 3.90 4.39 
40 8.80 7.73 4.90 5.42 
50 10.80 9.05 5.90 6.38 
60 12.80 10.26 6.90 7.28 
70 14.80 11.41 7.90 8.12 
80 16.80 12.49 8.90 8.92 
90 18.80 13.52 9.90 9.68 

100 20.80 14.51 10.90 10.41 
 

Table 3. Index Values Given a Single Outlier, μ = 1, τ =0 
n=20 N=30 Outlier 

F T F T 

100 5.95 7.77 4.30 6.43 
200 10.95 12.83 7.63 11.05 
300 15.95 16.85 10.97 14.81 
400 20.95 20.28 14.30 18.05 
500 25.95 23.31 17.63 20.92 
600 30.95 26.06 20.97 23.51 
700 35.95 28.58 24.30 25.90 
800 40.95 30.93 27.63 28.13 
900 45.95 33.15 30.97 30.22 
1000 50.95 35.24 34.30 32.19 

 
Table 4.  Index Values Given a Single Outlier, μ = 1, τ = 0 

n=5 n=10 Outlier 
F T F T 

0.1000 0.820 0.772 0.910 0.880 
0.0500 0.810 0.728 0.905 0.854 
0.0333 0.807 0.702 0.903 0.838 
0.0250 0.805 0.684 0.903 0.827 
0.0200 0.804 0.670 0.902 0.819 
0.0167 0.803 0.658 0.902 0.812 
0.0143 0.803 0.649 0.901 0.806 
0.0125 0.803 0.641 0.901 0.801 
0.0111 0.802 0.634 0.901 0.796 
0.0100 0.802 0.627 0.901 0.792 

Figure 1
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Figure 2

Restricted Coach Class
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Figure 3

Unrestricted First Class
Quarterly Chained Preliminary Series, 95Q1=100
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Figure 4
Restricted First Class

Quarterly Chained Preliminary Series, 95Q1=100
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Figure 5

Unrestricted Business Class
Quarterly Chained Preliminary Series, 95Q1=100
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Figure 6

Restricted Business Class
Quarterly Chained Preliminary Series, 95Q1=100
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