text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
Discoveries
design element
Discoveries
Search Discoveries
About Discoveries
Discoveries by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Discovery
Re-Shaping Product Development: 3-D Printing Builds Models Directly from Computer Design

Imagine designing a product on your computer, pressing the print key, and the printer spits out a prototype. It's an apt analogy for Three-Dimensional Printing, a technology some observers believe will reshape industrial design, medicine and more.

object printed directly from a mathematical model

This object is an illustration of the geometric capability of 3D Printing.
Credit and Larger Version

October 16, 2003

Engineers have been able to create models directly from computer-aided design (CAD) for almost two decades. There are several freeform fabrication methods, including laminated object manufacturing (LOM), a process that cuts away resin or laminated paper to produce plastic- or wood-like objects, and Selective Laser Sintering (SLS), which uses a laser to fuse metallic powder into solid prototypes.

Three-Dimensional Printing (3DPTM) is a relatively new technology that can create complicated, full-scale products directly from computer drawings. Massachusetts Institute of Technology professor Emanuel Sachs and his colleagues developed 3DPTM with support from NSF and other federal agencies.

How does 3DPTM work? It’s based on the understanding that any shape can be built from stacked layers. "Think of the Pyramids at Giza," says Sachs. In 3DPTM, thin layers (ranging from 25 to 200 microns) are spread over the surface of a powder bed. Using a technology similar to ink jet printers, 3DPTM applies a binder material between each of the successive layers. After all of the layers are "printed," the loose powder is removed and the object is usually finished in a furnace.

The resulting structures can be highly complex, with complicated internal geometries that would be difficult to machine using standard engineering methods. Another advantage of 3DPTM is that objects can be made of virtually any material, including ceramics, metals, polymers, and composites. Additionally, the process enables great control over an object’s composition, microstructure, and surface texture.

MIT has licensed 3DPTM technology to six companies in diverse fields. Direct manufacture applications already in development include scaffolding for human tissue grafts, devices for delivering timed-release medications, ceramic molds, metal parts, filters for power plants and electronic components.

NSF's Division of Design, Manufacture, and Industrial Innovation (DMII) originally funded the research to address manufacturing issues, specifically the potential for prototyping as an all-in-one process, notes George Hazelrigg, a program director in NSF's Engineering Directorate. "Now, it has spin-offs with a big impact in medicine."

-- Josh Chamot

Investigators
Emanuel Sachs

Related Institutions/Organizations
Massachusetts Institute of Technology

Locations
Massachusetts

Related Programs
Engineering Design
Manufacturing Machines and Equipment

Related Awards
#0100194 Local Composition Control in Solid Freeform Fabrication
#9617750 NSF/DARPA DDFRP: The Distributed Design and Fabrication of Metal Parts and Tooling by 3D Printing
#9414793 The Design of Three-Dimensional Geometry Using Interchangeable Electronic and Physical Models

Total Grants
$1,986,972

Related Agencies
Office of Naval Research
Defense Advanced Research Projects Agency (DARPA)

Related Websites
Laboratory for Manufacturing and Productivity at MIT: http://web.mit.edu/lmp/www/
News Tip: Three Dimensional Printing: Shortcut to the Final Product?: http://www.nsf.gov/od/lpa/news/02/tip020506.htm#first
America’s Investment in the Future (NSF) - Manufacturing: http://www.nsf.gov/od/lpa/news/publicat/nsf0050/manufacturing/manufacturing.htm

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
March 25, 2005
Text Only


Last Updated: March 25, 2005