
 

USGS Science Strategy to Support U.S. Fish and Wildlife Service Polar Bear 
Listing Decision 

Uncertainty in Climate Model Projections of 
Arctic Sea Ice Decline: An Evaluation Relevant to 
Polar Bears 

By Eric DeWeaver1 

 
 
 
 

Administrative Report 

U.S. Department of the Interior 
U.S. Geological Survey 



U.S. Department of the Interior 
DIRK KEMPTHORNE, Secretary 

U.S. Geological Survey 
Mark D. Myers, Director 

U.S. Geological Survey, Reston, Virginia: 2007 
 

 

 

U.S. Geological Survey Administrative Reports are considered to be unpublished and may not be 
cited or quoted except in follow-up administrative reports to the same federal agency or unless 
the agency releases the report to the public. 

 

Any use of trade, product, or firm names is for descriptive purposes only and does not imply  
endorsement by the U.S. Government. 

 

 

Author affiliation: 

1 Center for Climate Research, Atmospheric and Oceanic Sciences Department, University of 
Wisconsin – Madison 
 

 ii



Contents 

Abstract .........................................................................................................................................1 
Introduction ...................................................................................................................................1 
1. Climate and Sea Ice Model Formulation ...................................................................................3 

1.1 Climate models .................................................................................................................4 
1.1.1 Subgrid-scale Parameterization and Model Tuning........................................................5 
1.1.2 Spin-up, Climate Drift, and Flux Adjustment...................................................................6 

1.2 Sea Ice Component Models .................................................................................................7 
1.2.1 Thermodynamics of Growth and Melt in Sea Ice Models ...............................................7 
1.2.2 Dynamics of Resolved and Subgrid-Scale Motion in Sea Ice Models ............................9 
1.2.3 Atmospheric and Oceanic Simulation Uncertainties of Consequence to Sea Ice.........10 

1.3 Climate and sea ice model development............................................................................11 
2. Verification of 20C3M Sea Ice Simulations .............................................................................12 

2.1 Mean state and annual cycle..............................................................................................12 
2.1.1 Concentration and areal coverage ...............................................................................12 
2.1.2 Thickness .....................................................................................................................13 
2.1.3 Atmospheric quantities of relevance to sea ice ............................................................14 

2.2 Trends in the observed record ...........................................................................................14 
2.2.1 Influence of the Arctic Oscillation .................................................................................15 
2.2.2 Atlantic Water Incursions and the Cold Halocline Layer Variability ..............................16 

2.3 Evaluation of Trend Simulations for the Period of Observations ........................................16 
3. Projections of Future Sea Ice Loss .........................................................................................17 

3.1 Trends for B1, A1B, and A2 Scenarios ..............................................................................17 
3.2 Uncertainty due to Internal Variability: Abrupt Loss Events................................................18 
3.3 Associations between Present-Day Simulations and Future Projections ...........................19 

4. Selection Criterion for Models Used in Polar Bear Habitat Projections ...................................20 
5. Concluding Remarks...............................................................................................................21 
Summary of Key Points...............................................................................................................22 
Acknowledgements .....................................................................................................................23 
References Cited ........................................................................................................................23 
 

 iii



Figures 

Figure 1. Schematic of physical processes which determine the heat input to Arctic sea ice. ......29 
Figure 2: Aerial view of the Canadian Coast Guard Ship Des Groseilliers during the Surface Heat 
Budget of the Arctic field experiment, August 3, 1998.................................................................30 
Figure 3: Sea ice in the Bering Strait, as seen by the MODIS instrument aboard the TERRA 
satellite, May 7, 2000. .................................................................................................................31 
Figure 4: Climatological (a) annual mean and (b) seasonal cycles of sea ice areas during 1979–
99 over the Northern Hemisphere from 15 IPCC AR4 models in the 20C3M simulations and from 
the HadISST1 observational analysis data. From Zhang and Walsh (2006). ..............................32 
Figure 5: September Arctic sea ice extent, 1979 to 2006, from the website of the National Snow 
and Ice Data Center (http://www.nsidc.org).................................................................................33 
Figure 6: Patterns of sea ice motion for (a) 1979 and (b) 1994 (gray vectors). .............................34 
Figure 7: Time series of winter (November to March) Arctic Oscillation index. Data are from the 
Climate Prediction Center (CPC). From Overland and Wang (2005). .........................................35 
Figure 8: Long-term variability of temperature of the intermediate Atlantic water (AW) layer in the 
Arctic Ocean. Prolonged warm (red shade) and cold (blue shade) periods associated with 
phases of multi-decadal variability and a background warming trend are apparent from the 
record of 6-year running mean normalized AW temperature anomalies (dashed segments 
represent gaps in the record). .....................................................................................................36 
Figure 9: September Arctic sea ice extent (in millions of square kilometers) from observations 
(thick red line) and 13 IPCC AR4 climate models, together with the multi-model ensemble mean 
(solid black line) and standard deviation (dotted black line). .......................................................37 
Figure 10: (a) Northern Hemisphere September sea ice extent for 20C3M and A1B simulations 
with the CCSM3 climate model. The black line shows ice extent from Run 1 of 6 CCSM3 
simulations, the blue line is the five-year running mean of the black line, and the red line is the 
five-year running mean ice extent from observations. The range of extent values from the 6 
CCSM3 simulations is in dark grey, and the light grey band indicates the abrupt sea ice loss 
event. (b) Averaged September sea ice edge, defined as the boundary between gridpoints with 
at least 50% sea ice fraction and gridpoints with less than 50% ice fraction. The black and red 
contours show the mean 1990s September ice edge for Run 1 and the observations, 
respectively. The blue contour is the Run 1 mean September edge for 2010 to 2019, and the 
green contour is the mean September edge for 2040 to 2049. ...................................................38 
Figure 11: (a) The Arctic averaged March ice thickness and (b) the open water formation 
efficiency as a function of the March ice thickness for the simulation in figure 10. The open water 
formation efficiency is the open water formation, as a percent increase open water area, per 
centimeter of ice melt averaged over the melt season from May to August. ...............................39 
Figure 12: Climatological September sea ice extent in 20C3M and A1B simulations for the 20 
models which contributed sea ice data to the IPCC AR4 archive................................................40 
  

 iv



Abbreviations, Acronyms, and Symbols 

Abbreviations, Acronyms, and 
Symbols 

Meaning 

20C3M 20th Century climate in coupled models 

A1B IPCC forcing scenario A1B 

A2 IPCC forcing scenario A2 

ACIA Arctic Climate Impact Assessment 

AO Arctic Oscillation 

AOGCM Atmosphere-ocean general circulation model 

AOMIP Arctic Ocean Model Intercomparison Project 

AR4 IPCC Fourth Assessment Report 

AW Atlantic water 

B1 IPCC forcing scenario B1 

CCMA_CGCM Canadian Center for Climate Modeling and Analysis climate 
model 

CCSM3 NCAR Community Climate System Model, version 3 

CMIP Coupled Model Intercomparison Project 

CMIP2 Second CMIP 

CHL Cold Halocline Layer 

EVP Elastic-viscous-plastic 

GCM General Circulation Model 

GFDL Geophysical Fluid Dynamics Laboratory (U.S.) 

GISS Goddard Institute for Space Studies (U.S.0 

GISS-ER GISS climate model 

HadCM3 Hadley Center for Climate Prediction and Research climate 
model 

HadGEM1 Hadley Center for Climate Prediction and Research climate 
model 

HadISST Hadley Center Sea Ice and Sea Surface Temperature data set 
(Raynor et al. 2003) 

IABP International Arctic Buoy Program 

IAP_FGOALS Institute of Atmospheric Physics (China) climate model 

INMCM Institute for Numerical Mathematics (Russia) climate model 

IPCC Intergovernmental Panel on Climate Change 

MRI-CGCM Meteorological Research Institute (Japan) climate model 

NAO North Atlantic Oscillation 

 v



Abbreviations, Acronyms, and Symbols (continued) 
 

Abbreviations, Acronyms, and 
Symbols 

Meaning 

NCAR National Center for Atmospheric Research (U.S.) 

NSIDC National Snow and Ice Data Center (U.S.)  

OHFC Ocean heat flux convergence 

SHEBA Surface Heat Budget of the Arctic 

TAR IPCC Third Assessment Report 

UKMO_HADGEM1 Hadley Center for Climate Prediction and Research climate 
model 

USFWS U.S. Fish and Wildlife Service 

USGS U.S. Geological Survey 

 

 vi



Arctic Ocean Place Names 

 

(From Deser and Timlin 2000) 

 

 vii



Uncertainty in Climate Model Projections of 
Arctic Sea Ice Decline: An Evaluation Relevant 
to Polar Bears 
By Eric DeWeaver 

Abstract  
 
This report describes uncertainties in climate 

model simulations of Arctic sea ice decline, and 
proposes a selection criterion for models to be 
used in projecting polar bear (Ursus maritimus) 
habitat loss. Uncertainties in model construction 
are discussed first, both for climate models in 
general and for their sea ice component models. 
A key point in the discussion is that the inherent 
climate sensitivity of sea ice leads inevitably to 
uncertainty in simulations of sea ice decline. 
The ability of climate models to simulate gross 
properties of Arctic ice cover, including the 
annual mean, seasonal cycle, and recent trends, 
is then assessed, followed by a review of model 
projections of 21st Century decline. The 
proposed selection criterion selects models with 
less than 20% error in their simulations of 
present-day September sea ice extent, where 
extent is defined as the area of the Arctic with at 
least 50% ice cover. Of the 10 models satisfying 
this criterion, all lose at least 30% of their 
September ice extent, and 4 lose over 80% of 
their September ice by the middle of the 21st 
Century (years 2045 to 2055). By the end of the 
21st Century (years 2090 to 2099), seven of the 
models are essentially ice free in September. 

Introduction  
 

The U.S. Fish and Wildlife Service 
(USFWS) proposed listing the polar bear as a 
threatened species under the Endangered 
Species Act in January 2007. To help inform 
their final decision, they requested that the U.S. 
Geological Survey (USGS) conduct additional 
analyses about polar bear populations and their 
sea ice habitats. Between February and August 

2007, USGS and collaborators developed nine 
reports targeting specific questions considered 
especially informative to the final decision. This 
is one of the nine reports. This report addresses 
climate model projections of Arctic sea ice 
decline, focusing on factors contributing to 
uncertainty in those projections. 

This report has two goals. First, I describe 
the kinds of uncertainty inherent in climate 
models, particularly those uncertainties that 
directly affect the reliability of their projection 
of future Arctic sea ice conditions. The purpose 
of this description is to provide background 
helpful to polar bear scientists and managers, 
because an understanding of the future for polar 
bears necessarily requires an understanding of 
projections of sea ice. Second, I propose a 
criterion for selecting a subset of the available 
climate models for use in projections of future 
polar bear habitat. A simple and justifiable 
selection criterion was needed for the other 
analyses conducted as a part of this total 
effort—specifically for the analysis of 
predicting future distribution of polar bear 
habitat in the pelagic Arctic (Durner et al. 2007) 
and for projecting future size of the Southern 
Beaufort Sea polar bear population (Hunter et 
al. 2007). 

Arctic sea ice has been in decline for decades 
(e.g., Richter-Menge, 2006; Meehl et al. 2007; 
Stroeve et al. 2007), with successive record-
breaking low values in 2002, 2005, and 2007 
(National Snow and Ice Data Center, 
http://www.nsidc.org), and climate models 
project greater sea ice losses for the remainder 
of the century (Section 3 below). Spatial and 
temporal reductions in sea ice cover and 
associated changes in sea ice character have 
been shown to impact negatively polar bears in 
some portions of their range (Stirling et al. 
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1999; Obbard et al. 2006; Regehr et al. 2006; 
Stirling and Parkinson 2006; Fischbach et al. 
2007). Because they depend upon sea ice for 
nearly all aspects of their life history (Amstrup 
2003), continuing sea ice declines projected by 
climate models could reduce the welfare of 
polar bears across much of their range. To 
appreciate what the future holds for polar bears, 
it is necessary to understand how changes in sea 
ice can affect polar bear distribution and 
numbers. It is also necessary to understand the 
uncertainties which affect the reliability of sea 
ice projections from climate models. 

Climate models are computer programs 
developed at government and academic 
laboratories around the world to create detailed 
simulations of the Earth’s global climate 
system. In the U.S., modeling centers include 
the National Center for Atmospheric Research 
(NCAR, in Boulder, CO), the Geophysical Fluid 
Dynamics Laboratory (GFDL, in Princeton, 
NJ), and the Goddard Institute for Space Studies 
(GISS, in New York, NY). A list of the 23 
modeling centers that contributed simulations to 
the Intergovernmental Panel on Climate Change 
(IPCC) Fourth Assessment Report (AR4), with 
brief descriptions of the climate models, is 
provided in Table 8.1 of Randall et al. (2007). 
While these models have been used extensively 
in making projections of future climate, their 
primary purpose is the scientific investigation of 
climate, climate variability (e.g. the El Niño 
phenomenon), and the evolution of climate in 
response to orbital cycles, volcanoes, solar 
fluctuations, greenhouse gas concentrations, and 
other factors. 

The fundamental physical laws encoded in 
climate models are well established, and the 
models are broadly successful in simulating 
present-day climate and recent climate change 
(Randall et al. 2007). For Arctic sea ice, model 
simulations unanimously predict declines in 
areal coverage and thickness due to increased 
greenhouse gas concentrations. They also agree 
that greenhouse gas-induced warming will be 
largest in the high northern latitudes and that the 
loss of sea ice will be much larger in summer 
than in winter (Meehl et al. 2007, Section 

10.3.3).  
Despite this qualitative agreement, climate 

model projections of Arctic sea ice decline span 
a considerable range, and guidance from models 
often is expressed in terms of the typical 
behavior of an ensemble of simulations. For 
example, Arzel et al. (2006) and Flato et al. 
(2004) show plots of the percentage of model 
simulations that have sea ice at each gridpoint 
over the Arctic Ocean in a 20th Century 
climatology. Arzel et al. (2006) also give the 
September Arctic sea ice loss averaged over all 
simulations (61% between the ends of the 20th 
and 21st centuries) and the fraction of models in 
which September was ice free in the later period 
(50%). Similarly, Holland et al. (2006b) report 
that episodes of abrupt sea ice loss occur in over 
50% of the future climate simulations examined 
in their study.  

While most aspects of climate simulations 
have some degree of uncertainty, uncertainty in 
projections of Arctic climate change is 
relatively high (Randall et al. 2007, Section 
8.3). To some extent, the high level of 
uncertainty is a simple consequence of the 
smaller spatial scale of the Arctic, since climate 
simulations are reckoned to be more reliable at 
continental and larger scales (Meehl et al. 2007, 
Section 105.4.3; Randall et al. 2007). The 
uncertainty is also a consequence of the 
complex processes that control the ice, and the 
difficulty of representing these processes in 
climate models. The same processes which 
make Arctic sea ice highly sensitive to climate 
change, the ice-albedo feedback in particular, 
also make sea ice simulations sensitive to any 
uncertainties in model physics (e.g., the 
representation of Arctic clouds).  

In assessing Arctic sea ice simulations, two 
prominent sources of uncertainty should be 
considered. First, uncertainties in the 
construction of climate models should be 
identified. While all models are constructed 
using the same physical laws, different 
approximations and simplifications are used in 
different models, and these differences lead to 
different sea ice simulation outcomes. Second, 
the degree of uncertainty due to unpredictable 
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natural variability of the climate system should 
be examined. The atmosphere, ocean, and sea 
ice comprise a nonlinear chaotic system with a 
high level of natural variability unrelated to 
external climate forcing. Even if climate models 
contained a perfect representation of all climate 
system physics and dynamics, inherent 
unpredictability would prevent us from issuing 
detailed forecasts of climate change beyond 
about a decade. Unpredictability is especially 
important in model-observation comparisons, 
since the large natural variability of Arctic sea 
ice must be distinguished from the effects of 
external climate forcing. The uncertainty in 
model simulations should be assessed through 
detailed model-to-model and model-to-
observation comparisons of sea ice properties 
like thickness and coverage. In principle, inter-
model sea ice variations are attributable to 
differences in model construction, but attempts 
to relate simulation differences to specific 
model differences generally have not been 
successful (e.g., Flato et al. 2004). 

A practical consequence of uncertainty in 
climate model simulations of sea ice is that an 
ensemble of simulations should be considered 
in deciding the likely fate of Arctic sea ice. 
Some model-to-model variation in future sea ice 
behaviors is expected even among high-quality 
simulations, but part of the inter-model spread 
may be a consequence of poor simulation 
quality. Thus, it is desirable to define a selection 
criterion for membership in the ensemble, so 
that only those models that demonstrate 
sufficient credibility in present-day sea ice 
simulation are included. Fidelity in present-day 
sea ice simulation is an important consideration, 
since biases in present-day simulation have 
been linked to model behavior in projections of 
future sea ice decline (e.g., Holland and Bitz 
2003).  

This document discusses the forms of 
uncertainty listed above and the selection of 
models for consideration in assessing likely 
habitat loss for polar bears. The results of 
studies examining the models’ ability to 
simulate the gross features of Arctic sea ice are 
reviewed, and the criterion for selecting models 

deemed most reliable for predicting future sea 
ice status as it relates to polar bears is described. 
I begin with a general discussion of 
uncertainties in model construction in Section 1, 
followed by a discussion of model performance 
in Section 2, which also discusses verification 
of models against available observations. Future 
projections of sea ice and their uncertainty are 
discussed in Section 3, and the selection of 
models for inclusion in the ensemble used by 
USGS is discussed in Section 4. Conclusions 
follow in Section 5.  

I make the assumption that readers of this 
report have some familiarity with the efforts of 
the IPCC and its periodic assessment reports 
describing the growing worldwide knowledge 
of climate change due to increased greenhouse 
gases. The results of the most recent assessment 
report (AR4) are summarized in its Summary 
for Policy Makers (Solomon et al. 2007), and a 
history of the IPCC effort is given in Somerville 
et al. (2007). 

1. Climate and Sea Ice Model 
Formulation  

 
Like the real-world climate system, climate 

models and the sea ice models contained in 
them are quite complex, as is any discussion of 
their uncertainties. The discussion presented 
here begins with a general description of 
climate models and some of the approximations 
required in their construction. This general 
discussion is followed by consideration of two 
issues which contribute to uncertainty in climate 
models: 1) the need to “parameterize” processes 
which cannot be explicitly represented in the 
model (Section 1.1.1), and 2) the drift of the 
model climate towards an equilibrium state 
which is somewhat different from the observed 
climate (Section 1.1.2). Next, the sea ice 
component model within the climate model is 
described, both in terms of the thermodynamics 
of sea ice growth and melt (Section 1.2.1) and 
the dynamics of sea ice motion (Section 1.2.2). 
An additional section (1.2.3) discusses some of 
the uncertainties in the simulation of the 
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atmosphere and ocean that cause uncertainty in 
the simulation of sea ice. Finally, some 
improvements in the present generation of 
climate models over their recent predecessors 
are mentioned in Section 1.3. The goal of this 
section is to give the reader a general sense of 
what climate models are and why uncertainties 
inevitably are built into them. 

1.1 Climate models  
 

Climate models use the laws of physics (e.g., 
conservation of mass, momentum, and energy) 
to simulate the main components of the climate 
system: the atmosphere, ocean, land surface, 
and sea ice. The term atmosphere-ocean general 
circulation model (AOGCM) is also used for 
these models, to distinguish them from energy 
balance models and "Earth system models of 
intermediate complexity," which simulate the 
gross aspects of climate in simpler ways. Like 
the global models used for weather forecasting, 
the atmospheric component model tracks the 
time evolution of the state of the atmosphere, 
and climate simulations contain realistic 
representations of atmospheric features such as 
midlatitude weather systems, jet streams, and 
monsoons. As in global weather forecast 
models, the time step used for the atmospheric 
component model is generally less than one 
hour. Climate models go beyond weather 
forecast models in that they also represent the 
time evolution of the oceans, sea ice, and land 
surface, and the interaction of these components 
with each other through exchanges of energy, 
momentum, and moisture. The climates 
simulated by these models have been verified 
against observations in several model 
intercomparison programs (e.g., Achuta Rao et 
al. 2004; Randall et al. 2007) and been found to 
be generally realistic. Additional confidence in 
model simulations comes from experiments 
with a hierarchy of simpler models, in which the 
dominant processes represented by climate 
models (e.g., heat and momentum transport by 
midlatitude weather systems) can be isolated 
and studied. 

Figure 1 illustrates some of the physical 

processes that determine the thickness and areal 
coverage of Arctic sea ice. The formation and 
growth of sea ice requires a loss of energy from 
the sea surface occurring at or below the 
freezing temperature. Thus, the loss of heat due 
to longwave (or infrared) radiation from the 
surface (labeled “L” in the diagram) contributes 
to ice formation and growth, as do surface heat 
losses due to heat conduction, evaporation, and 
sublimation (labeled “F” for heat flux). Sunlight 
absorbed at the surface promotes melt and 
inhibits ice growth, and the high albedo (or 
reflectivity) of ice and snow reduces the amount 
of solar energy absorbed at the surface. Clouds 
play a dual role since they shade the surface and 
reduce solar heating, but they also provide 
energy to the surface in the form of 
downwelling, longwave radiation. The polar cap 
receives a substantial amount of atmospheric 
energy from subpolar latitudes, both in the form 
of thermal energy (the “T” in the lateral arrow) 
and water vapor (“q”), which releases heat as it 
condenses to form precipitation (“P”). Much of 
the atmospheric energy transfer occurs through 
the movement of warm and cold air masses in 
weather systems. Ocean currents also bring heat 
into the Arctic and the export of ice from the 
Arctic to the North Atlantic constitutes an 
effective heat source for the Arctic. Realistic 
representation of these and other processes is 
essential for successful simulation of the 
climate and sea ice of the Arctic. 

Despite their considerable recent evolution 
(Kattsov et al. 2005; Somerville et al. 2007) and 
their general success in simulating present-day 
conditions, climate models have significant 
limitations. A variety of simplifications are 
necessary for the relevant physical laws to be 
implemented as computer programs. Thus, the 
laws of physics operating in a climate model 
must be an approximate form of the true 
governing laws and models can be distinguished 
from one another according to how these 
approximations have been made.  

The most obvious form of approximation is 
the discretization of the equations for the time 
evolution of the component models. The state of 
the climate system is represented in three 
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dimensions by the values of appropriate 
variables (e.g., temperatures, winds, currents) 
on a global mesh of gridpoints at the Earth's 
surface and at several vertical levels in the 
atmosphere and ocean. The grid spacing (i.e., 
model resolution) is limited by the availability 
of computing resources, and models differ in 
total resolution, the amount of resolution given 
to each component model, and the manner in 
which the governing equations are expressed at 
the gridpoints. For example, the grid spacing 
used in the atmospheric component model of 
the NCAR Community Climate System Model, 
version 3 (CCSM3) is roughly 100 km, with 26 
vertical levels, while the grid spacing for the 
ocean (40 levels) and sea ice models ranges 
from 25 to 80 km, depending on latitude 
(Collins et al. 2006). This resolution is high 
compared to most simulations for the AR4.  

1.1.1 Subgrid-scale Parameterization 
and Model Tuning 

 
Resolution of current models is sufficient to 

capture all the large-scale features of 
atmospheric circulation, including typical mid- 
and high-latitude cyclones. However, many of 
the processes of interest in the climate system 
occur on spatial scales too small to be resolved. 
Thunderstorms, for example, would fall entirely 
between the gridpoints of the atmospheric 
component model. Phenomena which cannot be 
explicitly resolved are "parameterized," or 
represented implicitly in terms of resolved 
variables. The parameterization of subgrid-scale 
phenomena is perhaps the primary source of 
uncertainty in model construction. The rules 
relating unresolved processes to the resolved 
state of the system, in general, cannot be 
derived from fundamental laws of physics 
alone. Rather, modelers use a number of 
different parameterizations to represent or 
approximate the same phenomenon. For 
example, the fractional coverage of stratiform 
clouds is often parameterized as a function of 
relative humidity (e.g., Boville et al. 2006). This 
relationship, though physically reasonable, only 
crudely represents the many ways in which real-

world cloudiness depends on the resolved-scale 
variables represented at the climate model 
gridpoints. One way in which this 
parameterization simplifies the dependence is 
by ignoring the role of aerosols in cloud 
formation (e.g., Gorodetskaya et al. 2007). 
Thus, parameterization schemes represent a 
balance between the need for simplicity and 
computational efficiency, and the desire to 
account for all relevant processes. While it 
would be desirable to add aerosol effects to the 
cloud fraction parameterization, doing so would 
require specification of aerosol properties and 
amounts, which would further require 
simulation or parameterization of aerosol 
emissions, transport, and chemical reactions.  

Formulas used in parameterization schemes 
usually involve several parameters whose 
values cannot be determined from observations 
or theory, and which thus can be adjusted to 
improve overall model performance. One 
example is the minimum relative humidity 
threshold used in the above-mentioned cloud 
fraction parameterization. In reality, clouds 
form when the local relative humidity reaches 
or slightly exceeds 100%. Such saturation 
occurs on the cloud scale but not the large scale 
represented by an atmospheric model gridpoint. 
Lowering the threshold is physically justifiable, 
but there is no formally correct value, and the 
threshold is simply adjusted, within reason, to 
give good performance on a global basis.  

The process of adjusting these parameters is 
often referred to as "tuning." For example, Hack 
et al. (2006) note that some tuning is necessary 
in order to achieve a balanced energy budget for 
the simulation of present-day climate. They also 
note that this tuning is done through trial and 
error, and that the tuning must be revised 
whenever model resolution is increased. 
Randall et al. (2007) suggest that tuning is 
acceptable, provided that the values of the tuned 
parameters do not exceed reasonable bounds 
and that the number of tunable parameters is 
small compared to the number of observational 
constraints used in model evaluation. The 
second criterion, which is believed to be 
satisfied by most climate models (Randall et al. 
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2007), prevents modelers from exaggerating the 
quality of their models by evaluating them 
against the same observations used to tune 
them. Tuning parameters do not vary in time or 
space, so evaluating models based on their 
performance in a number of geographical 
regions as well as their representation of 
interannual variability (e.g. variability 
associated with El Niño events or the North 
Atlantic Oscillation) guards against such over-
tuning. Since tuning introduces arbitrary 
choices into climate models, and even into the 
same model when used at different resolutions, 
it constitutes a large source of uncertainty in 
climate model construction.  

The simulation produced by a climate model 
represents the effects of all parameterizations 
used in it, and it is possible that a successful 
simulation can be achieved because a bias in 
one parameterization is counteracted by an 
opposing bias in another. For example, the 
thickness of sea ice is sensitive to the amount of 
solar radiation it absorbs during the melt season. 
Thus a cloud parameterization which allows too 
much sunlight to reach the surface can be 
compensated by an albedo parameterization in 
the sea ice component model which reflects too 
much sunlight back to space, thereby yielding 
appropriate solar absorption. This sort of 
compensation is an issue for climate change 
studies, since different combinations of albedo 
and cloudiness may produce the same present-
day sea ice thickness but differing estimates of 
future climate change, since the climate change 
depends on the strength of the sea ice-albedo 
feedback (section 1.2.1) which will be stronger 
with fewer clouds. The presence of such 
compensations is difficult, though not 
impossible, to detect. 

1.1.2 Spin-up, Climate Drift, and Flux 
Adjustment 

 
Each component model of a climate model is 

developed in “stand-alone” mode, with 
observational data substituted for the inputs it 
requires from the other component models. The 
atmospheric model in stand-alone mode uses 

observed sea surface temperatures and sea ice 
cover rather than obtaining these inputs from 
the sea ice and ocean component models. Since 
the atmospheric component model is developed 
to give the best possible simulation with 
observed sea surface temperatures and sea ice, 
the atmospheric simulation will necessarily be 
less than optimal when the atmospheric model 
takes its inputs from the ocean and sea ice 
models instead. The ocean and sea ice models, 
which are designed to give best performance 
with real-world atmospheric inputs, will also 
produce less realistic simulations when their 
inputs come from the atmospheric model. When 
coupled to form a climate model, the “drift” of 
the ocean and sea ice models away from their 
observationally-driven simulations will produce 
a further drift of the atmospheric model away 
from its stand-alone simulation. Thus the 
climate simulation produced by coupling the 
component models together can be significantly 
different from the observed climate even if the 
component models perform reasonably well in 
stand-alone mode. Furthermore, the drift of the 
simulated climate can proceed over a long 
“spin-up” period before a steady-state climate 
simulation is achieved. 

Climate drift can be minimized through the 
process of “flux adjustment”, in which the 
outputs of the component models are modified 
before being used as inputs to the other 
component models. For example, the fluxes of 
heat and moisture from the ocean to the 
atmosphere could be corrected before applying 
them to the atmospheric model in order to 
produce a more realistic atmospheric simulation 
(e.g. Meehl 1992; Kattsov et al. 2005). Flux 
adjustments represent a trade-off in modeling: 
the adjustments are not desirable, since they do 
not represent real physical processes, yet they 
may be necessary to prevent the climate model 
from drifting to an unrealistic climate. As 
discussed in section 1.3, improvements in 
climate modeling have greatly reduced the use 
of flux adjustments. Flux adjustments used in 
IPCC models are listed in Table 8.1 of Randall 
et al. (2007). 

The spin-up period required for a climate 
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1.2.1 Thermodynamics of Growth and 

Sea ice forms when the ocean surface 
temperature falls to approximately -1.8°C and 
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model to achieve a steady-state equilibrium 
climate can be quite long, even several hundred 
years, due to the slow overturning motion of the 
deep oceans. Simulations of climate change 
must begin with a fully spun-up climate to 
avoid confusing climate drift with climate 
change due to increases in greenhouse gas 
concentrations. Thus, it is not possible to 
initialize a global warming simulation with a 
specified present-day climate state. In this 
respect climate models differ from weather 
forecast models, in which the forecast model is 
initialized with the best possible representation 
of the current atmospheric state and the quality 
of the forecast depends on the quality of the 
initialization. 

1.2 Sea Ice Component Models  
 

The sea ice component model typically 
simulates fractional ice coverage (percent ice-
covered area per unit surface area of ocean, or 
concentration), mean ice thickness, ice motion, 
temperature and many other ice properties such 
as albedo (surface reflectivity), snow 
accumulation, and energy fluxes into and out of 
the ice. Sea ice model calculations can be 
categorized as thermodynamic or dynamic, with 
the former determining the rate of growth and 
melt of the ice through heat gain and loss, and 
the latter determining the resolved-scale 
movement of the ice and the subgrid-scale 
redistribution of ice by differential movement. 
On a fundamental level, the thermodynamics of 
ice growth and melt are determined by 
conventional heat conduction and the latent heat 
of freezing and melting while ice motion is 
governed by a momentum conservation 
equation. However, the application of these 
physical laws to produce a practical sea ice 
component model requires a variety of 
simplifications and parameterizations which add 
uncertainty to climate model construction. 

Melt in Sea Ice Models 
 

small ice particles agglomerate to create a slush
of ice crystals called frazil ice. As the ice grows 
it expels salt in a process called brine rejection, 
which makes the salinity of the ice dependent 
on its age. Salt content is important for ice due
to its effect on thermal conductivity and also 
because the melting of ice is affected by smal
"brine pockets" of unfrozen salty water trapped
in the ice. The salinity of ice is determined by 
microphysical processes which must, of course
be parameterized. A further issue for ice growth 
is the amount of snow on top of the ice, since 
snow is a better insulator than ice and thus 
reduces ice growth by slowing the rate at w
heat is lost through the ice by the underlying 
ocean. The accumulation, melting, flooding, 
sublimation, and refreezing of the snow are 
accounted for in a variety of ways in sea ice 
models.  

The am

be parameterized as a function of temperature, 
ice thickness, amount of snow cover, snow age,
and snow melt. Real-world sea ice albedo is 
correspondingly complex, since snow albedo
higher than ice albedo, and much of the sunlight
that contributes to ice melt is absorbed not by 
ice and snow but by melt ponds on the ice 
which have lower albedo. The challenge of
parameterizing surface albedo is apparent in
Figure 2, which gives an aerial view of the se
ice near the end of the melt season during the 
1998 Surface Heat Budget of the Arctic 
(SHEBA; Uttal et al. 2002) field experim
Snow-covered sea ice presents a highly 
reflective surface to sunlight, while melt
on the surface have a light blue appearance and 
absorb much more of the sunlight which falls on
them, and dark patches of open ocean absorb up 
to 90% of the sunlight they receive. Albedo 
values calculated at a model gridpoint must 
incorporate the effects of all these surface typ
averaged over the grid spacing of the model. In 
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addition, the model must account for the portion
of sunlight which goes through the surface of 
the ice, warming and melting the interior 
without changing ice thickness or passing 
through the ice to warm the ocean below.  

The proper representation of surface alb
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particularly important in light of the sea ice-
albedo feedback, a positive feedback in which 
the melting of sea ice or snow on sea ice 
reduces surface albedo, allowing more of 
incident sunlight to be absorbed at the surface
When more sunlight is absorbed rather than 
reflected, the additional gain of heat energy 
leads to more melting, which further lowers 
albedo, allowing even more absorption of 
sunlight, more melting, and so on. Sea ice-
albedo feedback is perhaps the primary reas
for the enhanced sensitivity of Arctic climate to
greenhouse gas increases (e.g. Manabe and 
Stouffer 1980), and the increased absorption
sunlight in the Arctic may significantly increase 
the warming of the whole globe due to CO2 
increase (Rind et al. 1995). Model-to-
observation comparisons of the sea ice
feedback are not available, but a study of the 
snow-albedo feedback over land (i.e., snow m
exposes a darker surface, promoting solar 
absorption and further melting) showed tha
models tend to underestimate the feedback (H
and Qu 2006). 

The growth o
 rate at which heat is lost from the ocean 

below the ice to the atmosphere above -- a ra
which is strongly dependent on the thickness of 
ice (e.g., Bitz and Roe 2004). Even in regions of 
thick perennial ice there is always some open 
water in the form of leads (linear openings or 
cracks in the ice) and polynyas (larger areas of
open water). These are regions of intense heat 
loss from the ocean and subsequent growth of 
new ice, and their effect must be included in se
ice models despite their subgrid spatial scale. In 
addition to open water fraction, a resolved-scale 
region in the Arctic ice pack will also contain 
ice of a variety of thicknesses, and this subgrid
scale variability is important for ice growth. 
Bitz et al. (2001) cite studies which show tha
ice growth rates in the central Arctic roughly 

double when averaged over a realistic 
distribution of thicknesses compared to
growth rate obtained assuming only the mea
thickness for the distribution. Subgrid-scale 
thickness distributions are now included in 
many but not all sea ice component models.

The sensitivity of sea ice to global climate

heating rate of 1 Wm-2 (1 watt per square meter) 
applied to the ice for a year would melt about 
10 cm of sea ice (for comparison, the melt 
season-averaged solar heating rate for sea ic
observed during the SHEBA experiment was 
about 60 Wm-2; M. Holland, personal 
communication). A typical estimate of
increased surface heating due to CO2 do
is about  
4 Wm-2 w
effects, would melt through 3 m of ice (clos
the mean thickness for Arctic sea ice) in less 
than a decade. In winter (nighttime in the 
Arctic), areas of ice-free ocean surface are
warm compared to the overlying atmospher
the ice-free regions cool quickly until new ice 
forms and provides insulation from the cold 
atmosphere. This heat loss from ice free surfa
waters accounts for global warming simulations 
in which the Arctic sea ice melts away each 
year by September, yet a relatively expansive
ice cover still develops over the winter months

Studies which model the growth and melt of 
ingle column of sea ice often find very large 

sea ice thickness sensitivity to relatively small 
variations in snow cover and heat fluxes from 
the atmosphere and ocean (Maykut and 
Untersteiner 1971; Semtner 1976; Ebert 
Curry 1993). This sensitivity is presumably 
inherent in the form of the heat conduction 
equation that determines the growth of the ic
rather than a consequence of parameterization 
choices. But Randall et al. (1997) note that 
models which include ice motion tend to hav
much smaller sensitivities. DeWeaver et al. 
(2007) analyze a climate model experiment i
which sea ice albedo is deliberately increased 
and the effect of the increase on sea ice 
thickness is examined. The albedo increa
leads to a thickness increase which is partial
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offset by the movement of the thicker sea ice 
out of the Arctic. Inherent sensitivity is an 
important issue, because significant errors i
solar and infrared radiation are expected due t
errors in Arctic cloud simulation (e.g., Beesley 
and Moritz 1999; Vavrus 2004). These errors 
will produce errors in ice thickness and extent 
to varying degrees depending on the inherent 
sensitivity of the sea ice.  
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Scale Motion in Sea Ice Models 
 

esses exerted by the atmosphere (surface 
wind stress) and ocean, the tilt of the ocean 
surface, the Coriolis force, and internal stres
within the ice cover (e.g., Hibler and Flato 
1992; Parkinson and Washington 2005). On
resolved scale, motion is a key determinant of 
regions of thick and thin ice within the Arctic, 
and accounts for much of the error in 
simulations of the Arctic thickness patte
et al. 2002; Randall et al. 2007). Motion is also 
important for the total volume of ice in the 
Arctic; Rothrock and Zhang (2005) find tha
about 12% of the Arctic ice volume is lost to 
export each year. Ice motion also plays a cruci
role on the subgrid-scale, as differential ice 
motion causes the opening of leads, the 
formation of ridges, and the rafting of ice
on top of each other. The thickness distribution 
is determined by the competing effects of 
thermodynamics processes which tend to r
the variability of thickness and dynamic effects 
which produce adjacent patches of open water 
and very thick ice (Thorndike et al. 1975).  

Simulation of resolved-scale ice motion 
uires specification of the effective net for

due to internal stresses caused by collisions, 
breakups and pile-ups within the pack. The 
most important result of internal ice stress fo
ice motion calculations is to resist the build-up
of ice that would otherwise occur due to wind-
induced convergence of ice (Hibler and Flato 
1992). The net force consists of a pressure 
component which depends on the thickness
fractional coverage of the ice, and compressive 

and shearing stresses dependent on the 
differential motion of the ice (Hibler 19
Hibler et al. 1992; Hunke and Dukowicz 199
Parkinson and Washington 2005). The most 
sophisticated representation of the ice stress i
the IPCC simulations is the viscous-plastic 
rheology introduced by Hibler (1979) and it
modification by Hunke and Dukowicz (1997),
who introduced a more computationally 
tractable elastic-viscous-plastic (EVP) rh
A simpler representation of ice stress is the 
cavitating fluid rheology (e.g., Hibler et al. 
1992), which includes only the pressure 
(neglecting the shear strength). On the su
scale, the effect of ice motion on the thickness 
distribution is often represented by a 
mechanical redistribution function, wh
represents the creation of thick ice from thi
ice through ridging and rafting (Thorndike et al. 
1975). 

Som
deling ice motion can be gained from Figure

3, which shows the movement of ice through 
the Bering Strait in early May (the beginning o
the melt season). The resolved-scale motion 
consists of an export of ice from the Arctic 
driven by surface winds which, to the extent
that the wind pushes ice floes together, will b
resisted by an internal pressure force which 
must be parameterized. On the subgrid-scale
differential ice motions are responsible for the
leads seen in the upper left corner of the figure,
and the lead fraction must be parameterized due 
to the importance of the strong heat fluxes that 
occur in the leads. 

Representations 
istribution cannot be formally derived from 

the basic material properties of sea ice, but they
are constrained by “common sense” physical 
principles. For example, mechanical 
redistribution is carried out in ways th
conserve ice mass, and ice stress is usual
to zero under diverging conditions, since ice 
floes do not resist being blown away from eac
other. The performance of state-of-the-art sea 
ice models has been extensively tested in offlin
calculations, in which simulated sea ice melts, 
grows and moves under the influence of 
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atmospheric conditions specified from av
observations (an ocean model is also used in 
these simulations). Parkinson and Washington
(2005) summarize several studies of this sort, 
including calculations by Zhang et al. (1999) in
which simulated sea ice motion follows closely 
the trajectories of the drifting buoys of the 
International Arctic Buoy Program (IABP, 
Rigor et al. 2002), and fractional ice coverage is
in good agreement with satellite observations.  
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Simulation Uncertainties of 
Consequence to Sea Ice 

 

gain of thermal energy, so the ice is 
necessarily sensitive to simulation defic
in other component models which affect these 
gains and losses. In the atmospheric component
model, factors which strongly influence the sea 
ice simulation include the temperature profile of
the atmospheric boundary layer (the lower 
portion of the atmosphere which is directly 
influenced by the surface, typically the lowe
1 km or less over the Arctic Ocean), the 
representation of clouds, and vertical hea
within the boundary layer. Kattsov et al. (2005) 
point out that vertical resolution of the 
atmospheric component model may be 
coarse to capture the strong but shallow 
temperature inversions which form above
ice during the Arctic winter. 

Studies including Vavrus (
d Moritz (1999), and Walsh et al. (2002) no

that models have difficulty in simulating cloud 
fraction (the fraction of the sky covered by 
clouds) over the Arctic, and the mean annua
cycle of cloudiness averaged over the Arctic 
ocean is generally not captured in either stand
alone atmospheric models or climate models. 
Randall et al. (1997) note the presence in the 
Arctic of multiple layers of clouds in the 
summertime boundary layer, which presen
difficulties for models both because of limited
vertical resolution and the lack of understanding
of the physical mechanisms involved. They also 
note difficulties in representing vertical fluxes 

of heat, momentum, and moisture in the 
wintertime boundary layer, which is gene
very stable but broken up sporadically by 
plumes of warmer moist air rising from are
open water (leads), which form between ice 
floes. "Arctic haze" (industrial aerosol pollution 
which enters the Arctic primarily from Eurasia, 
e.g., Shaw 1995) and clear-sky ice crystal 
precipitation pose further challenges to the
parameterization of Arctic clouds. Cloud err
are particularly significant for sea ice simulation
because clouds regulate the amount of sunlight 
at the surface during summer and provide a 
source of downwelling infrared radiation dur
the winter. Thus, they substantially moderate 
both the growth and melting of the ice.  

Sea ice is also sensitive to the simulat
 ocean component model, since ice can be 

melted by ocean heat flux. Maykut and 
Untersteiner (1971) found that an increa
about 5 Wm-2 in ocean heat flux convergence 
(OHFC) was sufficient to melt all the ice in 
their model of a column of sea ice at a single
point (they estimate that present-day OHFC is
about 2 Wm-2). Tremblay et al. (2007) find that
an increase of 17 Wm-2 in OHFC removes most 
of the ice in their model of sea ice cover over 
the whole Arctic. Ocean heat flux into the 
Arctic occurs as warmer Atlantic water (AW
enters the basin. This water is denser than the 
surface water and thus sinks to form a layer 
between depths of 100 and 800 m (Quadfase
al. 1991) with a core temperature significantly 
above freezing. Sea ice is buffered from the hea
carried by the AW because Arctic surface 
waters are relatively fresh and thus less den
than the AW, which is separated from the uppe
ocean by the sharp salinity gradient of the Cold 
Halocline Layer (CHL). Tremblay et al. (2007) 
show that models have difficulty simulating the 
CHL and may thus allow too much heat from 
the AW to reach the ice. Ocean biases have 
several sources, including insufficient vertica
resolution in the ocean component model, wind
errors in the North Atlantic driving too much or 
too little AW into the Arctic, and insufficient 
information about precipitation over subarctic 
landmasses, since the freshness of the Arctic 
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Ocean is partly due to river discharge. 
In addition to the thermodynamic influence 
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the atmosphere and ocean on the sea ice 
simulation, sea ice dynamics render the sea 
sensitive to the effects of surface wind errors in 
the atmospheric component model. Bitz et al. 
(2002) demonstrated that surface wind errors in
many atmospheric models are sufficient to 
cause large errors in the pattern of sea ice 
thickness across the Arctic, since errors in 
surface wind direction pile up the ice on the
Siberian coast, in opposition to the observed 
maximum on the Canadian side. The wind 
errors are associated with a tendency for Ar
sea level pressure to be too high. In the northern 
hemisphere, winds circulate clockwise around 
high pressure centers, so an erroneous polar 
high is accompanied by an erroneous east-to-
west circulation around the pole (see also Wal
et al. 2002). 

development  
 

AR4 are substantially improved over those 
available in the IPCC Third Assessment Rep
(TAR, IPCC 2001) and even the more recent 
Arctic Climate Impacts Assessment (Kattsov e
al. 2005). One driver of model improvement is 
increases in computer resources, which have 
enabled substantial increases in model 
resolution. The atmospheric component
used in the NCAR CCSM3 simulations has a 
horizontal resolution four times higher than th
earlier version used in the TAR and with 26 
vertical levels rather than the earlier 18. A 
second significant improvement is reduced 
reliance on flux adjustments (section 1.1.2):
of the 23 climate models used in AR4 had some 
form of flux correction, compared to 17 out of 
31 in the TAR. Additional improvements in 
parameterization of climate processes can be
found in Randall et al. (2007), who also discus
recent increases in the amount of scrutiny to 
which model simulations have been subjected
particularly in model intercomparison projects 

such as the Coupled Model Intercomparison 
Project (CMIP; Achuta Rao et al. 2004; Meeh
et al. 2005).  

Sea ice com
bstantially in recent years. Flato et al. (2004

summarize the sea ice component models for 
climate models participating in the second 
CMIP Project (CMIP2; Achuta Rao et al. 20
Meehl et al. 2005). Of 16 models, 9 had 
motionless sea ice and 4 used "free drift"
which the ice drifts with the ocean surface 
current (a cutoff thickness is usually used to
prevent excessive ice build-up). Only three us
a full representation of internal ice stress 
(Holland and Bitz 2003 provide a similar 
listing). Similarly, only 2 of 31 climate mo
used in the TAR had sea ice motion. In 
comparison, two models used in the AR4
motionless ice, two have free drift (Randall et 
al. 2007) and the remaining 19 use some form 
of internal ice stress. A more detailed 
description is provided for a subset of 1
models by Zhang and Walsh (2006), who 
that 9 models use viscous-plastic or EVP 
rheology, 4 use the simpler cavitating fluid
rheology and 2 others use free drift. The use
thickness categories is somewhat limited in 
AR4, with only 5 models incorporating a 
thickness distribution, and only two with t
evolving thickness distributions (HadGEM1 an
CCSM3, both noted for their realistic present-
day simulations and dramatic sea ice loss in 
future simulations). However, all AR4 model
contain a parameterization for the opening and 
closing of leads to ensure that some open water 
is present even in a thick ice pack.  

Randall et al. (2007) note that rec
vances in sea ice component models h

resulted in dramatic improvements in sea ice 
simulations. They note that the continued 
presence of significant sea ice errors can b
attributed to errors in the atmospheric and 
oceanic component models which provide 
inputs to the sea ice. This verdict is consiste
with the experience of Zhang et al. (1999), who
showed that sea ice models are capable of 
producing high-quality simulations when fo
with realistic surface winds and temperature. 
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Bitz et al. (2002) and DeWeaver and Bitz 
(2006) use offline sea ice thickness calcula
to show the effect of surface wind errors on 
simulated sea ice thickness. 
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2.1 Mean state and annual cycle  

The discussion below reviews several studies 
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2.1.1 Concentration and areal coverage  

The total area covered by sea ice is the 
sim

ations. 

 

 availability of multi-model ensembles of 
climate simulations has motivated novel 
attempts to characterize and understand 
uncertainty in model simulations and 
projections. One such attempt is the 
climateprediction.net project (CPDN
al. 2006), in which a coarse resolution climate 
model was distributed over the internet to users
who conducted simulations on home computers.
The idea of the project is to assess simulation 
uncertainty by conducting a very large number
(over 2,500) of simplified climate simulations in
which various tuning parameters are perturbed 
randomly over a range of reasonable values. 
One result of the project is a careful assessme
of the uncertainty in future climate predictions 
owing to parameterization uncertainties. They 
find that the global warming for a doubling of 
CO2 from its pre-industrial concentration 
(roughly the B1 scenario) is very unlikely 
than a 5% chance) to be below 1.5˚C, but the 
upper bound on possible warming is more 
difficult to assess. They challenge the range
1.5 to 4.5˚C given in the TAR, saying that the 
upper bound for global temperature increase 
(less than a 5% chance of exceedance) is poorly 
constrained, and can vary between 5˚C and 
6.5˚C depending on the assumptions of the 
analysis. 

2. Verification of 20C3M Sea 
Ice Simulations  

 

rameterizations and the inherent
sea ice thermodynamics, combined with further 
uncertainties in atmosphere and ocean model 
construction, lead inevitably to errors in the 
simulation of Arctic sea ice. Several studies 
have examined the quality of climate model s
ice simulations in comparisons against available 
observations. Two categories of studies are 

possible: those which consider the mean stat
and seasonal cycle of the ice, and those which 
consider the variability of the ice, especially the
decreasing Arctic sea ice trend in recent 
decades. Both types of studies are discuss
this section. 

Compariso
4 are often carried out using simulations 

from the archive of simulations of "20th centu
climate in coupled models" (20C3M, Meehl et 
al. 2005). The radiative forcing used in these 
simulations is not uniform across the ensembl
as some modeling centers used more radiative 
inputs than others, e.g. sulfate aerosols, volcani
emissions, black carbon and solar variability (all 
include sulfate aerosols and increasing levels of 
carbon dioxide). A listing of models and their 
20C3M radiative inputs is provided in Table 
10.1 of Meehl et al. (2007). 20th century 
simulation comparisons are also available
models participating in the earlier CMIP and 
CMIP2 projects. Typically, present-day 
simulations are started from a pre-industr
simulation in which the climate model is run 
a long period of time (360 years, in the case of 
CCSM3) using greenhouse gas levels 
appropriate for the pre-industrial era. 

 

ich compare observed and simulated 
thickness and areal coverage of Arctic se
The quality of some atmospheric quantities of 
importance to the ice simulation (e.g. clouds) is
also assessed. A common finding in these 
assessments is that mean quantities average
over an ensemble of model simulations are 
often in better agreement with observations 
the simulation from any given model. 

 

plest and most integrative point of 
comparison between models and observ
Northern Hemisphere sea ice extent is usually 
defined as the area of the Northern Hemisphere
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oceans with at least 15% ice coverage. It is 
closely related to sea ice area, which is the 
spatial integral of sea ice concentration over
Northern Hemisphere. “Area” is a more precise 
measure, since it takes lead fraction into 
account, but “extent” is more reliably obs
(Zhang and Walsh 2006). Sea ice concentration 
data are available from all-weather satellite 
observations starting in 1978 (e.g., Cavalieri
al. 1999), supplemented with earlier ship and 
aircraft measurements (Raynor et al. 2003).  

Zhang and Walsh (2006) considered 15 
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C3M climate simulations and found that t
models generally succeed in simulating an 
annual-mean sea ice area within 20% of 
observations. For the ensemble-averaged 
annual-mean area they obtained a value of
1.06x107 km2, close to the observed value o
1.10x107 km2 (their Table 2; one model with 
apparent spin-up problems is excluded). 
Relatively close agreement between the 
ensemble mean and available observation
despite large ensemble spread is a recurrent
theme in evaluations of model simulations.  

A wider variation was found in the annual
cle of ice area, with the largest discrepancies

occurring in August and September (September 
is usually the month of minimum coverage, 
while the maximum coverage is typically in 
March). Zhang and Walsh’s (2006) plots of t
annual mean area and its seasonal cycle are 
reproduced here as Figure 4. The annual cyc
in 20C3M ice extent simulations was also 
examined by Parkinson et al. (2006a, b), w
find that all models capture the timing of the 
annual cycle. They also plot the ensemble-me
annual cycle, which is found to be close to the 
observed annual cycle, but with consistently 
higher values for extent (3% larger extent in 
December and 14% larger in September). 
Stroeve et al. (2007) found that 13 of the 2
models in the A1B 21st century climate chan
scenario ensemble (see section 3) had 
September sea ice fraction within 20% 
observations.  

The geograp

(2006a) and Arzel et al. (2006), and both studies 

find considerable differences among the 
simulations. Nevertheless, Arzel et al. (20
find the median sea ice edge for the 20C3M 
ensemble in March and September (i.e., 
maximum and minimum coverage), and f
that the median sea ice edge agrees reasonably
well with observations (here the edge is the 
boundary between the region of the ocean w
more than 15% ice coverage and the region with
less). A similar level of agreement between the 
median sea ice edge of the ensemble and the 
observed sea ice edge was found by Flato et a
(2004) for the CMIP ensemble in both summer 
and winter.  

The mean and ann
ckness in the 20C3M ensemble was 

examined by Gerdes and Koberle (2007
again found large inter-model variations within
the 20C3M ensemble. Since ice thickness is 
poorly observed, they compared the thickness
simulations to six "hindcast" experiments from
the Arctic Ocean Model Intercomparison 
Project (AOMIP, Proshutinsky et al. 2001
which ocean-sea ice models simulated the 
period 1979 to 2001 using atmospheric forc
from observations (river runoff is also 
specified). As a gross measure of simul
quality they compared the total Arctic ice 
volume for 1985 to 2000 with the same qu
from the hindcasts. They find that of 18 models, 
11 have ice volume within the range spanned by 
the six hindcasts, 15,000 and 30,000 cubic km. 
They also show the annual-mean, April, and 
September spatial distribution of thickness fo
some of the models. They note models which 
have an excessively pole-centered thickness 
pattern as well as models which have ice 
buildup along the wrong sections of Arctic
coastline. They attribute these biases primarily 
to wind-induced anticyclonic ice drift. The 
single 20C3M simulation that uses motionless 
ice has a strongly pole-centered pattern. The 
best thickness patterns were found in CCSM3
and HadGEM1 (see list of acronyms for model
and modeling centers).  
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2.1.3 Atmospheric quantities of 
relevance to sea ice  

 
The presence of an anticyclonic surface wind 

pattern circulating around an erroneous Arctic 
high pressure center is a common problem in 
climate models (see section 1.2.3) and was 
documented for the 20C3M simulations by 
Chapman and Walsh (2007). They note that the 
high bias is less pronounced than in earlier 
generations of models. In addition to the 
detrimental effects of the anticyclonic winds on 
ice motion, high pressure is associated with a 
deficit of strong storms (low pressure systems) 
entering the Arctic from the North Atlantic, 
which is significant because storms push 
warmer ocean water into the Barents sea, 
reducing ice formation there. Thus the high 
pressure bias is associated with excessive sea 
ice in the Barents sea in most of the simulations. 
In CCSM3 the anticyclonic bias was largely 
alleviated by increasing the resolution of the 
atmospheric component model (DeWeaver and 
Bitz 2006). A second topic addressed by 
Chapman and Walsh (2007) is a tendency for 
Arctic surface air temperatures to be too cold, 
and they note that the overall performance of 
20C3M simulated Arctic temperature is 
comparable to that of the models used in the 
TAR. 

Large differences in simulations of fractional 
cloudiness in the Arctic are expected (see 
section 1.2.3), and Gorodetskaya et al. (2007) 
discuss the effect of cloud biases on sea ice 
simulations in three 20C3M simulations (from 
the CCSM3, HadCM3, and GISS-ER models). 
The models show pronounced differences in 
cloud fraction, although these differences are 
smallest during the melt season. There are also 
important differences in the radiative effects of 
the clouds due to differing amounts of liquid 
water and ice which cause the Arctic Ocean 
surface to gain 20% to 40% more energy during 
the melt period in the GISS-ER and HadCM3 
models than in CCSM3.  

A critical evaluation of 20C3M simulations 
is given by Eisenman et al. (2007), who claim 
that variations in downwelling longwave 

radiation are so large that they rule out 
meaningful simulations of sea ice thickness. 
They use simple arguments to estimate the 
spread in sea ice thickness that would be caused 
by differences in longwave flux (more 
longwave flux, thinner ice), and state that the 
inter-model range ought to be at least 10 m, 
while the actual 20C3M range is 1 to 4 m. They 
suggest that modelers have artificially prevented 
the larger range by making minute, nonphysical 
adjustments to sea ice albedo. This claim is not 
consistent with climate model experiments 
performed by Holland et al. (2006a) in which a 
13% increase in ice albedo resulted in only a 
half meter increase in ice thickness, much less 
than the increase predicted by Eisenman et al.'s 
estimates. DeWeaver et al. (2007) noted several 
ways in which the more realistic physics of 
Holland et al.’s (2006a) climate model prevents 
the sort of fine-tuning of albedo claimed by 
Eisenman et al., including the effects of cloud 
cover and sea ice motion (also noted by Randall 
et al. 1997), neither of which is considered by 
Eisenman et al. (2007). 

2.2 Trends in the observed record  
 

The ability of climate models to project 
future sea ice decline should logically be judged 
by their ability to reproduce the downward 
trends of recent decades, shown in Figure 5. 
September Arctic sea ice extent declined by 
7.8% per decade from 1953 to 2006 and 9.1% 
per decade for the period 1979 to 2006 (Stroeve 
et al. 2007), the years for which satellite data 
are available. September extent has had 
pronounced minima in every year since 2001, 
with successively lower record-breaking 
minimum extent values in 2002, 2005, and 2007 
(http://www.nsidc.org). The 2005 minimum was 
a 21% reduction compared to the mean for 1979 
to 2000 (Serreze et al. 2007). Sea ice extent 
reported by NSIDC on 28 August 2007 was 
4.78 million km2, well below the record 
absolute minimum extent of 5.32 million km2 
reported in 2005. This decline is consistent with 
evidence for Arctic warming from a variety of 
sources, such as surface air temperature 
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increases over land and ocean (e.g., Alley et al. 
2003, Johannessen et al. 2004, Serreze and 
Francis 2005), thawing of Alaska permafrost 
(Osterkamp and Romanovsky 1999), and a 
transition in land cover from tundra to sub-
Arctic shrub (Wang and Overland 2005).  

Considering the magnitude of recent trends, 
one might expect them to provide a clear target 
for model evaluation and intercomparison. 
However, evaluation of 20th Century sea ice in 
model simulations is complicated by the large 
intrinsic variability of Arctic climate: this is the 
uncertainty due to unpredictability mentioned in 
the introduction. In the literature of natural 
Arctic climate variability two forms of 
variability feature prominently: 1) long-term 
wind fluctuations associated with the Arctic 
Oscillation (AO), and 2) variations in ocean 
heat flux due to incursions of Atlantic water 
(AW), together with reductions in the buffering 
effect of the cold halocline layer (CHL).  

2.2.1 Influence of the Arctic Oscillation  
 

The AO (Thompson and Wallace 2000; 
Thompson et al 2000) is also referred to as the 
Northern Hemisphere Annular Mode 
(Limpasuvan and Hartmann 2000), and closely 
related to the more regional North Atlantic 
Oscillation (NAO; e.g., Hurrell 1995). It can be 
approximately described as a meridional shift of 
atmospheric mass away from (in the high phase) 
or toward (in the low phase) the North Pole, 
accompanied by a poleward shift of the 
midlatitude westerly winds extending from sea 
level to the lower stratosphere in the high phase 
(an equatorward shift in the low phase). The AO 
is the most prominent mode of atmospheric 
variability in high northern latitudes, and it 
exhibited a pronounced trend toward higher 
values from 1970 to the mid-1990s (Thompson 
et al. 2000 show trend maps for 1968 to 1997).  

Rigor et al. (2002) use IABP buoy data to 
document the effect of the AO on sea ice 
motion. They show that this shift to more 
counterclockwise surface winds over the Arctic 
causes thinning of the ice along the East 
Siberian and Laptev Seas (see the map of Arctic 

Ocean place names) by moving away multi-year 
ice, as well as increasing export of multi-year 
ice through Fram Strait (Fram Strait lies 
between the Northeast coast of Greenland and 
the island of Spitsbergen). The effect of the shift 
from anticyclonic to cyclonic wind circulation 
is shown in Figure 6 taken from Rigor et al. 
(2002). Rigor and Wallace (2004) go on to 
suggest that the recent reduction in September 
ice extent is a delayed reaction to the export of 
multi-year ice during the high-AO winters of 
1989-1995. They estimate that the recovery of 
sea ice to its normal extent should take between 
10 and 15 years. The notion of sea ice decline as 
a delayed reaction to the impulsive flushing of 
multi-year ice was challenged by Overland and 
Wang (2005), who note that no recovery is 
evident despite the return of the AO to a more 
neutral state. The winter values of the AO for 
1960 to 2004 are shown in Figure 7, taken from 
Overland and Wang. Despite the mixed record 
of high and low AO years since 1995, the 
decline of sea ice extent has increased over the 
past 12 years, as noted above. 

Recognizing the need to incorporate AO 
variability into considerations of recent sea ice 
decline, Lindsay and Zhang (2005) used an 
ocean-sea ice model to reconstruct the sea ice 
behavior of the satellite era and identify 
separate contributions from ice motion and 
thermodynamics. Similar experiments with 
similar results were also reported by Rothrock 
and Zhang (2005) and Koberle and Gerdes 
(2003). Lindsay and Zhang (2005) propose a 
three-part explanation of sea ice decline which 
incorporates both natural AO variability and an 
overall warming climate. In their scheme, a 
warming climate preconditions the ice for 
decline as warmer winters thin the ice, but the 
loss of ice extent is triggered by natural 
variability, in this case flushing by the AO. The 
loss continues after the flushing due to the sea-
ice albedo feedback discussed in section 1.2.1 
(more open water means more sunlight 
absorbed, which warms the surface and leads to 
additional sea ice melting). Their work suggests 
that the observed record is best interpreted as a 
combination of internal variability and external 
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forcing, and raises the possibility that the two 
factors may act in concert rather than as 
independent agents.  

2.2.2 Atlantic Water Incursions and the 
Cold Halocline Layer Variability  

 
As discussed above (Section 1.2.3), the CHL 

buffers the sea ice from the relatively warm AW 
layer below. Martinson and Steele (2001) 
consider ship-based observations near the North 
Pole, in which they find two years in which 
CHL is weak or absent, 1993 and 1995, and go 
on to calculate that the loss of the CHL 
buffering could result in a 70 to 80% loss in 
winter ice growth. Due to lack of data, they 
leave open the questions of how much ice loss 
actually occurred, and how long the CHL 
reduction lasted, although they do suggest a 
relationship between CHL loss and the phase of 
the AO.  

Polyakov et al. (2004) argue that the Arctic 
is subject to large internal variability due to 
multi-decadal fluctuations in AW temperature 
and salinity. In particular, they associate the 
"mid-century warming" of the 1920s to the 
1940s with AW inflow. The AW inflow can be 
associated with the high phase of the NAO but 
can also be independent of it, since the mid-
century warming did not coincide with a 
positive NAO fluctuation. The time series of 
AW temperature is shown in Figure 8, taken 
from Polyakov et al. (2005). Johannessen et al. 
(2004) also examine the mid-century event and 
conclude that the warming was due to natural 
variability involving North Atlantic Ocean 
circulation. They base their conclusion on the 
fact that a similar event occurred in a long 
climate model simulation with no greenhouse 
gas increases. In contrast, no model simulation 
performed without greenhouse gas increases 
produced ice reductions comparable to those of 
the recent record. Delworth and Knutson (2000) 
also concluded that the mid-century warming 
was primarily the result of natural variability, as 
did a study by Wang et al. (2007) of 20th 
Century and preindustrial climate simulations 
from AR4 climate models. Polyakov et al. 

(2005) document an abrupt incursion of warm 
AW in 2004, and also point out that the warm 
incursion could be induced by secular climate 
change rather than a low-frequency fluctuation.  

2.3 Evaluation of Trend Simulations 
for the Period of Observations  

 
The quality of 20C3M simulations of sea ice 

coverage trends is assessed in studies by Zhang 
and Walsh (2006), Arzel et al. (2006), and 
Stroeve et al. (2007), of which the first two 
consider the annual-mean trend and the last 
looks specifically at the trend in September. In 
agreement with observations, these studies find 
downward trends in simulated ice cover with 
substantially greater loss in September than in 
the annual mean. For annual mean ice area, 
Zhang and Walsh find good agreement between 
the 14 model ensemble-mean trend for 1979 to 
1999 and corresponding observations, with a 
loss rate of about 1.9% per decade for both 
observations and the ensemble mean (note that 
the rate of decline is smaller for the annual 
mean than it is for September coverage). The 
close agreement of the mean is accompanied by 
large ensemble spread, with an inter-model 
standard deviation equal to the mean trend. Of 
the 14 models, all but two have decreasing 
trends. Arzel et al. (2006) show the annual-
mean trends in ice extent (as opposed to area) in 
the same models, and obtain essentially the 
same result.  

Stroeve et al. (2007) found that the 
September extent trend in their multi-model 
ensemble mean was substantially smaller than 
the observed trend, both for the record of 1953 
to 2006 and for the smaller period of satellite 
coverage, 1979 to 2006. In the longer period 
they find an ensemble-mean September trend of 
-2.5% per decade, compared to -7.8% for the 
observations, while the respective trends are -
5.4% and -9.1% for the satellite period. Since 
the timing of the natural variability is different 
in each simulation, averaging across the 
ensemble removes most of this variability while 
retaining the common externally forced trend. 
Thus, Stroeve et al. (2007) interpret the 
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difference between the ensemble-mean response 
and the real-world trend as evidence that 
greenhouse gas forcing accounts for 33-38% of 
the half-century trend in sea ice extent and 47-
57% of the stronger trend of the satellite record. 
They also note that external forcing might 
account for a larger portion of the trend, in 
which case the models as a group would be 
underestimating the sea ice reduction due to 
global warming. This underestimate would 
imply a further underestimate of the rate of 
future decline in the 21st Century. Stroeve et 
al.’s (2007) result is shown in Figure 9, which 
shows time series of simulated sea ice extent for 
the 20th and 21st century with observations. The 
observed September sea ice extent, shown in 
red, has declined faster than any of the 
simulations.  

The results of Stroeve et al. (2007) differ 
from those of Zhang and Walsh and Arzel et al., 
who found a good match between annual-mean 
sea ice area trends in observations and the 
ensemble mean, rather than an underestimate. 
Further calculations by M. Holland (personal 
communication) show that two significant 
differences between the studies are the period of 
record and the use of sea ice extent versus sea 
ice area. Using the same years (1979 to 1999) 
and models as Zhang and Walsh, Holland found 
that the ensemble-mean trend in annual-mean 
sea ice extent was an underestimate (-2.2x105 
km/yr for the ensemble mean, -3.5x105 km/yr 
for the observations), although the 
underestimate is not as severe as for the 
September extent trend from 1979 to 2006 
considered by Stroeve et al. (2007). Like Zhang 
and Walsh (2006), she found that the ensemble-
mean sea ice area was in good agreement with 
observations, although it is not clear at present 
why extent is underestimated for these years 
while area is not. 

3. Projections of Future Sea 
Ice Loss 

 
This section reviews studies of Arctic sea ice 

decline in 21st Century IPCC scenario 
simulations. The simplest measures are trends 
calculated over 100 years, discussed in section 
3.1. However, as discussed in section 3.2, the 
21st Century loss may not occur as a gradual, 
continuous decline, since the effect of natural 
variability can lead to abrupt loss events taking 
place over the course of a single decade. 
Finally, the relationship between the severity of 
future sea ice loss simulated by a climate model 
and the state of its sea ice in present-day 
simulations is reviewed in section 3.3. The 
association between future loss and present-day 
ice conditions suggests that models with better 
simulations of present-day conditions should be 
given priority in assessing the threat of future 
sea ice loss for polar bears. 

3.1 Trends for B1, A1B, and A2 
Scenarios  

 
Climate model projections are unanimous 

that temperatures will continue to rise 
throughout the 21st Century under the influence 
of enhanced greenhouse gas forcing. They also 
agree that the warming will be largest in the 
high northern latitudes and will be accompanied 
by large reductions in Arctic sea ice, 
particularly at the end of the summer melt 
season (Meehl et al. 2007). As is the case for 
20th Century simulations, agreement in the 
direction of the changes is accompanied by a 
substantial range in projections of their severity.  

An examination of 21st Century trends in 
AR4 climate projections is provided by Zhang 
and Walsh (2006) and Arzel et al. (2006). 
Zhang and Walsh consider three different IPCC 
forcing scenarios, B1, A1B, and A2, in which 
CO2 concentrations are controlled and stabilized 
at 549, 717, and 856 ppm, respectively, by the 
year 2100 (IPCC 2001, Appendix 2). For each 
scenario they calculate the decrease in 

 17



ensemble-mean summer minimum (i.e., 
September) ice area between 2080-2100 and 
1979-1999 and obtain 45.8%, 59.7%, and 
65.0% reductions for scenarios B1, A1B, and 
A2. They also note that no significant trends 
occur in an additional set of model integrations 
with greenhouse gas levels held fixed at year 
2000 levels. As in the 20C3M simulations, they 
note marked inter-model diversity in the 
decline, with substantial overlap between the 
rates of decline seen in the different scenarios. 
In agreement with these results, Arzel et al. 
(2006), who consider only the A1B scenario, 
find a reduction in sea ice extent of 61.7% 
between the two periods. They further show that 
half of the models have an ice-free Arctic in 
September by 2100. This result is similar to the 
reduction in September ice cover found by 
Walsh and Timlin (2003, their Figure 5), who 
looked at 21st century trends in the five models 
considered in the Arctic Climate Impact 
Assessment (ACIA 2004).  

3.2 Uncertainty due to Internal 
Variability: Abrupt Loss Events 

While the studies discussed above 
considered only the total reduction in sea ice 
from the beginning to the end of the 21st 
Century, Holland et al. (2006b) looked in detail 
at the progression of the loss over the course of 
the century. They found that internal variability 
is quite important for the decade-to-decade 
progression of the decline. In A1B simulations 
performed with CCSM3 they find long-term 
decline punctuated by episodes of abrupt, 
dramatic reduction, as shown in Figure 10. In 
this simulation an abrupt loss event occurs over 
a 10-year period starting in 2024 (denoted by 
the grey band in fig. 10a), over which 
September ice retreats from 6 million km2 to 2 
million km2. The abrupt decline is shown 
geographically in 10b, in which the 1990-1999 
mean September sea ice extent is plotted as a 
black contour which contains the region in 
which all gridpoints have at least 50% sea ice 
concentration. The blue contour contains all 
gridpoints which have at least 50% September 
sea ice for the period 2010 to 2019, and it is 

evident that some loss has occurred between 
these two periods. The green contour shows 
September sea ice for 2040 to 2049, and the 
difference between the green and blue contours 
shows the almost complete loss of September 
extent associated with the abrupt transition. This 
rate of retreat during the abrupt loss event is 
three times larger than any comparable trend in 
observations or CCSM3 simulations for the 
1979-2005 period. Episodes of abrupt reduction 
were found in all seven A1B simulations 
performed using CCSM3, occurring at various 
decades within the 21st Century. A further 
survey of A1B simulations from other climate 
models found comparable abrupt episodes in 6 
out of 15 simulations.  

The timing of the episodes in the CCSM3 
simulations is immaterial for the century-long 
trend studied by Zhang and Walsh, since all the 
CCSM3 simulations lost all their September ice 
by the end of the century. But knowledge of the 
timing would be essential for any attempt at 
decadal prediction of the progression of the 
decline. Holland et al. found that abrupt loss 
events are preceded by pulse-like incursions of 
warm Atlantic water into the Arctic. The pulses 
are essentially the same as the AW incursions 
described by Polyakov et al. (2004, 2005) as a 
form of natural, unpredictable Arctic climate 
variability. Thus, even in global warming 
simulations in which climate change is strongly 
driven by external forcing, natural variability is 
still a prominent factor in the year-to-year and 
decade-to-decade changes in sea ice cover.  

An interplay between forced and natural 
variability comes about in abrupt loss episodes 
through the dependence of open water 
formation efficiency on sea ice thickness. Open 
water formation efficiency is a measure of the 
amount of open water that forms over the 
course of the summertime melt season. The idea 
is that melting will make thick ice thinner, but 
the fractional ice coverage will not be affected. 
When the same melting occurs in thin ice, a 
substantial portion of the ice can melt away 
completely, replacing ice cover with open 
water. 

The potential importance of open water 
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formation efficiency is shown in Figure 11a, 
which shows the decline in Arctic-averaged 
March sea ice thickness for the simulation in 
Figure 10. As one might expect, a reduction in 
March thickness occurs during the period of 
abrupt loss in areal coverage, but the thickness 
decline during the abrupt loss period is no 
greater than earlier thickness declines such as 
the one that occurs just prior to 2000. The 
amount of open water formation for the same 
thickness loss is much larger for thinner ice, 
however, as shown in Figure 11b, in which the 
x-axis gives the thickness of the ice and the y-
axis gives the loss of ice fraction per centimeter 
of ice melted. Assuming that a meter of ice 
melts away each year during the melt season 
and grows back over the following winter, one 
would expect a loss of about 20% in ice fraction 
during the melt season for a region with a mean 
ice thickness of 3 meters. For the same meter of 
melting, a region with a mean thickness of 2 
meters would lose about 40% of its coverage by 
September (the end of the melt season), and a 
region of 1 meter thick ice would lose all of its 
September ice cover. 

The implication of Figure 11b for AW 
incursions is this: in a cold climate with 
predominantly thick, multi-year Arctic ice, AW 
incursions would occur naturally but would not 
have dramatic consequences for ice coverage. In 
a warming climate with thinner ice, the same 
naturally occurring AW variability would lead 
to substantial coverage losses. Thus, a form of 
natural variability can combine with greenhouse 
gas-induced warming to produce periods of 
abrupt sea ice loss. The impact of the natural 
variability may be further enhanced by the 
increased heat content of AW incursions due to 
the warming of the Atlantic surface waters and 
the amplifying effect of the sea ice-albedo 
feedback on open water formation. Much of the 
climate change literature is devoted to 
distinguishing between natural climate 
variability and forced climate change, but in this 
case the two act in concert, and the inherent 
unpredictability of natural variability leads to 
unpredictability in sea ice loss due to global 
warming. 

3.3 Associations between Present-
Day Simulations and Future 
Projections  

 
Feedback mechanisms controlling the rate of 

projected sea ice decline should be somewhat 
dependent on the properties of the sea ice and 
the atmosphere (e.g. clouds) in the present-day 
simulation. In models with thinner ice, the 
higher open water formation efficiency should 
promote faster ice decline. In models with high 
summertime cloud cover one might expect the 
sea ice-albedo feedback to be weaker, as clouds 
limit the amount of sunlight absorbed by the 
ocean when the ice retreats. Models with less 
extensive ice may lose their ice more rapidly, as 
the ice-albedo feedback is already in operation 
from the start of the 21st Century simulation. 
Other less easily identifiable factors in the 
present-day simulation may be associated with 
future behavior, like cold biases which make the 
Arctic more accommodating to sea ice 
formation. Such associations would be of great 
value, since they would provide guidance for 
judging the credibility of future climate 
projections in terms of their performance in 
present-day simulations. As noted in section 1, 
sea ice simulations for present-day climate 
differ from model to model, and specific 
relationships between simulations and model 
formulation are not easily discovered. As in the 
case of present-day simulations, simulations of 
climate change differ for a variety of reasons, 
including differences in sea ice component 
models and the differences in the atmosphere 
and ocean models coupled to them. A number 
of physical processes determine the rate of sea 
ice decline, and no single property of the 
present-day simulation has been found to be a 
dominant predictor for sea ice loss in future 
climate projections.  

Some studies report a tendency for models 
which have extensive ice under current 
conditions to lose less ice in the future. This 
result was found in the AR4 models by Arzel et 
al. (2006) and by Zhang and Walsh (2006). 
Zhang and Walsh also note that the relationship 
does not explain a large fraction of the 
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ensemble spread in projections of ice decline. In 
the five models used in the ACIA report (ACIA 
2004), Walsh and Timlin (2003) found that the 
rate of decline does depend strongly on ice 
extent at the beginning of the 21st century. Flato 
et al. (2004) find a weakly negative relationship 
between present extent and future Arctic 
warming in the CMIP2 models, with the smaller 
loss for more extensive ice.  

In agreement with the open water formation 
efficiency argument, Holland and Bitz (2003) 
found a relationship between ice thickness in 
the present and future coverage reductions. 
They documented this relationship in the 
CMIP2 models, for which Flato et al. found less 
Arctic warming in models with thicker present-
day ice. In both studies the relationships were 
found to be statistically significant but not 
strong determinants of future behavior. Arzel et 
al. (2006) did not mention ice thickness in their 
discussion of present-future relationships in the 
AR4 models. Holland and Bitz examined a 
number of other present-day predictors, 
including winter cloud cover, ocean heat 
transport, and snow cover on land, and found 
statistically significant associations between 
these factors and simulated climate change. In 
all of these studies, relationships were sought 
between present-day predictors and climate 
change at the end of the 21st Century. Stronger 
relationships may exist for shorter term 
projections, say between late 20th and mid- 21st 
century conditions.  

4. Selection Criterion for 
Models Used in Polar Bear 
Habitat Projections  

Several authors have recommended using a 
selection criterion to choose a subset of models 
for use in projecting future Arctic climate, 
including Stroeve et al. (2007), Holland and 
Bitz (2003), and Wang et al. (2007). To some 
extent, this is simply common sense, since 
models which are too severely biased in the 
present should not be trusted for climate 
projections. One such model is IAP_FGOALS, 
which simulates ice-age like conditions for the 

present climate and has been identified by 
Zhang and Walsh (2006) as having spin-up 
problems. Moreover, there are relationships 
between present performance and future 
projections, as identified in the previous section. 
The selection criterion (or criteria) should 
represent a balance between the desire to focus 
on the most credible models and the competing 
desire to retain a large enough sample to assess 
the spread of possible outcomes.  

The selection criterion used to choose an 
ensemble of model projections for assessing 
potential polar bear habitat loss is based on a 
modified definition of sea ice extent, in which a 
grid cell is considered ice-covered if its ice 
concentration is 50% or more. This definition is 
used because it has been found that polar bears 
do not make use of ice in areas where the 
concentration is less than 50% (e.g., Stirling et 
al. 1999, Ferguson et al. 2000, Mauritzen et al. 
2003, Durner et al. 2006, 2007). Based on this 
modified extent, the ensemble includes only 
those models for which the mean 1953-1995 
simulated September extent is within 20% of its 
observed value, which is taken from the 
HadISST dataset (Raynor et al. 2003). The 
criterion is based on Stroeve et al. (2007), who 
used the same averaging period and 20% 
threshold value, although they used the standard 
15% cutoff in the definition of sea ice extent. 
The use of a long period of record is motivated 
by the desire to smooth out decadal natural 
variability in the definition of the climatology. 
One model, INMCM, has motionless sea ice 
and would not have been used regardless of its 
ice extent.  

Figure 12 shows the selection of models 
from the set of 20 models for which sea ice 
concentration and thickness output were present 
in both the 20C3M and A1B scenarios. The 
A1B scenario was chosen as a representative 
medium-range forcing scenario, and other 
scenarios were not considered due to time 
constraints. Each model is displayed as a 
numbered point (1-20) on a scatter plot in which 
the x-axis represents mean extent in the 1953-
1995 period, and the y-axis represents extent in 
the years 2045 to 2055 in the A1B scenario. The 
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vertical dashed lines on the graph represent 
extents 20% below and 20% above the observed 
climatology. Points along the green diagonal 
line have the same extent values for the 20th and 
21st century periods. Thus, a model in which 
there was no loss of sea ice extent would lie on 
the green line. The IAP-FGOALS model 
(number 10) does not appear on the graph 
because its 20th Century extent value (19 million 
km2) is well beyond the x-axis limits.  

It is evident from the plot that all models 
have less ice in the mid-21st Century than in the 
20th Century, since all points lie below the green 
line. Also, consistent with papers cited in 
section 3.3, models with extreme ice extent in 
20th Century simulations lose very little ice, 
while models which are lacking in ice in their 
present-day simulations lose most or all of their 
ice by mid-century. The 10 models within the 
dashed vertical lines are the models which 
satisfy the selection criterion. These models 
show a large range of ice loss, from complete 
loss of September ice for CCSM3 to about 30% 
loss for CCCMA_CGCM. Four of the models 
lose over 80% of their September extent. Two 
of the models with the most extreme decline, 
CCSM3 and UKMO_HADGEM1, are cited by 
Stroeve et al. (2007) as having the most 
sophisticated sea ice component models and the 
best 20th Century simulations of the 18 models 
considered in their study. The same two models 
were mentioned by Gerdes and Koberle (2007) 
as having the most realistic sea ice thickness 
simulations. An examination of the September 
sea ice extent in the same 10 models for the 
period 2090 to 2099 (not shown) reveals that 7 
of the models (numbers 4, 12, 14, 15, 16, 18, 
and 20 in fig. 12) lose over 97% of their 
September sea ice by the end of the 21st 
Century. 

Sea ice projection models selected by the 
above criterion are used by Durner et al. (2007) 
to model changes in the distribution and 
abundance of polar bear habitat; by Hunter et al. 
(2007) to project trends in the Southern 
Beaufort Sea polar bear population, and by 
Amstrup et al. (2007) to project the future 
worldwide polar bear population.  

5. Concluding Remarks  
 

Climate model simulations are in universal 
accord that greenhouse gas increases will cause 
Arctic sea ice cover to decline, with the greatest 
reductions occurring at the end of the summer 
melt season. The physical principles underlying 
this behavior are simple and well established: 
the decline is a consequence of the heat-
trapping effect of greenhouse gases and the 
inherent sensitivity of sea ice to a warming 
climate, particularly due to the sea ice-albedo 
feedback. A further consistency in climate 
simulations is the uneven latitudinal distribution 
of global warming, which always has its 
greatest simulated impact in the high northern 
latitudes. This "polar amplification" and 
associated sea ice decline have been consistent 
climate simulation features at least since the 
early simulation of Manabe and Souffer (1980). 
Since Chapman and Walsh (1993), declines in 
Arctic sea ice, with the largest trends in 
September, have also been consistently reported 
in observations (see references in Serreze and 
Francis 2005).  

In simulations by all generations of models, 
agreement in direction has been accompanied 
by a large range in projections of the severity of 
the decline, as can be seen in Figure 12. These 
differences are a consequence of differences in 
model formulation and, perhaps to a lesser 
extent, to the unpredictable natural variability in 
the simulations. Formulation differences are 
differences in discretization, resolution, and the 
representation of unresolved processes through 
parameterization. Uncertainties in climate 
simulation necessitate the use of ensembles of 
simulations from several models, from which 
the range of possible outcomes can be 
appreciated. Often the average across the 
ensemble is in reasonable agreement with 
observations despite the large spread of the 
ensemble, as is the case with the ensemble 
median sea ice edge (Flato et al. 2004; Arzel et 
al. 2006; Zhang and Walsh 2006).  

On a more fundamental level, the presence of 
uncertainty in climate simulations is an 
inevitable consequence of the underlying 
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sensitivity of the climate system. Any feedback 
mechanism which serves to amplify the climate 
change produced by greenhouse gases is also 
likely to amplify the model-to-model 
differences caused by parameterization choices. 
As an important example, sea ice-albedo 
feedback makes sea ice extent sensitive to 
changes in greenhouse gases because reductions 
in ice cover lead to more absorption of sunlight 
by the ocean, leading to further sea ice melting. 
This feedback process will also operate if the 
initial sea ice reduction is brought about by a 
change in the parameterization of clouds or 
upper ocean turbulent mixing, or any other 
unresolved process that affects sea ice. The 
close association between uncertainty and 
climate sensitivity suggests that future climate 
projections will always be expressed in terms of 
a range of outcomes. Uncertainty does not arise 
because the models are bad, but because the 
climate system is sensitive. The most dramatic 
forms of climate change, sea ice decline in 
particular, will always be the most difficult to 
simulate.  

Unpredictable internal variability also 
complicates attempts to make future climate 
projections and to verify climate simulations 
against observations. One might expect the 
verification problem to go away over time, as 
the forced climate change becomes larger and 
rises above the "noise" of natural variability. 
However, studies like Holland et al. (2006b) 
suggest that natural variability will continue to 
be an integral part of the Arctic climate 
problem. Climate simulations typically show 
smooth increases in global temperature in 
response to smoothly increasing levels of well-
mixed greenhouse gases. But Holland et al.'s 
(2006b) results show abrupt reductions in sea 
ice despite the smoothness of the external 
forcing. The abrupt loss events are triggered by 
apparently random Atlantic water incursions not 
directly related to the external forcing. The 
implication is that climate variability will 
always be a complicating factor in 
understanding climate change, and the 
consequent unpredictability will always be a 
confounding factor in attempts to anticipate sea 

ice decline.  
This document gives an overview of the 

reasons for uncertainty in climate model 
projections of Arctic sea ice decline. Perhaps 
the most important lesson from the extensive 
history of climate projections is that uncertainty, 
both in model construction and from internal 
variability, is an essential ingredient of the 
climate change problem. We anticipate that 
future generations of climate model projections 
will continue to produce a substantial range of 
estimates of the pace of sea ice loss. As with 
present models, the best guidance from these 
models will come from selective subsets, using 
the ensemble mean as the best estimate and the 
ensemble spread to cover the probable range of 
outcomes. The recent climateprediction.net 
study by Knutti et al. (2006, see section 1.3 
above) suggests that it is difficult to assign an 
upper bound to the global temperature increase 
which could occur due to increased CO2. In that 
case, the range of estimates of Arctic sea ice 
decline examined here may also be too 
conservative. While quantitative estimates of 
the range of likely outcomes cannot be easily 
obtained, evidence from model simulations, 
consistent with the recent trend in observations, 
suggests a dramatic loss in September sea ice 
cover over the 21st Century. 
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Summary of Key Points 
Some key points of this report are listed 

below: 

1. Sensitivity and uncertainty go hand in hand. 
The same factors which make Arctic sea ice 
susceptible to rapid loss under global 
warming also make sea ice difficult to 
simulate. For this reason, projections of 
Arctic sea ice loss will always be expressed 
in terms of a range of likely estimates, rather 
than precise predictions of the timing and 
severity of the loss. 

2. Climate models are capable of simulating 
the gross features of sea ice, including 
annual means and seasonal cycles of sea ice 
area and extent.  

3. The models also simulate the recent 
decreasing trends in area and extent of sea 
ice, although the September extent trend is 
underestimated. The implication is that, if 
anything, models may be too conservative in 
their estimates of the rate of future decline. 

4. Sea ice decline in future projections is 
linked to the present-day sea ice simulation. 
Thus, a selection criterion based on present-
day model performance should be used to 
choose a subset of models for use in 
considerations of future polar bear habitat 
loss. 

5. Unpredictable natural variability will always 
confound attempts to make precise forecasts 
of sea ice decline. Natural variability can 
combine with greenhouse gas-induced 
climate change to produce periods of rapid 
sea ice loss. 

6. For the A1B scenario, all models considered 
here simulate declines of September Arctic 
sea ice extent over the 21st century. Of 
models which satisfy the selection criterion 
described in section 4, all show declines of 
over 30% by the middle of the 21st Century, 
and 4 of 10 models have declines in excess 
of 80%. Seven of the ten models lose all 
their September sea ice by the end of the 
century. 
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Figure 1. Schematic of physical processes which determine the heat input to Arctic sea 
ice.  

The figure shows the longwave radiation (L) emitted by clouds and the surface, 
the solar radiation (S) received at the surface, some of which is reflected away 
due to the high albedo (i.e. reflectivity) of ice and snow, and some of which is 
reflected or transmitted by clouds. Heat energy is also lost through heat and 
moisture fluxes (F) from the surface to the overlying atmosphere, particularly at 
leads, and the polar cap gains heat energy from lower latitudes through 
northward transport of relatively warm, moist air masses (T,q). Taken from the 
prospectus of the Surface Heat Budget of the Arctic experiment. 
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Figure 2: Aerial view of the Canadian Coast Guard Ship Des Groseilliers during the 
Surface Heat Budget of the Arctic field experiment, August 3, 1998.  

Light blue areas are melt ponds on the ice surface, darker regions are open 
ocean. Photo by Sylvie Lemelin, CCG. 
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Figure 3: Sea ice in the Bering Strait, as seen by the MODIS instrument aboard the TERRA 
satellite, May 7, 2000. 
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Figure 4: Climatological (a) annual mean and (b) seasonal cycles of sea ice areas during 
1979–99 over the Northern Hemisphere from 15 IPCC AR4 models in the 20C3M simulations 
and from the HadISST1 observational analysis data. From Zhang and Walsh (2006). 
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Figure 5: September Arctic sea ice extent, 1979 to 2006, from the website of the National 
Snow and Ice Data Center (http://www.nsidc.org).  

As of 28 August 2007, with the melt season still in progress, sea ice extent has 
fallen to 4.78 million km2. 
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Figure 6: Patterns of sea ice motion for (a) 1979 and (b) 1994 (gray vectors).  

The monthly positions of the buoys are also shown. Trajectories of individual 
buoys from the International Arctic Buoy Program are indicated by black lines. 
From Rigor et al. (2002). 
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Figure 7: Time series of winter (November to March) Arctic Oscillation index. Data are 
from the Climate Prediction Center (CPC). From Overland and Wang (2005). 
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Figure 8: Long-term variability of temperature of the intermediate Atlantic water (AW) 
layer in the Arctic Ocean. Prolonged warm (red shade) and cold (blue shade) periods 
associated with phases of multi-decadal variability and a background warming trend are 
apparent from the record of 6-year running mean normalized AW temperature anomalies 
(dashed segments represent gaps in the record).  

From Polyakov et al. (2005). 
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Figure 9: September Arctic sea ice extent (in millions of square kilometers) from 
observations (thick red line) and 13 IPCC AR4 climate models, together with the multi-model 
ensemble mean (solid black line) and standard deviation (dotted black line).  

The 21st century values are from simulations of the A1B scenario. Inset shows 9-
yr running means. From Stroeve et al. (2007). 
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Figure 10: (a) Northern Hemisphere September sea ice extent for 20C3M and A1B 
simulations with the CCSM3 climate model. The black line shows ice extent from Run 1 of 
6 CCSM3 simulations, the blue line is the five-year running mean of the black line, and the 
red line is the five-year running mean ice extent from observations. The range of extent 
values from the 6 CCSM3 simulations is in dark grey, and the light grey band indicates the 
abrupt sea ice loss event. (b) Averaged September sea ice edge, defined as the boundary 
between gridpoints with at least 50% sea ice fraction and gridpoints with less than 50% 
ice fraction. The black and red contours show the mean 1990s September ice edge for 
Run 1 and the observations, respectively. The blue contour is the Run 1 mean September 
edge for 2010 to 2019, and the green contour is the mean September edge for 2040 to 2049. 
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Figure 11: (a) The Arctic averaged March ice thickness and (b) the open water formation 
efficiency as a function of the March ice thickness for the simulation in figure 10. The 
open water formation efficiency is the open water formation, as a percent increase open 
water area, per centimeter of ice melt averaged over the melt season from May to August. 

Values on the x-axis in panel (b) are in meters. 
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Figure 12: Climatological September sea ice extent in 20C3M and A1B simulations for the 
20 models which contributed sea ice data to the IPCC AR4 archive.  

Here sea ice extent is defined as the area of the Arctic in which the fractional ice 
coverage is at least 50%. The 20C3M climatology is calculated for the years 
1953 to 1995, and the A1B climatology is calculated for 2045 to 2055. The 
vertical dashed line gives the 1953 to 1995 climatological September sea ice 
extent from the HadISST observational data set, and the dotted lines represent 
sea ice extent values 20% greater than and 20% less than the observed value. 
The green diagonal is the “no-change” line: a model with the same sea ice extent 
in the 20C3M and A1B climatologies would be represented by a dot lying on this 
line, and distance below the line represents the amount of loss between the two 
periods. Model acronyms are listed on the left side of the plot, and models with 
20C3M extent within 20% of the observed value (i.e. lying between the two 
dotted lines) are colored blue. Model 10, iap_fgoals_0_g, is not displayed 
because its extent value is off the scale (about 19 million square kilometers, for 
20C3M, 18 for A1B). 
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