
Benefits of Rice Genome Sequencing

Rice Genomics Program Bob Fjellstrom, Aaron Jackson, Melissa Jia **USDA-ARS-DBNRRC**, Stuttgart, AR

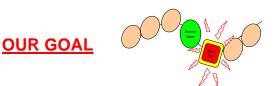
The Rice Genome

- Genes carry instructions on how organisms grow, develop, and function
- 40,000+ genes in rice

Genes are made of DNA

800 million bits of DNA information in rice genome

Genes are aligned on chromosomes 24 chromosomes in rice


BUT

Which of these 800 million bits of DNA are important to look at ?

- too costly to look at them all

Must identify high priority genes

- control economically valuable traits
- can map chromosomal location

Develop DNA markers for valuable traits

- Markers are DNA sequence tags readily monitored by lab analysis
- Located near gene controlling trait

Marker Assisted Selection

- Markers indicate presence of valuable genes
- Increases efficiency of selection
- Does not replace traditional breeding methods
- Helps breeders combine valuable traits into new rice cultivars

DNA Marker technology

Collect tissue

Amplify DNA markers

Analyze markers

Presence of DNA marker is associated with presence of important trait

disease resistance

Traits tagged with DNA markers

Disease resistance

- Blast disease: 5 genes
- Sheath blight: 2 genes

Waxy gene DNA marker

Cooking Quality

- Amylose content

Long Grain - Nonsticky

Medium Grain - Sticky

High Amylose

- specialty use

- Grain aroma

- Grain elongation

- Pasting strength
- Cooking energy

Agronomic traits

- Cultivar identity/purity: genetic fingerprinting
- Heading date
- Seedling vigor

