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Abstract

The application of population and community ecology to solving real-world problems requires population and community
dynamics models that reflect the myriad patterns of interaction among organisms and between the biotic and physical envi-
ronments. Appropriate models are not hard to construct, but the experimental manipulations needed to evaluate their defining
coefficients are often both time consuming and costly, and sometimes environmentally destructive, as well. In this paper we
present an empirical approach for finding the coefficients of broadly inclusive models without the need for environmental
manipulation, demonstrate the approach with both an animal and a plant example, and suggest possible applications.

Software has been developed, and is available from the senior author, with a manual describing both field and analytic
procedures.
Published by Elsevier Science B.V.
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1. Introduction

Conservation biology, with its concerns for pop-
ulation viability analysis, risk assessment and the
prediction of long-term consequences of management
actions, relies increasingly on population and commu-
nity dynamics modeling. Because of the difficulties in
assessing, at least with any accuracy and reliability, the
form and intensities of species interactions, these mod-
els generally have been built either to deal with only
one species at a time or to make greatly simplifying
assumptions about the coupled dynamics of non-target
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species. There also has been a tendency among man-
agers to avoid the difficulties inherent in developing
their own, targeted models, and to depend on available
software devoted to the application of such simplistic
tools as the logistic equation or projection matrices.
In many instances, these models have served us well.
But researchers and managers should take care in
their use, for almost none of them considers both
density-dependence and species interactions, and the
danger of neglecting either should be obvious: without
density-dependent compensation, any change to any
demographic parameter in a population currently at or
fluctuating about equilibrium must inevitably lead to
that population’s demise or explosion. It is, therefore,
not enough simply to predict that a population will in-
crease or decrease in response to (for example) some
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anthropogenic action. With respect to species inter-
actions, it is patently ridiculous to assert knowledge
of a population’s response to a putative action in the
absence of information on that action’s impact on the
population’s food supply, competitors or predators.

There is a growing awareness that much of the inter-
esting dynamics of populations depends critically on
the multiple feedback loops inherent in all ecological
systems. With respect to managing a deer population,
for example, we should know the importance of al-
ternate food sources and how the importance of each
food varies with its relative and absolute abundance,
the density of the deer population itself and physical
aspects of the environment. We also should know how
interactions among individuals affect the energy bal-
ance of the population, and how food, cover and other
physical variables impact such interactions. And we
should know the importance of predators, relative to
that of various foods or individual interactions, to fit-
ness. And finally, of course, we should know how the
deer population feeds back on the food plants and the
physical environment that sustain it.

With respect to controlling the invasion of an ex-
otic annual weed like cheat grass (Bromus tectorum
L.), we should know how soil nutrients affect fitness,
not only directly but in synergy, and how important
such nutrients are to fitness relative to, say, intra- and
inter-specific competition. We should know the effect
of grazers, not only with respect to their impact on
mortality, but vis-á-vis growth stimulation, and the ef-
fects on soil hardness and its consequences for water
uptake, and how any growth or mortality stimulating
consequences of grazing are secondarily impacted by
nutrients, competitors, and physical features of the en-
vironment. Finally, as with the deer, we should like
to know how the species of interest, in turn, feeds
back on soil characteristics, grazers and the physical
environment.

In light of the demands for such information the
practitioner of conservation biology modeling is faced
with a basic problem: How to acquire the necessary
information on all the myriad interactions in a timely
and cost-effective manner and integrate it into expres-
sions explicitly describing the effects of physical and
biotic variables on the target species’ biology. Experi-
mentation, bolstered by theory, often can provide good
estimates of many of these parameters. But experi-
mental approaches can be time consuming, costly, and

sometimes environmentally destructive, often forcing
us to rely on questionable estimates of the needed val-
ues, sacrifice accuracy, and invite possibly disastrous
misjudgments.

An alternative approach is to use field data to fit
models empirically. Information obtained from obser-
vations can be used to tell us, directly, about the inter-
actions and feedbacks driving a system. Usually, this
approach takes the form of regressing local population
abundances on environmental variables. It has been
used by (for example)Schoener (1974), Crowell and
Pimm (1976), Hallett and Pimm (1979), Abramsky
et al. (1986)and Morris et al. (2000), with varying
rates of success, to estimate the intensity of competi-
tion. We support this approach, though with one essen-
tial difference. To obtain descriptions of a population’s
dynamics it is necessary to relate not population den-
sities, but the population growth rate parameter itself,
to the underlying environmental variables (see also
Morris, 1995). Any such model must take the form:

r = f({X}), (1)

wherer is the per-capita population growth rate, and
{X} is the set of environmental variables, including
densities of conspecifics and other species, affecting
it.

2. Methods

Unfortunately, it is rarely possible to evaluate local
values ofr, a problem that is exacerbated by the like-
lihood thatr may be strongly affected by local micro-
habitat and by the fact that most animals move about
over areas encompassing a variety of such microhab-
itats. On the other hand, the difficulty of evaluating
local r’s often can be effectively addressed as follows:
Defineρ as the average or, more accurately, theex-
pected, per-individual contribution tor of individuals
in patches of any one microhabitat, where microhabitat
is defined by local environmental characteristics. Inas-
much as the immediate determinants ofρ are survival
and reproductive success,ρ is proportional to fitness.
We can, therefore, expect natural selection to have
endowed creatures with behavioral tendencies that en-
hanceρ, among which should be the ability to sense
and integrate local environmental information, and
to respond to what they sense as adverse conditions
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by moving to better spots—or, in the case of ses-
sile organisms, to choose the degree of dispersal, to
alter their growth or, inasmuch as possible, to ex-
ert appropriate control over where they settle. Such
behavior will, of course, alter the fitness landscape,
thereby promoting continued shuffling of position
by all individuals. Inasmuch as these behaviors must
be in response to conditions sensed (or recalled)
by individuals, the spatial scale of concern may be
quite small, encompassing the immediate (or remem-
bered) sensory world of the individual. At this scale
any relationships between environment and response
are strongest (see alsoMorris, 1995). If the patches
within which each individual senses the quality of its
surroundings are small relative to its motility, the time
and energetic costs of these movements will be small.
Thus, unless movements are socially or physically
constrained, individuals should disperse themselves in
such manner thatρ tends toward a maximum. But if
this is so, individuals should move into patches of the
best microhabitats until density feedback drives their
fitness contributions down to a common level. We
assert, therefore, thatρ should tend toward equality
over all occupied microhabitats.

One immediate caveat is critical, however. As
Morris (2002)has so effectively pointed out, optimal
dispersal does not and cannot lead to equalρ values
at population densities in the range of an Allee ef-
fect. Our assertion, therefore, holds only for densities
above this range.

The above argument is that advanced for the Ideal
Free Distribution (IFD; Fretwell, 1972; Fretwell
and Lucas, 1970). Becauseρ defines theexpected
per-individual fitness contribution rather than indi-
vidual contribution, it is considerably more robust.
However, in light of the difficulties inherent in the
presumption of the IFD, and the importance of our
assertion of equalρ values among microhabitats, we
delve into the subject more deeply inAppendix A
(see alsoAbramsky et al., 1991, 1994). For the mo-
ment, let us avoid the controversy by presuming we
are dealing with a single phenotype (i.e. all individ-
uals are equally effective competitors), in which case
the controversy by and large vanishes, and forge on.
We urge the skeptical reader to bear with us, for to
the degree that the assertion holds, or that deviations
can be compensated for, the consequences are of
considerable practical importance.

The procedure we suggest is as follows:

1. Construct a population dynamics model, in the
form of Eq. (1), for a species of interest (the target
species). This should be written in such a manner
that a user can build levels of complexity to fit
local situations and the availability of data.

2. Randomly sample individuals and, from quadrats
centered around each, collect data on the physi-
cal environment and on the abundances of foods,
conspecifics and other species. The size of these
quadrats should correspond to the user’s best judge-
ment of a target species’ immediate sensory world
(but see ‘Discussion,’ Part 1), and offering easy and
energetically minimal (ideally insignificant) access
one to another. Violation of the latter consideration
may give misleading results, and is a possible ex-
planation for the failure ofAbramsky et al. (1986)
to find good agreement between regression-based
competition estimates and the results of a manipu-
lation study.

3. Make use of the assertion thatexpectedindividual
fitness contributions for any one species tend to-
ward a common value over all occupied microhab-
itats and that the variance in fitness estimates is,
therefore, minimized among individuals. Find the
model coefficient values that are consistent with
this assertion.

Samples will be characterized by more individu-
als in regions of higher density. Therefore, to an ap-
proximation, the results of this sampling approach can
be mimicked by centering quadrats around randomly
sampled individuals and counting all individuals of the
target species found within these quadrats as sampled
individuals in their own right. We do not necessarily
encourage this shortcut, but note that it can save con-
siderable time and effort in the field. In this regard,
note that we are interested not in a representative de-
scription of the environment, per se, but rather in a
representative description of how the target species
sees it. Thus, if the shortcut sampling scheme is to
be followed, the information from each quadrat en-
ters the analysis in proportion to the number of target
species individuals it contains—quadrats with, say, 5,
8, 1 and 0 individuals are entered five times, eight
times, once and not at all. Mean values, then, relate to
means over individuals rather than over quadrats. For
those to whom this procedure appears heretical at first,
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note that we fall back on the more familiar, randomly
distributed quadrat protocol when testing the validity
of the coefficients obtained and when applying the fit-
ted model to the task of population and community
prediction.

Simple linear models utilizing this rationale have
been published previously (Emlen et al., 1989, 1993;
Freeman and Emlen, 1995) under the name Interaction
Assessment (INTASS).

3. The model

Rosenzweig et al. (1985)found considerable incon-
sistencies in results based on different approaches to
the regression procedure. Much of the problem was at-
tributed to a statistical artifact caused by differences in
the variances of the population densities and a correla-
tion between population means and variances. Such an
artifact, obviously, would be obliterated were there no
variance in the dependent variable and were there no
correlation between the dependent variable and popu-
lation densities. By usingρ as our dependent variable,
a quantity that is presumed constant and, therefore,
cannot be correlated with mean population density,
this artifact is eliminated. Note also, that using contri-
butions tor as our dependent variable makes possible
the direct calculation ofr. It is simply the mean of
those contributions over all individuals.

The forms of species interactions may remain
unchanged from one microhabitat to another, their
consequences arising strictly from adaptive selection
of habitat (D. Morris, personal communication). On
the other hand,Abrams (1995)has suggested that as
relative environmental conditions, including absolute
and relative population densities change, these forms
change also. If the latter is true, it serves as a further
warning to those who would use simple, linear mod-
els. But if a model is sufficiently general, change in
form can be approximated in the form of secondary
effects. Accordingly, in what follows, we begin with
a fairly simple model framework, and then, step-wise,
build considerable complexity into it, letting the user
decide, based on existing knowledge and the ratio
of sample size to number of coefficients required to
incorporate the complexity, where to stop. The user
should be aware, however, that when there is covaria-
tion among variables, the order in which coefficients

are solved for can have an impact on their calcu-
lated values. This is the other problem encountered
in Rosenzweig et al.’s (1985)work. Cognizant of this
potential problem, we have built up the model, below,
in steps. The reader who wishes to apply the INTASS
methodology, may want to built his/her model in a
different manner.

The expected contribution of an individual to its
population’s per-capita rate of change reflects births
and growth ultimately slated for reproduction (BRTH),
losses from predation, PRED, and non-predative mor-
tality, MORT. Thus,

ρ = BRTH − PRED− MORT. (2)

The terms BRTH, PRED and MORT are functions
of the available foods, which we designate with{Fi}
(subscriptsi), same trophic level species,{Nj} with
subscriptsj (NT, with subscriptj = T, denotes pop-
ulation of the target species), predators and parasites,
{Pk} with subscriptsk, and physical factors,{Zm}
with subscriptsm. The spatial scale at which the{Fi}
are defined should reflect the areal extent within which
the target species decides whether to accept or reject a
food item, in effect the area within which presence of
a specific food item can be sensed. This area will be
no larger than the quadrats described in point 2, above,
and may be considerably smaller. The same scale, as
a rule, will hold also for{Nj} and{Zm} (though see
Section 8). The spatial scale appropriate to{Pk} is
that within which thepredatorsdecide whether or not
to eat a particular prey item.

The analytic procedure, now, is to treat each indi-
vidual sampled as a data point, and statistically deter-
mine the values of the model’s coefficients such that
var(ρ) is minimized, i.e. such that the model best fits
the assertion of equalρ values as determined by all
individuals’ surroundings.

We now propose functions for BRTH, PRED and
MORT at increasing levels of completeness and com-
plexity. The user may, as he or she deems fit, stop at
any level, or skip any level in the analysis. A summary
of all coefficients is given inTable 1.

3.1. Level I: the basic model

All expressions are collapsible to linear functions
of the coefficients involved, thereby avoiding the pos-
sibility of multiple solutions.
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Table 1
Glossary of terms

Fitness terms
BRTH Birth rate or, in non-breeding season, contribution of growth ultimately slated for reproduction
PRED Predation rate
MORT Mortality by means other than predation. Includes predation by global predators, i.e. those whose presence the

target species can avoid only by virtue of habitat choice based on factors other than predator presence, per se
COR Correction term for source-sink situations, or when lumping sites among which average fitness may differ

Variables
{Fi} (subscriptsi) The set of all nutrient variables (trophic level below the target species) measured at a spatial scale

commensurate with the target species’ foraging behavior, or both at this scale and at a somewhat larger scale
reflecting memory of food locations

{Nj} (subscriptsj) The set of all species, including the target species, at the same trophic level as the target species, measured at
the same scales as{Fi}

{Pk} (subscriptsk) The set of all predator species, enumerated at a spatial scale commensurate with foraging behavior of the
predator in question.

{Zm} (subscriptsm) The set of all physical environmental variables, measured over one or more spatial scales as deemed likely to
influence the target species’ choice of microhabitat

{Xn} (subscriptsn) The set of all global variables, measured over macro-habitats

Coefficients to be found
{vi} The net value of a food item of typei to growth and reproduction of the target species
{αj} The competitive influence of speciesj on BRTH
{δk} The predation intensity of predator speciesk on the target species
{ξm}, {κm} The linear and quadratic coefficients describing the effects of physical variableZm on MORT
{ξBi

}, {γBi
} The linear and quadratic coefficients describing the second order importance of food/nutrienti on BRTH

{ξBj
}, {γBj

} The linear and quadratic coefficients describing the importance of secondary, same-trophic-level speciesj
on BRTH

{ξBk
}, {γBk

} The linear and quadratic coefficients describing the importance of predatork to BRTH
{ξBm}, {γBm} The linear and quadratic coefficients describing the importance of physical environmental factorm on BRTH
{ξPi}, {γPi} The linear and quadratic coefficients describing the importance of food/nutrienti on PRED
{ξPj}, {γPj} The linear and quadratic coefficients describing the importance of same trophic level speciesj on PRED
{ξPk}, {γPk} The linear and quadratic coefficients describing secondary effects of predatork on PRED
{ξPm}, {γPm} The linear and quadratic coefficients describing the impact of physical environmental variablem on PRED
{ξMB}, {γMB} The linear and quadratic coefficient describing the importance of BRTH-determining factors on MORT (e.g.

starvation)
{ξMP}, {γMP} The linear and quadratic coefficients describing the secondary importance of predators on MORT
{ξMN}, {γMN} The linear and quadratic coefficients describing the secondary importance of same-trophic-level species on

MORT
{θn} The coefficients describing the effect of macro-habitat variablen on fitness of the target species
{τi} The handling time for an individual of the target species on a food item of typei
{τ′

j} The handling time for a predator on an item of prey speciesj

Let 0< αij � 1 be the probability that a consumer
of the target species,j = T, captures and utilizes an
encountered item of foodi in some very small unit of
time and in the absence of competition. Then the prob-
ability it acquires and uses the item when conspecific
competitors are about is

αiT(1 − αiT)
Nj−1 =

(
αiT

1 − αiT

)
(1 − αiT)

Nj .

In the presence of competitors of other species,{j},

this probability becomes(
αiT

1 − αiT

)∏
j

(1 − αij )
Nj

so that the total amount eaten is∑
i

Fi

(
αiT

1 − αiT

)∏
j

(1 − αij )
Nj .

If we presume that the reproductive rate (or, in the
non-reproductive season, the rate at which growth
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ultimately slated toward reproduction occurs), is pro-
portional to the rate at which nutritional value is taken
in, and letvi be the nutritional value of an item of
type i, then we can write a first estimate of BRTH as

BRTH =
∑
i

viFi

(
αiT

1 − αiT

)∏
j

(1 − αij )
Nj .

The contribution to births must, however, incorpo-
rate metabolic costs unrelated to acquisition and the
possible use of existing reserves. We combine these
into a constant,β, and write

BRTH = β +
∑
i

viFi

(
αiT

1 − αiT

)∏
j

(1 − αij )
Nj .

We now make use of the very small magnitudes of
the alphas and approximate the above with

BRTH = β +
∑
i

αiTviFi


1 −

∑
j

αijNj




= β +
∑
i

αiTviFi −
∑
j

(∑
i

αiTviαijFi

)
Nj.

This leaves us with the problem, with several foods
and several same-trophic level species, that the number
of coefficients to be fit may become very large. To
avoid this problem, we further simplify, approximating∑

iαiTviαijFi by α′
j. Our expression now becomes

BRTH(1) = β +
∑
i

v′
iFi −

∑
j

α′
jNj : v′

i ≡ αiTvi.

(3)

For future reference, we abbreviatev′
iFi with Bi,

α′
jNj with Ai, so that

BRTH(1) = β +
∑
i

Bi −
∑
j

Aj.

This coalescing of terms unfortunately leads to a
less precise definition of the coefficients. However,
{v′} still indicates value, weighted by acceptability
(which, after all, should reflect value), and{α′} corre-
sponds to the more familiar species interaction terms
of the Lotka–Volterra equations. The superscript on
BRTH denotes that this is the first, or level I analysis.

Note, before moving on, that theF-values need not
be simply food abundances; they could be calculated,
food-related values based on some model. For ex-
ample,Beauchamp et al. (1999)note that encounter
rates of fish with various prey types can be written
as (roughly) proportional to search volume times prey
density, where search volume is proportional to re-
action distance squared times swimming speed, and
reaction distance varies with the square root of light
level times length of a prey item. Such calculated en-
counter rates might be used to advantage in place of
abundances, per se.

Predation, in its simplest form, will vary with the
numbers of predators and the intensity of predation by
each. Therefore,

PRED(1) =
∑
k

δkPk, (4)

whereδk is the intensity of the predation by predatork.
The level of mortality from non-predatory causes

must be highly dependent on the physical environ-
ment. However, it is unlikely that we can depend on
MORT consistently rising or falling with the value of
any particular value; there often will be an intermedi-
ate value at which MORT is maximum, or minimum.
Thus, as a first approximation, it is convenient to write

MORT(1) = µ +
∑
m

ξmZm +
∑
m

κmZ
2
m, (5)

whereµ is non-predative mortality under ideal envi-
ronmental conditions.

The procedure, now, is to use a computer algo-
rithm to find the values of{v′

i}, {α
′
j}, {δk}, {ξm}, and

{κm} that minimize var(ρ). Because this procedure de-
pends on the existence of density feedback,α′

T must
be scaled to some positive value (say 0.01 or 0.001).
The resultingρ, therefore, is proportional, rather than
equal to true fitness.

Before proceeding, note that{v′} is more than
simply net nutritional value; the impact of a food on
reproduction is, for example, enhanced by any syn-
ergy between it and other foods and if the presence of
a food interferes with access to a better food, its value
is diminished and may even become negative. These
secondary effects could, in theory, be dealt with in a
later analytic step, but accuracy is enhanced if they
can be incorporated up front. In the same vein, though
it rather spoils the rigor of the derivation above, the
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alpha values can reflect not only competition, but (say)
cooperative feeding. Therefore, realistically, they, too,
can become negative. Predation, also, can take nega-
tive values if thinning of the herd results in the emer-
gence of healthier individuals (or, in the case of plants,
if thinning of foliage enhances survival or stimulates
production). Finally, because this leaves no con-
straints on the coefficients, the analysis (level I only)
is equivalent to a multiple regression withNT (the sub-
script T denoting the target species) as the dependent
variable.

3.2. Higher level analyses

Several modifications of the basic model follow.
The user may opt to apply any, all, or none, so long
as they are entered into the analysis independently
(seeSection 4). Note that the order in which these
modifications are entered into the analysis may af-
fect the results, or lead to cases where the number of
coefficients to be solved exceeds a reasonable num-
ber in light of sample size. The user, therefore, is ad-
vised to proceed with caution. Based on analyses of
several data sets, as well as standard statistical rules
of thumb, the number of quadrats should be at least
5, and ideally more than 10 times the number of
variables.

3.2.1. Secondary impacts of{F}, {N}, {P} and{Z}
Physical factors clearly can impact both BRTH and

PRED. In addition, BRTH may be enhanced by coop-
erative hunting, or negatively impacted by harassment
(e.g. seeBrown et al., 1988); predation may be exacer-
bated by a tendency for large numbers of prey to attract
predators or be ameliorated by group defense behavior.
An abundance of predators may intimidate foragers
into spending less time in search of food (seeBrown
et al., 1988), or force them into habitat where they are
more exposed to non-predative mortality; predators of
one species may influence other predators to shift food
preferences. And grazing may stimulate plant growth.
Thus, higher trophic levels also can exert influences on
BRTH and PRED. Finally, the values of various foods
may be affected by synergistic, physiological interac-
tions, and the abundance of any one may alter search
image patterns. Because they may vary nonlinearly, a
convenient (and easily interpretable) form of expres-
sion for these effects is (e.g. for the effect of nutrients

on BRTH)

exp

{∑
i

ξBiFi +
∑
i

γiF
2
i

}
.

In fact, if we presume an already good fit, com-
putation can be enormously simplified if the above is
approximated by

1 +
∑
i

ξBiFi +
∑
i

γiF
2
i .

Over all modifying terms, therefore, we have

BRTH(n) = β + (BRTH(n−1) − β)

×
{[

1 +
∑
i

ξBiFi +
∑
i

γBiF
2
i

]

×

1 +

∑
i

ξBjNj +
∑
j

γBjN
2
j




×
[

1 +
∑
i

ξBk
Pk +

∑
ik

γBk
P2
k

]

×
[

1 +
∑
i

ξBmZm +
∑
m

γBmZ
2
m

]}
,

(6)

where the superscripts,n andn − 1 refer to the level
of analysis. Similarly,

PRED(n) = PRED(n−1)

{[
1 +

∑
i

ξPiFi +
∑
i

γPiF
2
i

]

×

1 +

∑
i

ξPjNj +
∑
j

γPjN
2
j




×
[

1 +
∑
i

ξPk
Pk +

∑
ik

γPk
P2
k

]

×
[

1 +
∑
i

ξPmZm +
∑
m

γPmZ
2
m

]}
.

(7)

Occasionally, there may be a very high correlation
between a variable used in one of the above expres-
sions and its square. In such cases it is not appropriate
to use the squared term, and the corresponding gamma
values should be set to 0.
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3.2.2. Impacts of BRTH and PRED on MORT
Non-predative mortality can be impacted by the ef-

fects of food, competition or predation on dispersion
and, thus, exposure to the physical environment. Ac-
cordingly, we write

MORT(n)

= µ + (MORT(n−1) − µ)

×

[1 + ξMBBRTH(n−1) + γMB(BRTH(n−1))2]

×

1 +

∑
j

ξMNjNj +
∑
j

γMNjN
2
j




× [1 + ξMPPRED(n−1) + γMP(PRED(n−1))2]


 .

(8)

3.2.3. Functional response for target species
BRTH, as formulated above, is based on the presum-

ption that the act of acquiring and consuming food ta-
kes no time. If we let 0< τ′′

i � 1 be the handling time
per item of foodi, relative to some standard time unit,
such as a day, then the time used in food handling is∑
i

(Number of items typeieaten) τ′′
i .

The value ofβ is not affected by time spent feeding.
Therefore, to account for the loss in time available
for finding new food items, we suppose thatGi, the
amount of foodi eaten in the standard time unit under
the presumption thatτi � 1, ∀: i, is proportional to
Fi, with a proportionality coefficientai. Then

Gi = aiFi

[
1 −

∑
i

τ′′
i Gi

]

= aiFi

[
1 −

∑
i

aiτ
′′
i Fi

(
1 −

∑
i

τ′′
i Gi

)]

= · · · = aiFi


1−

(∑
i

aiτ
′′
i Fi

)
+
(∑

i

aiτ
′′
i Fi

)2

−
(∑

i

aiτ
′′
i Fi

)3

+ · · · = aiFi

1 +∑
iaiτ

′′
i Fi

= aiFi

1 +∑
iaτiFi

: τi = aiτ
′′
i ,

so that

BRTH(n) =
∑

iB
(n−1)
i

1 +∑
iτiFi

−
∑
j

A
(n−1)
j .

For ease of computation (it permits us to use a re-
gression), this expression is approximated with

BRTH(n) =
∑
i

B
(n−1)
i

(
1 −

∑
i

τiFi

)
−
∑
j

A
(n−1)
j .

(9)

3.2.4. Functional response for predators
Let Gj be the amount of foodj taken in by an

individual of predator speciesk where handling time,
τ′′

jk, is insignificant. Then

Gj = δkNj


1 −

∑
j

τ′′
jkGj




= · · · = δkNj


1 − δk

∑
j

τ′′
jkNj




≈ δkNj

1 +∑
jτ

′
jNj

: τ′
j = δkτ

′′
jk

so that

PRED(n) = PRED(n−1)

1 +∑
jτ

′
jNj

.

Again, for ease of computation, we approximate this
with

PRED(n) = PRED(n−1)


1 −

∑
j

τ′
jNj


 . (10)

4. Computation and statistics

4.1. Level I

Because shuffling of individuals among microhab-
itat patches is the mechanism by which the proposed
distributions occur, and because the critical element
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affected is local number of individuals, we move the
NT term in Eq. (3) to the left side of the equation
and use it as the dependent variable in a multiple
regression. The appropriate estimates of the various
coefficients,{v′}, {α′}, {δ}, {ξ} and{κ}, are given
accordingly. The user may scaleαT, the conspecific
density feedback on BRTH, to (say) 0.1 or 0.01, in
which case all other coefficients obtained from the
regression must be corrected also by a factor of 0.1
or 0.01.

4.2. Level II

To find the coefficients corresponding to later steps
in the analysis, note (e.g. for the effects of food on
BRTH) that

ρ(n) = constant+ ε

= BRTH(n−1)

[
1 +

∑
i

ξBiFi +
∑
i

γBiF
2
i

]

− PRED(n−1) − MORT(n−1)

= ρ(n−1) +
∑
i

ξBiBRTH(n−1)Fi

+
∑
i

γBiBRTH(n−1)F2
i .

Thus,

ρ(n−1) = −
∑
i

ξBiBRTH(n−1)Fi

−
∑
i

γBiBRTH(n−1)F2
i + constant+ ε.

and the values of{ξBi} and {γBi} can, again, be
found by regression using the just previously calcu-
latedρ(n−1) as the dependent variable.

Statistically, the step-wise mode of solution must be
undertaken with care because the apparently easy, con-
tinual buildup of fitted coefficient values may outrun
sample size. By using a bootstrap procedure (Scheiner
and Gurevitch, 1993) over all quadrats, on all ana-
lytic steps taken together, the calculated error vari-
ance should be quite reliable. However, we caution
the user to act conservatively, subtracting degrees of
freedom as indicated by the standard BonFerroni pro-
cedure. Note, though, that any higher level of analysis

has no effect on the results or statistics of prior level
analyses.

5. Tests of biological validity

Because of the controversy surrounding our (mod-
ified IFD) presumption of equal fitness values among
occupied microhabitats (seeAppendix A for refer-
ences), tests of the accuracy with which the model fits
real life situations is mandatory. Suppose fitness (ρ)
expressions are determined forK species in a com-
munity, and that the bulk of information necessary to
describe these fitnesses is contained in the data col-
lected. Four tests of the predictive validity of INTASS
are then possible.

1. After finding the model coefficients for each
of these species, using data from quadrats cen-
tered about randomly sampledindividuals, apply
the resulting models to an independent data set
from randomly distributedquadrats to predict,
quadrat-by-quadrat, the local densities of theseK
species (i.e. for each quadrat, the density most
closely providing the hypothetical, fixed value
of ρ). Compare the predicted values with those
observed.

2. Alter the environment in some specified manner—
remove a predator or alter the relative or absolute
abundances of food, for example, and use the de-
rived expressions to simulate the response and ulti-
mate, new equilibrium configuration of species. A
true equilibrium may never, in fact, come about or
even have existed initially, but the predicted equi-
librium should approximate the observed central
tendencies.

3. Laboratory and/or field experiments can be used to
determine secondary effects (such as, e.g. the im-
portance of pH to uptake of some soil nutrient).
Do the patterns and intensities of such second or-
der effects, as found from laboratory or field work,
follow the form suggested by the INTASS-derived
gamma and csi values?

4. Ongoing or completed studies provide us with con-
siderable information on (for example) food pref-
erences, predator avoidance, the role of physical
environmental factors on population dynamics.
Does the information provided by an INTASS
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analysis jibe with these previously determined
relations?

6. The case for plants

Note that variance in fitness is to be minimized over
individuals. The concept of individual is clear in the
case of animals, less so for plants. In addition, whereas
animals can move about freely, thereby making the
assertion of equal expected fitnesses at least a reason-
able possibility, plants are sessile. But if this approach
cannot be applied to the most basic units of a commu-
nity, it certainly will not prove terribly useful. Can it
work for plants?

When one defines “individual” as the seed, the as-
sertion of equal fitnesses applies at least to annual
plants, for seed production, like movement in animals,
constitutes an expansion into appropriate microhabi-
tats. When fitness, defined as the number of seeds pro-
duced per seed, is high, more seeds, and potentially
more biomass, accumulates, all else being equal, lead-
ing to suppression of fitness by density feedback. The
enormous plasticity in plants allows density feedback
to occur via growth, form, flowering, pollination, seed
production, seed abortion and seed dormancy (Kay
and Harper, 1974; Harper, 1977), as well as disper-
sion. Such responses permit rapid fitness responses to
local conditions so that, as with animals, fitness can be
expected to converge rapidly across quadrats toward a
constant value characteristic of the global conditions
of the site as a whole. And rapidity, of course, is vital
to a valid application of INTASS. In this regard, there
is considerable experimentation indicating that huge
inequities (up to 4 orders of magnitude) in the densi-
ties of seeds sown, in monospecific plots, invariably
lead to near equality (a factor of 2, 3 or less in most
cases and never more than 7) in the density of seeds
produced by those sown plants in theirfirst reproduc-
tive season (Harper and Gajic, 1961; Palmblad, 1968;
Harper, 1977). A proportional reduction in ratio over
a second season would lead to effectively equal fit-
nesses. Experiments by Freeman using mixed plots of
Bromus rubensandLepidium densiflorum, with seeds
sown at (total) densities of 1/10, 1/50, and 1/100 cm2,
and ratios of 1:2, 1:1, and 2:1, indicated a return to
equal fitnesses across plots within two generations,
even when possible density feedback inherent in early

survival was negated by replacing dead plants(Free-
man and Emlen, in preparation).

To define fitness in perennials, we must look at a
weighted sum of contributions from both seed and
vegetative reproduction, that is, something akin to net
primary production (NPP). How should the two be
weighted? Many plants produce seeds only once in a
few, benign years. Others, such as pines, produce an
enormous bumper crop in response to extreme stress.
Seed production, therefore, cannot be considered a
reliable measure of fitness except, perhaps, when av-
eraged over long time periods. Also, growth, as an in-
dicator of good environmental conditions, may serve
as a crude estimator of seed production, on average.
Taken together this reasoning points to units of NPP
as the most reliable and consistent (year-to-year) mea-
sure of “individuals.” As such, fitness contribution in a
given year becomes the (log) ratio of NPP in that year
to the year previous. On the other hand, plants can per-
sist and grow for a long time while remaining sterile.
Thus, it may be advisable to repeat INTASS analyses
using both NPP and seeds as units of individuals.

A final consideration: both seed production and NPP
reflect not only environmental conditions, but the size
of the “pool” that gives rise to them; a large perennial
will produce more seeds and more NPP than a small
one, all else being equal. We, therefore, need to correct
our “individual” count for parent plant size. To do this,
we suggest measuring cover of both the “parent” plant,
(XP) that about which the quadrat is centered and from
which seed and/or NPP data are collected, and total
cover (XT) of the target species in each quadrat. Then,
using a simple but very general model,

NPP or number of seeds= aXα
P exp{βXP},

a (log–log) regression over all quadrats will gener-
ate a general production–plant size relationship. This
may be used to scale production to plant size, yield-
ing a measure of “Corrected” number of “individuals”
= (NPP or number of seeds)/(aXα

P exp{βXP}). Note
that this procedure applies only to perennials.

Two changes in the model are required when deal-
ing with plants as target species. First, there is no
term equivalent to handling time. Thus,τ values are
set automatically to 0. Second, whereas foods for an-
imals are viewed as complimentary, plants require
certain essential nutrients for survival and reproduc-
tion (Salisbury and Ross, 1992, see ‘Discussion’ in
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Chapter 2;Tilman, 1982). That is, no growth can oc-
cur in the absence of any critical nutrient. Accord-
ingly, instead of writing nutrient value taken in as a
weighted sum, we need to view it as the logarithm of
a weighted product. Thus, we write

BRTH∗ =
∑

v′
i ln


Fi

∏
j

(1 − αj)
Nj


 .

However, as written, the results will differ depending
on the measurement scale used for{F}. Thus, we need
to incorporate a scaling factor. This was not necessary
in the case of animals because the scaling factor could
be subsumed in{v}. We write

BRTH∗ =
∑
i
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
ciFi
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)
αj. (11)

The expression, therefore, is exactly that used for an-
imals, except that{ln(Fi)} is used in place of{Fi}.

7. Examples of applications

7.1. Animals

We applied the above model to data collected by
Kirchhoff (1994) on an island-hopping population
of southeast Alaskan black tailed deer,Odocoileus

hemionus. Despite the fact that the islands vary in size,
each constitutes a semi-isolated site within which the
deer presumably gather information on resources, pre-
dation risk, physical and social conditions, and decide
whether to stay or move on to another island. Accord-
ingly, we considered each of the 97 islands a quadrat.
A year long, time-integrated measure of deer density
on each island was estimated from number of pellet
clusters observed in the spring (recall that it is rela-
tive rather than absolute local abundance that applies
in the analysis; number of pellet clusters provides an
estimate of relative occupation). Potential resources
include red huckleberry,Vaccinium parvifolium; blue-
berry, V. ovalifolium and V. alaskensis, other shrubs
(Gaultheria shallon, Menzesia ferrugineaand herb
layerVaccinium) and deciduous forbs (lumped in this
analysis according to whether they hold their leaves
over winter (winter forbs) or not (summer forbs)). Of
the shrubs, only huckleberry and blueberry occurred
on more than 6 of the 97 islands and, accordingly, in
the interests of minimizing number of coefficients to
be found, all others were dropped from the analysis.
Units of potential food abundance were in kg avail-
able biomass per ha. Predation comes from occasional
wolf (Canus lupus) forays originating from one very
large (Prince-of-Wales) island. The wolves appear
to drive deer to the more distant islands where their
otherwise unexplainably high densities significantly
lower the food supply. Measured physical variables
included island size, effective island size (cumulative
island area, in hectares, of all wolf-free islands within
500 m of the sample island reachable by swims of
250 m or less), swimming distance (km) from the
wolf island, basal area (m2/ha) of trees based on all
stems over 15 cm diameter for the three large tree
species (Tsuga heterophylla, Picea sitchensis, Thuja
plicata), number ofVaccinium stems/m2, and total
biomass per ha of shrubs. The last two represent
possible indices of “hide cover.” Because the wolves
range freely over the entire collection of islands (i.e.
are global predators), the deer can choose islands
based on (for example) protective cover or distance
from Prince-of-Wales island, but not on the basis of
whether wolves are there or not. Thus, any impact
of wolves would be expressed via the non-predative
mortality term, MORT.

Independent analysis of crude protein, neutral de-
tergent fiber, acid detergent fiber, lignin and insoluble
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ash content showedV. parvifoliumto be the most nu-
tritionally beneficial food (Kirchhoff, 1994). Indeed,
Kirchhoff found this species to be the preferred food.
Blueberries (V. alaskensisandV. ovalifolium) also are
eaten. Although salal (Gaultherium) is an important
food for deer elsewhere, this and the other shrubs were
seldom eaten by animals in this particular population.
In many areas in Alaska, overstory, as indirectly indi-
cated by summed tree basal area, might be expected
to bring winter relief from deep snows. The study area
has low snowfall, so the effect is likely to be present
but small.

For INTASS analysis, sample size was only 94;
three of the islands had incomplete data. Eleven vari-
ables were involved. A survey of secondary effects
showed that the impact of deer and physical factors on
BRTH lowered var(ρ) by more than 50%. These sec-
ondary factors, therefore, were included, even though
their inclusion brought the total number of coefficients
to 17. Given the previously suggested statistical rule of
thumb, a minimum of 5 and ideally at least 10 quadrats
per variable, this means that while found values may
differ significantly from zero, power of the level II
steps undoubtedly suffers. The results are shown in
Table 2.

In accordance with Kirchhoff’s conclusions, IN-
TASS clearly and unambiguously identifiesV. parv-
ifolium as the most valuable food. Indeed, the other
foods appear to interfere with the value obtained from
this species. After first level competition (αT) is ac-
counted for, there is an additional, secondary reduction
of BRTH by deer density. Inasmuch as linear density
feedback is accounted for already by the alpha term,
this indicates an increasing rise in feedback intensity
as the number of deer increases. Secondary effects of
foods and physical factors on BRTH were sufficiently
small that they were not incorporated into the final
analysis.

Mortality rises with island area and falls with ef-
fective island area. One can only speculate here that
larger islands are more likely to draw wolves, while
the fractionation of the land makes escape from them
easier. Swim distance clearly reduces mortality, as
expected, as do basal area, and both estimates of hide
cover. Because basal area also may serve as an indi-
cator of hide cover, these results are not surprising.
Second level analysis indicates a more than linear
increase in mortality with BRTH, i.e. with condi-

tions positively impacting BRTH. This is consistent
with Kirchhoff’s observations that deer occupying
island with high food availability (those close to
Prince-of-Wales Island) also incur more mortality
from wolves. Finally, mortality drops with increasing
deer density, all else being equal.

Other than agreement with independently derived
conclusions, the results of the INTASS analysis might
be tested by re-running the analysis on either another
set of islands or a subset of the islands used here, but
with some specified difference in (say) management
history. Unfortunately there is no such alternate or
specified subset.

7.2. Plants

An example of applying INTASS to plants comes
from work we’ve been pursuing at the Desert Exper-
imental Range in southwestern Utah. This is a large
area of high desert set aside in 1933 for research
on grazing impacts. Various paddocks, each approxi-
mately a 0.6 km × 1.2 km, have been grazed consis-
tently during the same season and by the same number
of sheep every year since 1934 (for more detail, see
Emlen et al., 1989; Freeman and Emlen, 1995). Cheat
grass (B. tectorum) was sampled using 10 cm diame-
ter circular quadrats (slightly larger than crown or root
diameter) in the spring of 1997, at the time seeds were
ripening. As a cleistogamous annual grass, cheat grass
fitness can be defined unambiguously as the number of
seeds produced per seed, and the seed can serve as the
“individual.” Thus, if n was the number of seeds on the
targeted parent plant in a given quadrat, that quadrat
was enteredn times in the INTASS calculations. Other
variables described soil chemistry (phosphorus, ni-
trate, total and exchangeable potassium, exchangeable
calcium, magnesium and sodium, and ammonia), all
in parts per million, percent cover of cheatgrass and
each of the other plant species, grazing intensity (0 for
none, 1 for 2500 sheep days, 2 for 3750 sheep days
and 3 for 5000 sheep days per paddock) and degree
of development of the cryptogamic crust (mosses and
lichens, subjectively scored as 0, 1 or 2). Physical fac-
tors included pH, percent organic matter, electrocon-
ductivity, percent bare ground in the quadrat and small
mammal activity both within the quadrat and outside
the quadrat but within 1 m of the target plant. All soil
constituents were included as potential nutrients in the
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Table 2
INTASS results for Alaskan deer

Variable Per-quadrats mean Per-individual mean

Foods (kg/m2)
(1) V. parvifolium/10 1.647 2.953
(2) V. alaskensisand V. ovalifolium 6.301 7.340
(3) Summer forbs 6.812 8.712
(4) Winter forbs/10 2.220 2.298

Target species number per island
(5) Deer (via pellet group density) 1.102 1.855

Physical variables
(6) Island size (ha) 4.618 2.894
(7) Effective island size (ha) 4.268 5.859
(8) Swim distance (km) 1.098 1.421
(9) Basal area (m2/ha) 1.859 1.921
(10) No. of Vacciniumstems 2.890 3.002
(11) Total shrub biomass 1.932 2.212

Coefficient Estimated value Standard deviation t-value

BRTH
Food values

v1 0.00056 0.00011 5.283∗∗
v2 −0.00029 0.00036 −8.072∗∗
v3 −0.00037 0.00025 −14.677∗∗
v4 −0.00015 0.00075 −19.727∗∗

Probability of utilization given encounter
α 0.10000 0.0000 Fixed

Secondary impact of deer on BRTH
ξB5 −0.09505 0.00141 −67.379∗∗

MORT
Importance of physical factors to MORT

ξ6 0.0017 0.00008 22.2910∗∗
ξ7 −0.0048 0.00007 −70.1218∗∗
ξ8 −0.0485 0.00050 −97.9495∗∗
ξ9 −0.0484 0.00061 −79.4171∗∗
ξ10 −0.0017 0.00020 −8.6666∗∗
ξ11 −0.0041 0.00016 −25.4186∗∗

Secondary impact of deer on MORT
ξM5 −0.03516 0.00176 −19.9815∗∗

Secondary impact of BRTH on MORT
ξMB 3.29346 0.00000 Huge∗∗
γMB 11.91026 2.35677 5.0536∗∗

Mean fitness= (β − 0.1496)− (0.0000)− (µ − 0.151). Variance fitness= 0.0027.
∗∗ P < 0.01.

BRTH term, although sodium is likely also to be a
physical factor via its effect on soil moisture availabil-
ity. Four subsites were used: an ungrazed area, and
lightly (9.6 animal days/ha), moderately (19.2 animal
days/ha) and heavily (28.8 animal days/ha) grazed ar-
eas. The three latter areas had been grazed in late fall,

consistently for 62 years, and so constitute a long-term
manipulation experiment. Thus, successful prediction
of cheatgrass cover in randomly distributed quadrats
in one of the subsites, based on a model derived from
plant-targeted quadrats in the other three would be
strong verification of the model’s predictive power.
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Impacts of various nutrients and physical factors on
a plant species depend very much on both geographic
location and plant adaptive history. Therefore, an as-
sessment of INTASS accuracy based on comparison
with data in the literature must be made carefully. Nev-
ertheless, a few findings seem a propos.DeLucia et al.
(1989)found phosphorus deficiency to reduce growth
and vigor inB. tectorumin their Great Basin studies,
suggesting it is a limiting factor (at least at this study
site). Woodward et al. (1984)concur.Klemmedson
and Smith (1964)suggest that small mammal activity
(in their caseMicrotus montanus) might delay succes-
sion from cheatgrass cover to subsequent, perennial
plant species. If this is true also at the Desert Range
(a quite different suite of small mammal species), we
should expect to find either a positive effect of small
mammal activity on BRTH or a negative effect on
MORT. Young and Evans (1985)report that bromus
generally does not germinate well on bare ground,
but needs a certain amount of litter or mulch. Thus,
bare ground cover should exert a negative influence
on BRTH or a positive influence on early survival.
Finally, Tausch et al. (1994)found that fall clipping
(simulating grazing pressure) enhanced cheat grass

Table 3
INTASS results forBromus tectorum

Variable Per-quadrats mean Per-individual mean

Soil nutrients (ppm)
(1) Phosphorus 12.244 12.401
(2) NO3–N 4.921 5.485
(3) K-total 2.991 3.074
(4) Ca-ex 71.339 68.456
(5) Mg-ex 5.955 5.729
(6) K-ex 5.724 5.728
(7) Na-ex 33.379 37.414
(8) NH4–N 5.536 5.592

Plant species—cover (%)
(9) Bromus tectorum 3.188 4.716

Grazing intensity—0, 1, 2, or 3
(10) Sheep 1.490 1.335

Physical variables
(11) Mammal activity inside quadrat 0.032 0.0389
(12) Mammal activity outside quadrat but within 1 m 0.252 0.300
(13) Percent organic matter 0.773 0.822
(14) pH 8.012 8.034
(15) Electroconductivity 0.541 0.569
(16) Bare ground cover/100 0.840 0.807

production. Sheep grazing, then, at least at some level
of intensity, should have a positive impact on BRTH.

We obtained data for targeted plants from 157
quadrats. Although “individuals” are represented by
a considerably larger number of seeds, independent,
associated data come from only the 157 quadrats.
Therefore, sample size is 157. A preliminary survey of
these data showed cheatgrass to occur only or almost
only with three other species, and with those three in
fewer than 10% of the quadrats. Accordingly, in the
interests of holding down the number of variables, the
only plant considered in the analysis was cheatgrass
itself. The analysis thus included eight soil nutrients,
one plant species, one grazer (sheep) and six physical
variables. Secondary effects of nutrients on BRTH
significantly lowered var(ρ) and were included in the
final analysis. Results are given inTable 3.

According to the analysis, the usually critical nutri-
ents, P, NO3–N and NH4–N not unexpectedly enhance
BRTH. Potassium’s effect is mixed; total K appears
beneficial to BRTH, exchangeable K appears to have
a negative effect. Magnesium is detrimental (perhaps
interfering with uptake of other nutrients?); sodium
is beneficial. Secondary effects on BRTH include
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Table 3 (Continued)

Coefficient Estimated value Standard deviation t-value

BRTH
Nutrient values

v1 0.0196 0.01774 1.106
v2 0.1349 0.00705 19.118∗∗
v3 0.3241 0.00805 40.240∗∗
v4 −1.1691 0.03694 −31.645∗∗
v5 −0.6441 0.01490 −43.238∗∗
v6 −0.2243 0.01016 −22.081∗∗
v7 0.1318 0.00443 29.785∗∗
v8 0.5183 0.01467 35.343∗∗

Competition
αT 0.001 – Fixed

Secondary effects of nutrients on BRTH
ξ1 0.0002 0.00117 0.160 (NS)
γ1 0.0001 0.00000 1.936∗∗
ξ2 −0.0080 0.00115 −6.948∗∗
γ2 −0.0001 0.00008 −0.962 (NS)
ξ3 0.0170 0.00426 4.005∗∗
γ3 −0.0009 0.00036 −2.497∗∗
ξ4 −0.0293 0.00045 −64.679∗∗
γ4 0.0002 0.00000 62.659∗∗
ξ5 0.0317 0.00232 13.657∗∗
γ5 −0.0007 0.00013 −5.413∗∗
ξ6 −0.0386 0.00246 −15.673∗∗
γ6 0.0009 0.00008 11.769∗∗
ξ7 −0.0004 0.00008 −5.429∗∗
γ7 0.0000 0.0000 3.247∗∗
ξ8 −0.0111 0.00121 −9.175∗∗
γ8 0.0007 0.00007 10.029∗∗

Predation
δ10 −0.3397 0.00604 −56.228∗∗

Other mortality
ξ11 0.7532 0.01544 49.737∗∗
ξ12 0.1949 0.01483 13.138∗∗
ξ13 0.1814 0.01293 14.033∗∗
ξ14 0.6227 0.02268 27.449∗∗
ξ15 0.6164 0.02591 23.788∗∗
ξ16 −0.0432 0.02856 −1.513 (NA)

Mean fitness= (β + 0.0985)− (−0.4535)− (µ + 5.5548). Variance fitness= 0.0569.
∗∗ P < 0.01.

positive influences from P, Ca and NH4–N, and neg-
ative influences from NO3–N. Thus, the negative
influence of Ca and the positive influence of sodium
are somewhat mitigated at higher concentrations, the
positive effects of P and NH4–N build with concen-
tration, and the value of NO3–N declines. A negative
secondary impact comes from total K, indicating that
its primary effect is diluted at high concentrations.

As found also byTausch et al. (1994), grazing ap-
pears to have a positive impact on fitness, perhaps by
stimulating growth or thinning the population. Small
mammal activity, whether directly adjacent to the
plants or in the near vicinity, is detrimental to survival
(or to BRTH). This is contrary to the suggestion of
Klemmedson and Smith (1964). On the other hand,
theirs was only a suggestion, not an observation, and
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Fig. 1. Observed vs. predicted cover ofBromus tectorumin one paddock based on an INTASS expression derived with data from three
other paddocks with different long-term grazing histories.

we are dealing with an entirely different set of small
mammals at the Desert Range. Percent organic mat-
ter, pH and electroconductivity also negatively impact
survival. Bare ground appears to lower mortality,
though the effect is not statistically significant.

7.2.1. Validity test
The above comparisons to existing findings (and

common sense) provide only limited (and question-
able) validation. However, recall that the grazing
history at the Desert Range represents a thoroughly
controlled, long-term experiment. Therefore, an ac-
curate prediction of cheatgrass cover in one paddock
(one grazing history) based on model parameterization
from data gathered in the others (alternate grazing his-
tories) would provide strong support for the predictive
accuracy of INTASS. In this case, the model, param-
eterized using data from three of the plots (grazing
intensities 0, 1, 3) was applied to predict cheat grass
cover, quadrat-by-quadrat, in the fourth plot (grazing
intensity = 2), given the quadrat-specific values for

the other variables. The reader is referred toFig. 1.
Slope of the line is 1.093± 0.106; if the one high
point is deleted, the slope becomes 0.817± 0.072,
suggesting possible undermatching.

8. Discussion

8.1. Quadrat size

In Section 1, we ignored the likelihood that the en-
vironmental input determining an animal’s behavior,
or a plant’s success, comes via signals operating at
more than one spatial scale. But a nocturnal mouse
might respond to highly local visual signals, scents
coming from farther off, and auditory information
arising from anywhere up to many meters away. A
plant’s reproductive success may depend on com-
petitor conditions extending no farther than its own
crown or root mass, but also on soil conditions over a
larger area and on grazers whose likelihood of eating
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it depend on physical environmental factors at a still
greater spatial scale. It should not be surprising, then,
to find that different variables exert their maximum ef-
fects at different scales (see, e.g.Vail, 1993; Debouzie
et al., 1996), or even that the effects of a variable
change may have opposite impacts at different scales
(L. Freidenburg, personal communication) Consider,
for example, a fish that positions itself in a stream
according to current velocity, substrate, density of
vegetation overhanging the banks, and the density of
conspecific competitors. Suppose the physical vari-
ables define a sensory/responsive world extending
three meters about the fish and that the experimenter,
accordingly, uses 3 m radius sampling units. The ef-
fects of the physical variables on fitness, then, may
reasonably be defined by an INTASS analysis. If the
conspecific interactions take place within a space of,
say, 1 m, however, evaluation of their impacts on fit-
ness are likely to be mismeasured or even missed en-
tirely. Indeed, any model that ignores scale, or ignores
the potential need to incorporate data at more than one
scale could be seriously misleading (Hanski, 1991).

Of course, if expected fitness values converge over
small quadrats, fitnesses in large quadrats, being the
means of fitnesses in their component smaller parts,
must also converge (unless unoccupied, inappropriate
microhabitats are a part of the larger quadrats). Thus,
choosing only the larger quadrat size need not lead
our experimenter seriously astray. On the other hand,
response to the mean environmental variable values
represented in a mixture of smaller regions means that
the derived parameter values are likely to be of smaller
magnitude and have larger confidence intervals. Ac-
cordingly, we suggest that any INTASS analysis make
use of a range of scales by utilizing information
from nested quadrats. One rule of thumb: Avoid
quadrats large enough to encompass non-panmictic
areas or source-sink habitats (Morris, 1995, 1989; see
Section 8.3).

8.2. Global fluctuations

Weather variables and highly mobile predators may
act on a species at such a large spatial scale that their
values are effectively constant over the study area. For
example, mice cannot very well avoid foxes directly,
although they can choose surroundings distasteful to
foxes. When data are collected at repeated intervals,

variations in these variables may be incorporated di-
rectly into the analysis. However, if data are collected
only once, though these variables may be important
determiners of fitness, they contribute nothing directly
to the analysis.

8.3. The landscape level and source-sink situations

When a study site includes differentmacro-habitat
types, as in applications at the landscape level, the
assertion of equal expected fitnesses need not hold
(Morris, 1995, 2002, 1989; Ostfeld and Klosterman,
1986). For example, in a site that incorporates both
fields and scattered woodlots we could not, a priori,
assume that woodmice inhabiting both would never-
theless be equally fit in both. In such cases, we are
faced with a source-sink situation in which the pop-
ulation in one habitat is maintained by virtue of dis-
persal from the other. In such circumstances it would
seem that INTASS could not be applied, and yet if
the methodology is to be useful, it must ultimately
be applicable at a landscape level. The problem, actu-
ally, is quite easily circumvented. Unless the habitats
are quite different, the expressions for BRTH, PRED
and MORT should be very similar. Thus, the com-
plication can be dealt with simply by approximating
mean fitness deviations among habitats as an expres-
sion of deviations from habitat-specific variables, and
appending the expression to the fitness model:

ρ = BRTH − PRED− MORT − COR : COR

=
∑

θnXn + constant, (12)

where{Xn} refers to environmental variable values
measured at the macro-habitat scale (or approxi-
mated as means of certain variables calculated over
quadrats within each macro-habitat). This correction
term might be used also in cases of population cy-
cles, where there are reasons to suspect that different
sites represent different stages in the cycle. Inasmuch
as cycle position can be determined from ratios of
the species’ populations involved, deviations from
the mean ratio might be used as variables in the
correction term. Where this calculation is needed, it
should be carried out as part of the first step in anal-
ysis (see above) so that fitnesses are equaled among
macro-habitats. In practice, it is convenient to incor-
porate{Xn} into {Zm} and append COR to MORT.
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If the habitats are sufficiently different to indicate di-
vergent forms for BRTH, PRED or MORT, INTASS
should be carried out separately for each such habitat.

8.4. Applications

INTASS, as presented here, should prove useful
in unraveling the web of interactions among species
and between species and aspects of the physical en-
vironment. In doing so, it should prove useful also in
generating testable hypotheses about the nature, in-
tensity and causes of these interactions. Practically, it
should prove useful in providing critical information
about essential habitats for threatened and endan-
gered species, and about the specific conditions under
which exotic species successfully invade and maintain
themselves, or ultimately fail. When based on data
over time, so that global variables can be incorporated
directly, it has great potential as a predictive tool. Cur-
rently, projecting the long-term consequences of man-
agement actions or global change is more an art than
a science. Despite the existence of a myriad of models
and associated software, our predictive capabilities
remain limited. Accurate evaluation of a community’s
dynamics requires site and time-specific data and
their incorporation into dynamic models complex and
complete enough to portray a plethora of interactions
accurately. When the basic assertion of equalρ is met,
INTASS is an approach that may meet these criteria.

As constructed, consistently using coefficients with
clear biological meaning, the INTASS model makes
it possible for an investigator to read off directly the
effect of any variable, biotic or physical, on a target
species’ fitness (level I analysis). Secondary effects on
the level I coefficients also can be read off directly
from the results of the higher level analyses.

Finally, even though animals may not have the ca-
pability of detecting, much less reacting appropriately
to anthropogenic stressors such as contaminants, their
populations certainly must respond at the macroscale.
Thus, such stressors can be incorporated into the COR
term in an INTASS analyses. Inasmuch as more than
one stressor can be dealt with, as well as secondary
effects of, say, physical factors on the fitness effects
of those stressors, INTASS may prove a useful tool
for dealing with multiple stressors.

How does INTASS relate to other population/
community modeling approaches: Most such mod-

els can be classified either as extremely general,
bookkeeping constructs, such as the logistic, Ricker
or Beverton-Holt equations, or as parameter-driven,
species- and situation-specific expressions. Anyone
involved in applying models will be familiar with
the latter; recent examples from this journal in-
clude Xie et al.’s (1999)exploration of white-tailed
deer andBartholow’s (1996)treatment of salmon.
Individual-based models fall into this category. An-
other class of models, so-called structural-dynamics
models (see, e.g.Nielsen, 1992; Jorgensen, 1992),
have the capacity, at least in theory, to use emergent
ecosystem properties to update parameter values as
they change over time. Such approaches take cog-
nizance of the probability that as populations (and
other environmental conditions) change, the nature
of their interactive dynamics changes also, and use
“goal” function such as the maximization of energy
(see Jorgensen, 1992) to progressively update the
underlying models over time. INTASS, in using the
emergent property of spatial distribution to determine
model parameters fits into this last category. Although,
as it stands, it is meant primarily as a tool to explore
interactions, suggest hypotheses and predict the sta-
ble (central tendency) consequences of environmental
manipulations, it can, with additional information on
the actual numerical values of fitnesses, be used to
simulate dynamics. Might Jorgensen’s energy max-
imization idea be used to update parameter values
over time in such simulations? Possibly; so far this
has not been tried.

As with any model-constructing protocol, problem
situations will arise; the reader can undoubtedly envi-
sion all manner of caveats to the successful applica-
tion of INTASS in some circumstances. We address
two important caveats inAppendix B.

9. Conclusion

Current goals in ecology include the control of in-
vasive species, the identification of essential habitats
for threatened and endangered species, and predicting
the consequences of management actions, contami-
nants and global change. Toward these ends grizzled
guru naturalists have held wetted, prognosticative fin-
gers to the wind, ecologists have elaborated on such
classic tools as the logistic, Ricker and Leslie
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matrix equations, and systems modelers have con-
structed elaborate mathematical simulations. A diffi-
culty common to all these approaches, except arguably
the first, is that adequate consideration of all the var-
ious interactions involved—competitive, predative,
synergistic and physical-biotic—and the modifying
effects of any one set of such interactions on all the
others, involves knowledge of a great number of co-
efficient values many of which are not easily obtain-
able. And in complex systems, small errors tend to
beget larger errors. In this paper we have presented a
model that we feel encompasses sufficient biological
detail for use as a predictive tool, and have provided a
means by which its coefficients can be obtained from
field data without the need for manipulation experi-
ments or destructive sampling. The data gathered for
this purpose for any one species, moreover, can be
used for parameterizing the model for other species,
thus enabling us to generate simultaneous dynamic
equations for community simulation while conserv-
ing time, effort and funds. We recognize that the
assertion upon which the approach rests may prove
unsupportable in many instances. Nevertheless, the
useful information to be gained when it holds is suf-
ficiently important to warrant serious consideration.
Ultimately, its truth and efficacy can be determined
by tests of the INTASS method itself.

Appendix A

The efficacy of INTASS relies on the presumption
that expected individual contributions to fitness tend
toward equality. We argue that this condition is ap-
proximated in many cases, and that in others, devia-
tions might often be corrected for.

The IFD, as usually interpreted, states simply that
organisms, given the freedom to choose their sur-
roundings, distribute themselves in proportion to the
availability of resources. A considerable body of
data supports, or purports to support this claim when
patches are small and interconnected (Kluyver and
Tinbergen, 1953; Brown, 1969; Fretwell and Lucas,
1970; Parker, 1970, 1974; Grant, 1971; Fretwell,
1972; Milinsky, 1979, 1984; Witham, 1980; Gass and
Montgomerie, 1981; Goss-Custard, 1981; Grubb and
Greenwald, 1982; Harper, 1982; M’Closkey, 1982;
Maynard Smith, 1982; Godin and Keenleyside, 1984;

Power, 1984; Sutherland and Parker, 1985; Parker and
Sutherland, 1986; Recer et al., 1987; Houston and
McNamara, 1988; Croy and Hughes, 1991; Wahlstom
and Kjellander, 1995; see alsoTaylor, 1975, 1976;
Brew, 1984, Morris, 1989, and the discussion in
Emlen et al., 1989). See alsoHarper and Gajic (1961),
Palmblad (1968), Harper (1977), and Freeman and
Emlen (in preparation). However, some of the above
articles also report poor fits and note, generally, a bias
toward the over-utilization of poorer resource patches
(see the review table inTregenza, 1995; see alsoZach
and Smith, 1981; Marshall and Frank, 1995, and the
review by Abrahams, 1986, but seeBautista et al.,
1995).

Consider the bias first. Does it negate the concept of
IFD? If distribution is to be predicted solely on the ba-
sis of available resources, the answer almost surely is
yes, for the factors governing animal distributions cer-
tainly extend beyond just food (Kacelnik et al., 1992;
Abrahams, 1986; Grand and Dill, 1999; Lima and
Dill, 1989). Indeed, it must be fitness, per se, the inte-
grative effects of food and all other factors impinging
on growth, reproduction and survival, that ultimately
determines dispersion. The question, therefore, needs
rephrasing: if we define the IFD as an equalization
of fitness, based not only on resources, but on all
factors impinging on fitness, do the data support it?
Sih (1980, 1982)has shown that a foraging aquatic
insect balances risk from predation against food rich-
ness in such manner as to equalize rate of food intake
across food rich and food poor patches. Because
mortality over the period of such matching is very
low, equal food intake rates translate closely to equal
fitnesses.Tyler and Gilliam (1995), in an experiment
with stream fish, show good fits to predicted disper-
sion when energy costs of maintaining position in a
current, in addition to resource availability (i.e. total,
net energy balance), are considered.Korona (1990),
discussing the role of cost in moving among patches,
notes that where cost was low, his flour beetles (Tri-
bolium) fit an IFD quite well.Bernstein et al. (1991),
working with a model system, show that theoretical
fits to a classical (resource-based) IFD are quite good
if both travel costs and interference effects are low.
An excellent discussion of both cost and interference
is provided byKennedy and Gray (1993). In light of
these observations, it seems appropriate to conclude,
with Abrahams (1986), that “what appears to the
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observer as a departure from IFD may actually be a
perfect IFD from the animals’ perspective.” That is,
if cost of movement is small (as it should be between
patches of the small size we recommend for quadrats),
and if all factors impinging on fitness are considered,
animals should distribute themselves such that fit-
ness (not necessarily equivalent to resource input) is
equalized across patches.

Unfortunately, difficulties remain. In addition to the
consideration of measurable environmental factors
other than food availability, poor fits can be gener-
ated by overlooked factors. For example,Hugie and
Dill (1994), using a simple three-trophic level model
found, when both prey and predator were allowed
to choose their surroundings, that the race between
prey seeking safety and predators seeking sustenance
resulted in a prey distribution independent of the
number of predators. Simply noting a difference in
the spatial and/or temporal scale of habitat choice
by the two species would have altered this finding.
Note also the study ofInman (1990)with starlings in
which he looked at the probability distribution over
time of individuals in the better of two patches. On
average, the better patch was occupied about the pre-
dicted proportion of time, but the distribution showed
far more cases where birds crowded into one or the
other patch than expected. Flocking behavior clearly
affected the results. This latter work demonstrates not
only the importance of including all fitness-affecting
factors in a model, it also points out an important and
usually neglected aspect of experimental tests of the
IFD. Animals may have evolved behavior, reflecting
adaptation to natural conditions, which persist even
when the experimental set up does not call for it.
To the extent this occurs, any predicted dispersion
pattern must be erroneous.

To some extent, neglect of unanticipated factors af-
fecting dispersion can be dealt with by using models
that incorporate multiple secondary effects. But we
cannot rely on this approach alone, for even slight
differences among models may lead to marked differ-
ences among predicted dispersion patterns (Van der
Meer and Ens, 1997). Clearly, this presents a prob-
lem for those wishing to apply the IFD. Interestingly,
though, while the effects of slightly different model
forms are amplified when a presumption of equal fit-
nesses is used to predict dispersion, the reverse does
not hold; when dispersion patterns are fed in to the var-

ious models to predict fitnesses, differences are quite
small. That is, predicting fitness from distribution data
is a much more robust process than predicting dis-
tributions from equal fitnesses. INTASS, inasmuch as
it uses distribution data to parameterize a model un-
der a presumption of equal fitnesses should, therefore,
be buffered from this problem. Proof of the pudding,
of course, comes when the parameterized model is
tested by predicting dispersion patterns in indepen-
dently sampled quadrats (seeFig. 1).

Unequal competitive ability can contribute to poor
fits (Sutherland, 1983; Sutherland et al., 1988; Inman,
1990). “Unequal competitors” translates to “different
phenotypes.” If there exist no differences in habitat
preference among such phenotypes, then no difficul-
ties arise (Grand, 1997), for each phenotype can, on
its own, be expected to disperse itself such that ex-
pected individual contributions are equal (Hugie and
Grand, 1998; though seeGrand and Grant, 1994).
But if the different phenotypes exhibit different habi-
tat selection, the assertion of equalρ-values will not
be met.Sutherland and Parker (1985)andParker and
Sutherland(1986)have suggested that if each competi-
tor is assigned a competitive weight relative to its suc-
cess in finding and obtaining resources, that the IFD
still holds, only in terms of summed weights inhabiting
a patch rather than the number of individuals per se.
In some cases at least, this weighting approach works
(Sutherland et al., 1988; Grand, 1997; Grand and Dill,
1997). Unfortunately, it does not bail us out for pur-
poses of INTASS, for while expected fitness per unit
weight may tend toward uniformity among patches of
microhabitats, fitness per individual need not do so.
The problem is exacerbated by despotism, where cer-
tain individuals restrict the movements of others.

Occasionally, unequal competitive ability leads to
disjunct habitat use. Dominant and subordinate male
redwing blackbirds, for example, may occupy quite
different habitat in springtime; salmon fry, depending
on their size, may spend their time in stream main
channels or side channels. In such cases, the prob-
lem is rendered moot; we simply treat the popula-
tion as two separate “species.” And where, as in both
of these examples, the different habitats represent a
source and a sink, we may apply the correction pre-
sented inSection 8.3of the discussion. If, as in most
cases, though, the habitats overlap, we must make a
different sort of correction. In this case, because the
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differences in competitive ability likely relate to dif-
ferences in individual characteristics, we may be able
to incorporate these characteristics in a manner similar
to our use of macro-habitat differences in correcting
for source-sink situations. Secondly, these characteris-
tics can be incorporated as modifiers of level I model
coefficients in the same way that physical variables
are used to modify BRTH and PRED. Where history,
more than current characteristics of the individuals in-
volved determine competitive ability, though, all bets
are off.

Occasionally what we identify as a species is, in
fact, a set of species. And sometimes, to keep the num-
ber of variables manageable, we may find it convenient
to lump species into a single super-species (the genus
Carexcomes to mind). Either case results in aρ ex-
pression that confounds the separate species functions
into some kind of complexly weighted average. The
situation, then, is the same as that for unequal competi-
tors. So long as the individual functions are similar,
such practice still provides a reasonable description
of what makes the conglomerate species tick. Where
the functions are likely to differ significantly, it will
be better to treat each entity on its own. This situa-
tion can arise even within a species, where significant
differences in life style may follow from differences
in life stage, size, age, sex, or phenotypic morph. In-
deed applications of INTASS to different morphs may
be useful in exploring the environmental causes for
balanced polymorphisms or the reasons for deviations
from genetically predicted sex ratios.

No equalization of fitness can come about in
the absence of adequate environmental information
(Abrahams, 1986; Kennedy and Gray, 1993; Ranta
et al., 1999). A paucity of information can arise from
the indirect effects of dominants on subordinates’ abil-
ity to sample their surroundings (Abrahams, 1986),
because of a need for snap decisions forced by the
imminent presence of predators (Gilliam and Fraser,
1987), from limited memory capacity, or from spa-
tial and/or temporal environmental unpredictability
(Grand and Grant, 1994). Tyler and Hargrove (1997)
present a dispersal model incorporating functional
response (type II), a marginal-value theorem patch
departure rule, limited memory of surroundings and
environmental patchiness (expressed as a fractal di-
mension), and find that fits to the IFD are good if
memory is long and movements are large relative to

environmental grain. Fit falls off drastically as these
values decline. These results make the need for good
environmental information obvious. The bad fits gen-
erated by Tyler and Hargrove’s model are likely to
be alleviated if individuals, rather than simply mov-
ing periodically to some new patch, are allowed to
sample patches as they go. Finally, a need to explore
ones’ surroundings to gain the information necessary
for IFD (Emlen and Emlen, 1975; Royama, 1970;
Goss-Custard, 1981) leads also to such “overuse”
of poor habitats. However, presuming that such ex-
ploration (and simple, passing through movements)
represent the vast minority of observations, their influ-
ence, likewise, should remain minimal. Errors arising
from inappropriately including poor habitat quadrats
can be minimized if those quadrats containing only
very few individuals are dropped from the analysis.

It is clear that an individual’s responses to its
immediate surroundings must depend on its physio-
logical (and psychological) state and, therefore, on
its history. Ideal dispersion behavior can be modeled
in light of ongoing histories and experience, using
a dynamic programming approach (McNamara and
Houston, 1990). By such standards our model, exten-
sive as it is in many respects, remains hopelessly sim-
plistic. However, we make no pretense of accurately
modeling individual responses; our appeal is to the ex-
pected behavior of all individuals, jointly considered,
momentarily occupying a given microhabitat. We look
at our approach as a kind of statistical mechanics ap-
proach to McNamara and Houston’sn-body problem.

Finally, we stressMorris’ (2002)admonition about
the efficacy of IFD when Allee effects occur. Only
above the threshold value at which density-depen-
dence becomes negative can we expect our assertion to
hold. Morris’ isodars might be used to assess whether
an Allee effect occurs and, if so, where the critical
density lies. When in doubt, the user might try run-
ning the analysis deleting the most sparsely populated
quadrats. If problems occur, they should show up in a
scatter of points near the origin on test graphs.

The upshot of the above discussion, at least when
unequal competitors do not show distinct differences
in microhabitat preferences, and when movement rates
are on a spatial scale similar to or larger than envi-
ronmental patchiness as viewed by the species of in-
terest, is good support for reasonable fits to the IFD
(generalized to fitness, rather than simply resource
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acquisition). That is, we can expect individuals to dis-
tribute themselves so that their expected contributions
to fitness approach equality among occupied micro-
habitats. We note also that it may be possible to com-
pensate for deviations from the IFD by including in
the analysis measures of individual characteristics.

Appendix B

B.1. Temporal considerations

Fitness, as defined here for animals, is an instan-
taneous rate. As such, its value almost certainly
changes from season-to-season, night-to-day, or even
hour-to-hour, as may the values of some of the vari-
ables to which the animals respond. Therefore, a full
understanding of the factors influencing average fit-
ness over time can follow only from data gathered
over time as well as space. In this regard, note that
ρ-values are additive. Therefore, we could analyze
sets of data gathered at different points in time and
simply add the resulting expressions forρ. This ap-
proach has its hazards, though. Because the INTASS
analysis gives fitness only as a proportional value,
addingρ-values will give meaningful results only if
each element in the sum can be appropriately weighted
(i.e. approach has its hazards, though). Because the
INTASS analysis gives fitness only as a proportional
value, addingρ-values will give meaningful results
only if each element in the sum can be appropriately
weighted (i.e. relative to its time-specific contribu-
tion). These relative contributions are not always
known or easily determined. An alternative approach
is to gather information at different times (presum-
ably on a stratified random basis) and perform the
INTASS analysis on the lumped data. This approach,
by analyzing the response of individuals occupying
hypothetical, time-averaged quadrats, circumvents
the above problem. It has another advantage as well.
Animals, in fact, almost surely maximize their fitness
contributions by responding in mixed fashion over
time. By presuming an animal at a water hole has
equal instantaneous fitness to another that’s sleeping,
or still another feeding, would almost surely be inap-
propriate. It is the behavior of an animal averaged over
a day that determines its fitness contribution for that
day. Accordingly, we recommend that animal data be

gathered throughout the day, that quadrats randomly
drawn from sets collected in one given time frame
be averaged with—or appended to—similarly drawn
quadrats from each other time frame, and that these
compound quadrats be used to represent hypothetical
individuals in INTASS analysis.

B.2. Incomplete sampling by the biologist

As with any fitting procedure, the neglect of one
independent variable can impact the estimated contri-
bution of another. Thus, the value of the biologist’s in-
sight into surmising, a priori, what variables are likely
to affect fitness cannot be overstated. Can the effect of
a habitat change on a population of deer mice be rea-
sonably ascertained without data on the flea species
parasitizing those mice? How accurately and how reli-
ably can the dynamics of a plant community be simu-
lated without consideration of local soil chemistry, or
without data on specific groups of myccorhizal fungi?
Studies are currently underway to determine the an-
swers to such questions in desert plant communities.
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