Ecological Sustainability in Rapidly Urbanizing Watersheds: Evaluating Strategies Designed to Mitigate Impacts on Stream Ecosystems

Meosotis Curtis, Montgomery County Department of Environmental Protection Laura Craig, University of Maryland-College Park

Lead Principal Investigator: <u>Margaret Palmer</u>, University of Maryland-College Park Co-Principal Investigators: <u>Amy Hennessey</u>, <u>Kevin Kelly</u>, <u>Keith Van Ness</u>

Collaborative Science and Technology Network for Sustainability Progress Review Workshop October 18-19, 2005 Washington DC

Collaborators

The Palmer Lab Montgomery County **Department of Environmental Protection** ESA, Inc. USGS-Water Resources Division EPA Environmental Photographic Interpretation Center

Clarkshurg Special Protection A

Project Goals

- Determine environmental responses as urbanization occurs
 - off channel (groundwater)
 - in-channel (surface water and streambed)
 - below channel (hyporheic)
- Evaluate long-term effectiveness of stormwater management technologies
 - in mitigating impacts from urbanization
 - sustaining structure and function of headwater streams

MD 2000 Stormwater Management Design Manual

Unified Sizing Criteria

- Water Quality Volume
- Recharge Volume
- Channel Protection Volume
- Overbank Flood Protection
- Extreme Flood Protection
- Include credits for innovative site planning
 - non-structural practices
 - site design techniques

MD Stormwater Design Manual Monitoring

Large Jurisdictions * Required in Permit	Anne Arundel	Baltimore City	Baltimore County	Montgomery County	Prince George's County
Stream Cross-Sections*	\checkmark	\checkmark	\checkmark	\checkmark	
Stream Profiles*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bank Erodibility Hazard Index		\checkmark	\checkmark	\checkmark	\checkmark
Pebble Counts	\checkmark	\checkmark	\checkmark	\checkmark	
Water Chemistry Suite		✓ Bank and channel sediment	\checkmark		\checkmark
Water Quality Parameters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Biological	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Habitat	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Discharge	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Groundwater Recharge				\checkmark	
Continuous Temperature				\checkmark	
Control Site		\checkmark	\checkmark	\checkmark	\checkmark

- Positive Control-no development
- 3 Test Areas-MD 2000 SWM Manual
- Negative Control-prior SWM Manual

Background October 05

Preliminary Results--comparing rainfall to runoff

Positive Control Area 2 (Soper's Branch) Cross Section 1 - Facing Upstream in Years 2003 and 2004

Background October 05

Stream ecosystem function

How does <u>nutrient processing</u> differ across watersheds?

How does <u>metabolism</u> (GPP, CR & NDM) differ across watersheds?

Measure nutrient uptake using shortterm solute injections

Measure GPP, CR and NDM using whole-stream methods

Stream ecosystem structure

- How does water quality differ across watersheds?
- How does the <u>availability of organic matter</u> differ across watersheds?
- How do <u>substrate</u> characteristics differ across watersheds?

Survey of structural metrics

Identifying mechanisms that contribute to differences in structure and function

How does <u>GW-SW exchange</u> differ across watersheds?
How does <u>groundwater quality</u> differ across watersheds?

Measure GW-SW exchange

Measure streamside and hyporheic water quality

How do streams draining watersheds being developed with new SWM strategies <u>change</u> over time?

