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Preface

In this study, the authors investigated how the structure of the high school curriculum
influences how far graduates get in the secondary mathematics course pipeline and their
level of achievement in that subject by the end of high school. The study draws on data
from the High School Effectiveness Supplement (HSES) of NELS:88, a broad-based
longitudinal study of U.S. adolescents’ experiences and accomplishments in public and
private secondary schools in and around our nation’s 30 largest cities, as well as from the
students’ high school transcripts. Data are available from the U.S. Department of
Education through its National Center for Education Statistics. Using a two-stage
stratified sample of 3,430 high school students in 184 high schools, the study used the
Hierarchical Linear Models (HLM) statistical software to estimate school effects on
individual students’ behaviors and achievement.

The authors found that completing high-level mathematics courses is strongly associated
with students’ achievement. However, how schools structure their mathematics curricula
influences how far their students get in the math course pipeline. Students who attend
schools where more credits are accumulated in low-level mathematics courses make less
progress to the more advanced courses. Curriculum structure—the types and numbers of
mathematics courses offered and taken—has both a direct and an indirect effect on
students’ achievement in that subject. Implications of curriculum structure for students’
academic progress are discussed.
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High School Curriculum Structure: Effects on Coursetaking and
Achievement in Mathematics for High School Graduates

The publication of A Nation at Risk (National Commission on Excellence in Education
1983) jolted the public into critical scrutiny of the American high school. How best to
organize a high school to maximize what its students actually learn increasingly has
engaged policymakers, educators, and researchers since that time. These examinations
have found wanting almost all aspects of high schools (for critiques, see Boyer 1983;
Goodlad 1984; National Association of Secondary School Principals 1996; Powell,
Farrar, & Cohen 1985; Sizer 1984, 1992). Furthermore, a consistent theme of these
writings is a call for fundamental change in the structure of U.S. secondary schools.

The study described in this report focuses on an important feature of secondary schools:
the curriculum. The study investigates how the structure of the high school curriculum
influences the courses students take, how students’ academic and social background
characteristics are mapped onto their course choices, and ultimately how secondary
school curriculum structure influences student achievement. The curriculum of high
schools is organized around subject areas: English, foreign language, mathematics,
science, social studies, and fine arts. Here we focus on curriculum and achievement in
one subject only: mathematics. To maximize the influence of the curriculum on students’
academic behavior and performance, we limit our study sample to students who stayed in
high school for four years, until graduation.

Background

Conflicting Goals in the High School Curriculum

Any high school’s curriculum reflects a formal codification of choices about what
knowledge is deemed both worthy of transmission to younger generations and within the
capacity of its students to master. Tensions between worth and appropriateness of
knowledge embodied in the curriculum leads, in most high schools, to dual goals
represented within its structure: differentiation and constraint. Balancing these two goals
represents an attempt to form consensus around a set of common understandings and also
to address individual differences in students’ abilities and interests (Oakes, Gamoran, &
Page 1992; Kleibard 1986). Curriculum differentiation reflects the diversification
approach to this struggle. Here different knowledge is available to different groups of
students, based on their aptitudes and tastes. This is part of an underlying dynamic that
attaches distinct purposes and missions to the task of educating students within a single
high school building. On the other side is a constrained curriculum approach, which
promotes a belief about the appropriateness of a single set of academic goals for all
participants. Under this approach, student choices and options are limited.

The high school curriculum can be constrained through limited opportunity as well as
through proactive emphasis on moving students into and through a common set of
experiences. Much of the research about this topic is framed within the “student choice”
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model: individual students choosing particular courses, and the influence of those choices
on achievement. However, another research strand (mostly sociological in nature) has
conceptualized the link between coursetaking and achievement as primarily a school,
rather than a student, phenomenon. This model assumes that students partake in the
curriculum of their school to the extent that it is available, and more subtly to the extent
that they are encouraged to do so (Lantz & Smith 1981; Lee & Ekstrom 1987; Useem
1991). If the school offers a modest number of courses, largely academic in nature, these
are the kinds of courses students take (Lee 1993). Thus, a constrained curriculum is
evidenced both structurally, through the numbers of academic and non-academic options
provided students, and behaviorally, through the actual variety of choices students make
in carrying out their courses of study in high school.

Historical Background

The comprehensive high school. Before 1900, fewer than ten percent of 14 to 17 year
olds were enrolled in secondary schools (Oakes 1985). Such schools were elite college-
preparatory academies, with a narrow focus on a limited range of academic knowledge.
In the first decades of the twentieth century, enrollment increased dramatically as more of
this age group attended school and the U.S. population burgeoned through immigration.
Both immigrant and migrant populations flocked to large cities; this movement was
accompanied by economic and political shifts to restrict and finally to outlaw child labor
(Cremin 1988). In response, secondary schools shifted their missions radically. Not all
students who crossed the thresholds of public high schools planned to attend college, or
even to stay in school for four years. As the types of students they were to educate
diversified, the schools changed their goals and agendas.

Debates over what form the public high school curriculum should take polarized around
two alternatives: (1) a common core of courses meant to be appropriate for all, or (2) a
diversified set of offerings to accommodate the variety of students. As the debate settled
in favor of the latter, the comprehensive high school was born (Conant 1959; Oakes
1985; Tyack 1974). By providing a wide array of options, “high schools would serve
democracy by offering usable studies to everyone, rather than dwelling on academic
abstractions that would interest only a few” (Powell, et al 1985, p.260). An important
objective of the comprehensive curriculum has always been to keep students in school
until graduation.

The constrained curriculum. Although similar demographic changes affected almost all
high schools in the early years of this century, not all of them (especially non-public
schools) abandoned a commitment to rigorous academic training (Kleibard 1986).
Because most new immigrants were Catholic, the rapidly expanding Catholic educational
system felt the need to accommodate its children. The same vigorous debate about the
purposes and methods of high schools that had occurred among public school educators
raged among those concerned with Catholic education. Issues of expansion, demographic
shift, and curriculum focus were central to the debate among educators in both sectors,
but the debate was resolved quite differently in the two settings. Settling on a rationale
for a classical curriculum, the Catholic Church argued that developing a student’s ability
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to reason was “necessary in order to grasp fully the established understandings about
person, society, and God. Although universal secondary education had expanded the base
of people to be educated, the purpose of education should not change. Practical education
deviated too far from the central moral aims of schooling” (Bryk, Lee, & Holland 1993,
p. 31).

Even with rather similar student populations in public and Catholic secondary schools
(particularly in the cities, where most Catholic schools have always been located), the
high school curriculum in the two sectors diverged. Curriculum in the two sectors has
always been based on fundamentally different views about what an appropriate secondary
education should be. The comprehensive model currently dominates U.S. public high
schools; the narrow academic curriculum still typifies Catholic schools. There are some
basic disagreements among educators in the two sectors about whether social and
intellectual differences among students are best addressed by diversifying instruction and
content. The response to such diversity rests on basic differences about the ultimate aims
of secondary education.

Much of the recent research investigating the structure of the high school curriculum has
been formulated in cross-sector comparisons. However, one recent study pursued this
issue only in public high schools (Lee, Croninger, & Smith 1997). The authors concluded
that a constrained curriculum in mathematics has positive effects on high school
achievement in that subject. In that study, “constrained curriculum” was measured in
several ways: by students taking large numbers of academic courses in mathematics, by a
high proportion of the school’s student body being in the college preparatory track, and
by the proportion of the school’s total mathematics offerings that are academic. An
important aspect of that study was its demonstration of considerable variation in
curriculum structure in U.S. public schools. That finding undercuts potential critiques
about the validity of cross-sector research that are based on potential selectivity bias as
the logical explanation for the prevalence of the constrained curriculum in Catholic high
schools.

Curriculum reform in the 1980s. The Nation at Risk report spurred some movement away
from the diversified curriculum in public high schools in recent years. Efforts to upgrade
the curriculum have been a major thrust of educational reform in the last decade, in the
direction of more students taking more challenging courses (Clune & White 1992;
McDonnell 1988; National Commission on Excellence in Education 1983). Taking
academic courses has been identified as a primary determinant of achievement (Gamoran
1987; Jones, et al 1986; Lee & Bryk 1988). This association has provided empirical
evidence consistent with this policy objective.

Two enduring educational aims motivate this type of reform of the high school
curriculum: (1) U.S. students’ performance on standardized tests (excellence), and (2)
unequal educational outcomes associated with students’ social backgrounds (equity).
These concerns, and their social and economic implications, have helped shift the
proportion of the curriculum that is academic back to levels that were common prior to
the 1930s (Angus & Mirel 1995). There is evidence that such reforms, typically
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manifested by states and districts increasing graduation requirements, have resulted in
students taking more academic courses. However, these reforms have not had the
expected result of reducing student coursework in non-academic areas of the curriculum.
Rather, students have taken more courses altogether (Clune & White 1992).

Unresolved issues regarding curriculum reform.  Guided by the dual motivations of
excellence and equity, reforms of the last decade have attempted to improve the high
school curriculum and students’ courses of study. However, fundamental normative
issues underlie decisions about curriculum. For example, those who make decisions about
curriculum might ask: “What courses should students take in high school?” “Should all
students take the same courses?” “What courses should be offered and which should be
dropped from the curriculum?” “What criteria should guide schools’ decisions about
what courses are offered and students’ decisions about what courses are taken?” “Should
schools guide students in choosing their course of study in high school, or should they
leave the choice of courses to students and their families?” Although such questions are
not addressed directly in this study, we hope that the results will provide empirical
evidence to inform discussions and decisions about the high school curriculum.

A Conceptual Model for Studying Curriculum Effects

Cross-sector comparisons. Our conceptualization of the issue of how high school
curriculum structure influences student achievement is rooted in research that compares
Catholic and public schools. From the flurry of recent research comparing the
effectiveness of schools in the two sectors, a consistent finding concerns the organization
of the curriculum. One reason why Catholic school students achieve at higher levels than
their public school counterparts, and why achievement there is also distributed more
equitably among students of varying backgrounds is the difference in the academic
organization of high schools in the two sectors (Bryk, et al 1993; Coleman, Hoffer, &
Kilgore 1982; Lee 1985; Lee & Bryk 1988, 1989).

Virtually all students in Catholic high schools, regardless of race, social class, aspirations,
or academic preparation, follow close to the same course of study: a narrow set of mostly
academic offerings almost all of which are required. The courses that public school
students take are more differentiated—they are allowed more choices, and their choices
are more strongly associated with their backgrounds. Recent research, within the
framework of school restructuring, has added empirical support for the associations
between a school’s academic organization and both effectiveness and equity (Lee &
Smith 1995; Lee, Smith, & Croninger 1997).1

The mathematics curriculum. We decided to focus our study of curriculum and
achievement on one subject: mathematics. Studies of the effects of tracking and grouping
on student performance show the largest and most consistent effects in mathematics
(Gamoran 1987; Lee & Bryk 1988). Mathematics is an area of the curriculum where
learning is particularly responsive to school experiences (Murnane 1975). In this subject,
in terms both of content and task expectations, performance measures more closely
approximate the training that students receive in school than other school subjects.
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Explanations for this match include a more standardized secondary curriculum in
mathematics than in other subjects, heavy reliance on a modest number of widely used
texts, and traditional training of mathematics teachers (Romberg 1992). The close
alignment between teaching and testing suggests mathematics as a fruitful subject in
which to locate a study of the effect on achievement of course offerings, course
selections, and other aspects of the structure of the high school curriculum.

In sum, we targeted this subject for several reasons: (1) its linear sequencing, (2) the
ability to identify course content by course title (e.g., “Algebra II” has more specified
content than “English II”); (3) the differentiation of the curriculum by course level; (4)
the recognized importance of mathematical skills for college entry and a wide range of
professions; and (5) the fact that it is learned almost entirely in school and not at home
(Murnane 1975). A focus on mathematics allows study of the multi-dimensional nature of
schools’ influence on individuals’ achievement: course offerings, school policies, course
sequences, student coursetaking, and students’ performance in school.

The model. Figure 1 presents the heuristic model that guided our investigation of the
effects of curriculum structure on learning. The study’s format is hierarchical; students
are “nested” in high schools. Therefore, the model incorporates constructs of two types:
those that describe students (their ability, their demographic characteristics, the courses
they complete, and their achievement) and those that describe schools (their demographic
composition, structural characteristics such as size and sector, and the structure of their
mathematics curriculum).

Figure 1 takes the form of a multilevel path model. Characteristics of both students and
schools are hypothesized to influence students’ decisions about the mathematics courses
taken in high school. We hypothesize that coursework, in turn, influences achievement.
As described below, we operationalize the construct of coursework with the most
advanced course in mathematics that students complete in high school. The path structure
of our model means that we may test whether characteristics of students and schools have
both a direct and an indirect effect on achievement, with the indirect effect mediated by
the coursework students pursue.
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Figure 1
Heuristic model for the effects of high-school curriculum structure on mathematics achievement

Source:  U.S. Department of Education, National Center for Education Statistics, High School Effectiveness Study (HSES:90/92).
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Another feature of the heuristic model shown in figure 1 is that we hypothesize that
characteristics of schools (in particular the structure of the mathematics curriculum)
influence not only coursework and achievement but also the social distribution of these
outcomes. In this model we test whether coursetaking and achievement differ across high
schools. Beyond differences between schools on those measures, we also investigate
whether there is significant variation between schools in how coursework and
achievement are distributed among students within schools according to their social
characteristics (in this case, family socioeconomic status). As described below, this study
makes use of a statistical methodology—Hierarchical Linear Models, or HLM—that
capitalizes on the multilevel nature of the data and the hierarchical nature of the
questions.

The research questions. Although there are several sets of relationships investigated in
analyses suggested by figure 1, three major research questions drive this study. All three
questions are multilevel, and for all three we take into account a substantial set of
statistical controls (for students and schools).

Research question 1: Coursetaking.  How does the structure of high
school mathematics curriculum influence the courses students complete
in high school? In investigating this question, we take into account
students’ social and academic backgrounds, as well as the composition
and structural characteristics of the schools they attend.

Research question 2: Achievement.  How does the structure of the
high school curriculum affect students’ achievement in mathematics at
the end of high school? The analyses that address this question include
controls for students’ academic and social backgrounds, their high
school courses of study, and the demographic and structural
characteristics of their high schools.

Research question 3: Equitable distribution of coursetaking and
achievement.  How does curriculum structure influence the relationship
between students’ socioeconomic status and both the courses they
complete and their achievement? These analyses also include controls
for other characteristics of students and schools.

For all three questions, we hypothesize that a more constrained mathematics curriculum,
where more students complete the same set of high-level courses in that subject and
schools offer fewer lower-level courses, is associated with higher levels of academic
outcomes. That is, we hypothesize that a constrained curriculum results in students
getting farther in the math course pipeline, in higher levels of achievement in
mathematics, and in a more equitable social distribution of coursetaking and
achievement.
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Method

Data and Sample

The NELS:88 data. The sample used in this study was drawn from a data supplement to
the first follow-up of the National Education Longitudinal Study of 1988 (NELS:88),
sponsored by the National Center for Education Statistics [NCES] (Ingels, et al 1994).
The purpose of NELS has been to document the educational status and progress of a
nationally representative sample of U.S. secondary schools and their students. The NELS
base year (1988) data collection was accomplished with a stratified design structure:
schools were first sampled, and then a fixed number of students was sampled within each
school. This resulted in a sample of about 25,000 eighth grade students in 1,035
American middle grade schools. The NELS design called for biennial data collection,
with the same students followed into high school, where data were collected on them
(and their schools) as high school sophomores (1990), seniors (1992), and two years after
graduation (1994).

Base year data on NELS:88 students as eighth graders came from several sources: (1) a
parent survey soliciting information on demographic and academic conditions of the
home (usually provided by the mother); (2) a broad based survey of students’ attitudes,
behaviors, and aspirations relevant to education; (3) tests of students’ achievement in
mathematics, science, reading, and social studies; (4) data from two of their teachers
(either English or social studies, and either mathematics or science); and (5) information
describing schools from principals. Students, teachers, and parents also provided
descriptive information about their schools.

The HSES data. The High School Effectiveness Study (HSES) is an independent,
longitudinal survey executed within the NELS:88 data collection. Its purpose was to
augment the original samples of students within high schools from the earlier NELS
study, in order to make possible school effects studies (such as the one described here).
Although it is a separate study, HSES borrows heavily from NELS:88, as it includes
many of the same students and schools and follows a similar design. The data are selected
through a complex, two-stage, stratified sample design, and NCES provides school
weights to compensate for oversampling of certain types of schools (especially private
schools and schools enrolling high proportions of minority students). Results of analyses
using the HSES data set are therefore able to be generalized to the population of tenth to
twelfth graders in urban and suburban secondary schools in the 30 largest metropolitan
statistical areas (MSAs).

At the first step of the sampling, all high schools (urban or suburban schools in the 30
largest MSAs) enrolling one or more NELS:88 students at the first follow-up (1990) were
selected (724 schools). A stratified sample of 276 schools from this pool was drawn,
resulting in a final baseline sample of 247. The High School Effectiveness Study Data
File User’s Manual (Scott, et al 1996) provides complete details on the sampling
strategies used for selecting schools and students. All NELS:88 first follow-up students
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attending the 247 schools in the HSES school sample were included in the HSES student
sample.

The student sample was then augmented, using a sampling algorithm that took into
account tenth grade enrollment of the HSES school. The original aim of the HSES was to
produce a within-school cluster size of approximately 30 students. This has resulted in
two distinct groups of students in each school: (1) those who were part of the original
NELS sampling design, and (2) those who were added in the augmentation, having
entered the sample only as tenth graders. As a result, the second group of students does
not have data as eighth graders (i.e., before they entered high school). Thus, the HSES
base year is 1990, when students were high school sophomores. Base year data for HSES
come from the same sources as in NELS:88: students, parents, teachers, and
administrators.

The analytic sample. Our investigation drew upon information about both students and
schools, focusing on students who stay in school (and in the same school) through Grade
12. That is, we focused on high school graduates—those students with maximum
exposure to their schools. We thus selected our sample in a two-stage fashion based on
the availability of (1) student-level and (2) school-level data. Our analytic sample for this
study was drawn from the available HSES sample of 7,642 students and 247 schools.2

The analytic sample includes only those students with student questionnaires
(S290QPFL) and complete tenth and twelfth grade mathematics test scores (S12XMIRR,
S22XMIRR).3 From the original sample, 5,449 students (and 238 schools) had tenth and
twelfth grade questionnaire data available. Of those students with complete questionnaire
data, 4,232 (and 230 schools) also had mathematics test scores both in 1990 and in 1992.4

Because our study focused on high school curriculum and student coursetaking, it was
crucial that sampled students had complete transcript information available for Grades 9
through 12 (S2RTR09, S2RTR10, S2RTR11, S2RTR12). Employing this filter further
reduced the sample to 3,741 students (and 213 schools). We selected only students with
complete information on race (S1RACE), gender (S1SEX), and socioeconomic status, or
SES (S2SES1), as we intended to include these important demographic characteristics in
our multivariate models. These demographic selections reduced the sample to 3,724
students (and 213 schools).

After selecting students based on available student-level information, we turned our
attention to key school characteristics. We first selected students from schools with
administrative questionnaire data available at the two waves (S1ADMFLG,
S2ADMFLG). This selection reduced our sample to 3,631 students and 207 schools. We
chose to omit students in private schools that were neither Catholic nor members of the
National Association of Independent Schools (NAIS),5 because these “other” private
schools were a non-homogeneous group with diverse purposes. Therefore, our school
sample includes only public, Catholic, and NAIS schools (G10CTRL2). This selection
resulted in a sample of 3,462 students and 198 schools.
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Although not absolutely necessary for the HLM estimation procedure, we eliminated
students in schools with less than five sampled students in them, a procedure we followed
in other studies using NELS data (Lee & Smith 1995, 1997; Lee, Smith, & Croninger
1997).6 This selection resulted in a final sample of 3,430 students in 184 schools. Thus,
our final analytic sample represents 45 percent of the originally sampled HSES students
and nearly 75 percent of the originally sampled HSES schools.

We investigated differences between the analytic sample of included students and schools
and those students and schools eliminated from the HSES sample, the results of which
are presented in appendix A. Although we recognize that the reductions in school and
(especially) student sample sizes are substantial, we believe that the selection criteria
were necessary in light of the purpose of our study. We note that the major loss of cases
was a large number students who were nominally included in the sample due to HSES
selection criteria, but who did not have questionnaire or test information, and thus were
effectively “absent” from any useful analysis.

Weights.  As with other longitudinal data collected under the sponsorship of NCES,
analyses using the HSES data require the use of design weights to compensate for a
stratified sampling strategy, unequal probabilities of selection, and to adjust for the
effects of nonresponse. Both school-level and student-level weights are available on the
HSES data file, and users must think carefully about selecting the appropriate
combination of weights.

At the time we undertook this study, there were questions about the validity of the
student-level weights included on the HSES file. For that reason, we chose not to weight
our analyses at the student level for either descriptive or multivariate analyses. We did,
however, employ the school level weight constructed with the “Qian-Frankel” probability
model. We used the Qian-Frankel weight both for descriptive information on the schools
and for the multivariate models. Appendix B includes an elaboration of the discussion
about weights, the rationale for our choices, and the implications of those choices for our
results. NCES will soon make available revised student-level weights with the HSES data
files.

Measures

Outcomes. We employed two dependent variables in this study, mathematics
achievement at the end of high school (twelfth grade) and highest mathematics course
completed. Mathematics achievement was drawn from the twelfth grade NELS
mathematics test. Unlike previous studies, our measure of mathematics coursetaking,
drawn from student transcript data, represents how far students proceed through the
mathematics pipeline (i.e., ranging from 1 = no mathematics through 8 = calculus), rather
than the number of years they elect mathematics. This difference distinguishes our study
from most other research on curriculum effects.

Appendix C provides details of the construction of all variables employed in this study.
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Student background characteristics. Because one focus of this study is to investigate how
socioeconomic status influences the outcomes, we included a measure of students’ SES.
We also drew on Oakes (1990) for our choice of other independent variables to use as
covariates. Our covariates on students include: gender, minority status, and prior math
achievement. The HSES sample only includes eighth grade test scores for the original
NELS:88 core sample. This posed a serious measurement problem for this study, in that
two-thirds of the analytic sample had no measure of student achievement and/or ability
prior to high school (those students who “joined” the HSES sample at Grade 10). For this
analysis we employed students’ mathematics grade point average (GPA) in the ninth
grade, taken from student transcript data, as a proxy for prior achievement.

School composition and structure. Curriculum structure is related to other characteristics
of schools: school size is strongly related to the number of courses that a school can offer
(Bryk, et al 1993; Lee & Smith 1995; Monk & Haller 1993), while average SES, minority
enrollment, and school achievement levels similarly influence course offerings by
affecting student interest and demand (Lee, Croninger, & Smith 1997). Therefore, we
included several measures of school composition and structure as covariates: sector (i.e.,
public, Catholic, NAIS), school average social class, school size, minority concentration,
proportion of low-achieving students, the average ninth grade mathematics GPA, and the
variability of ninth grade mathematics GPA in each school.

Mathematics curriculum structure. The mathematics curriculum structure of American
high schools, and its effects on achievement, is the primary focus of this study. Therefore,
we included multiple measures to reflect curriculum structure. Two measures captured
students’ average progress through the mathematics curriculum: (1) the average of the
highest course completed in each school, and (2) the variability of mathematics
coursetaking in each school. The first, the school mean, estimates overall progress
through the pipeline, or how far, on average, students go. The second measure—the
within-school standard deviation [SD]—is an estimate of the uniformity of that
progression, or how much disparity in coursetaking occurs. We designate schools with
high average mathematics progress and low variability in mathematics coursetaking as
“effective.”

Other variables represented the availability and election of courses below algebra: (3) the
number of mathematics courses offered below algebra in each school; (4) the average
number of mathematics credits completed below algebra in each school; and (5) the
variability (the within-school SD) in the number of mathematics credits completed below
algebra in each school. The first measure captured the breadth of the low end of the
mathematics offerings, the initial stages of the high school mathematics pipeline. The
larger the number of low-level offerings, the greater the potential for certain students to
remain at these early stages. The second two measures captured the actual coursetaking
behavior in schools rather than the course offerings. Because students cannot elect what
is not offered, another variable we employed focused on the high end of the mathematics
curriculum: (6) whether or not calculus was offered in each school.
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Analysis

Descriptive information. Our investigation proceeded from descriptive analyses of
students and schools to multivariate causal models. The structural focus of all analyses
was on the high school mathematics curriculum and students’ progress through it. We
began by investigating observed differences among students, differentiated by groupings
that characterize their progress through the mathematics curriculum. Student
demographics and achievement were compared for three such groups: (1) those whose
total high school mathematics coursework was below the level of algebra [7.9 percent];
(2) those whose total high school mathematics coursework included or exceeded algebra,
but was below the level of pre-calculus [57.4 percent]; and (3) those whose total high
school mathematics coursework included pre-calculus or calculus [34.7 percent].

In addition to the large variation in mathematics progress between individual students,
there is substantial variation in average student progress between schools. Consequently,
we followed a similar strategy for describing the school sample. School demographics
and curriculum structure were compared for three groups of schools, also differentiated
by student progress through the mathematics curriculum: (1) those with low (more than
one SD below the mean) average mathematics coursetaking [16.3 percent]; (2) those with
middle (within one SD of the mean) average mathematics coursetaking [66.9 percent];
and (3) those with high (more than one SD above the mean) average mathematics
coursetaking [16.8 percent].

A hierarchical approach. Since our research questions focused on estimating how the
structure of the high school mathematics curriculum influenced how far students moved
through it and their achievement in that subject, we used a method designed for such
situations—Hierarchical Linear Modeling [HLM] (Bryk & Raudenbush 1992; Bryk,
Raudenbush, & Congdon 1994). In an early school effects study using HLM, Lee and
Bryk (1989) provided some methodological details within their application. HLM has
also been used in other studies with designs similar to the study described here (e.g., Lee,
Croninger, & Smith 1997; Lee & Smith 1993, 1995, 1996; Lee, Smith, & Croninger
1997). Readers interested in more details about HLM are referred to the studies cited in
this paragraph, or to Appendix D, where we provide a brief overview of HLM as it is
applied in this study.

The multivariate models in this study have a two-level hierarchical structure, with
students nested in schools. There are three steps to a multilevel analysis of this type,
which is often called a “school effects” study. In Step 1, the variance in the outcomes is
partitioned into its within- and between-school components. It is only that proportion of
the total variance that lies systematically between schools that may be modeled as a
function of school factors. Step 2 involves the construction of a within-school (or Level-
1) model. Here the outcome variable is modeled, separately in each school, as a function
of the academic and social characteristics of the sampled students in that school. Step 3,
the between-school (Level-2) model, investigates characteristics of schools that are
related to the outcomes, which are school-level averages adjusted for the types of
students in each school. It is Step 3 of an HLM model where school effects are identified.



13

The school effects model explored in this study. To pursue our research questions, we
explored two different multilevel, multivariate models related to the mathematics
curriculum and students’ progress through the mathematics pipeline. The first model,
which addresses Research Question 1, estimated the impact of the high school
mathematics curriculum on students’ progress through the mathematics pipeline. The
dependent variable for this HLM model was the highest mathematics course completed.
The Level-1 model here included controls for students’ gender, minority status, SES, and
ninth grade GPA in mathematics. The Level-2 HLM model for this outcome included
school controls for composition and sector (e.g., average SES, proportion of low-
achieving students, sector, size), and also the several variables that we have used to
measure high school curriculum structure (e.g., number of courses the school offers
below algebra, availability of calculus, average number of low-level mathematics credits
completed).

The second set of HLM models, intended to explore Research Question 2, estimated the
impact of the high school mathematics curriculum on students’ twelfth-grade
mathematics achievement. Student- and school-level controls were identical in the first
and second models, except for the inclusion of students’ individual mathematics progress
(as an additional student-level predictor) and the school’s average mathematics progress
and variability in progress included as additional school-level predictors of achievement.

Level-2 predictors, which describe schools, were used to model outcomes that
characterize both effectiveness and equity in U.S. secondary schools. The effectiveness of
the school in the two models was investigated by estimating effects on the intercepts
from the within-school models, which were represented by the adjusted school-level
average of the highest mathematics course taken and mathematics achievement. Although
equity issues in educational research may also focus on gender or minority status, in this
study we restricted our equity focus to an investigation of the impact of the school
mathematics curriculum on the social distribution of coursetaking and achievement.
Specifically, we modeled the social class effects (the student-level SES slopes) on our
two outcomes as functions of the school curriculum (slopes-as-outcomes). We
characterize schools with an equitable social distribution of learning as having reduced
SES effects on student pipeline progress and achievement.

Centering of independent variables in HLM. In all quantitative research, decisions about
scaling and centering variables require careful consideration in order to interpret results
appropriately. That is, researchers should ask themselves, “What does a value of zero on
each variable actually mean?” This is especially important for slopes and intercepts of
Level-1 HLM models for school effects studies, as these become outcomes in between-
school investigations (Bryk & Raudenbush [1992] provide a technical discussion of
centering in HLM). Decisions about where to center variables at Level 1 determine the
exact nature of the outcome under investigation. The question each researcher needs to
keep in mind is this: “What should the value of the within-school intercept represent?”
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In multivariate models for this study, the continuous independent variables in our within-
school models (SES and ninth grade math GPA) were first transformed into z-scores on
our sample (mean [M] = 0, SD = 1). The other Level-1 predictors (minority status and
gender) were dummy-coded. Further, all within-school predictors for our analyses (SES,
gender, minority status, and math grades) were centered around their respective school
means. This decision allowed us to model the distribution of adjusted school means (the
intercepts) and school SES slopes in a meaningful way.7 Because they do not serve as
outcomes in HLM models, decisions about where to center Level-2 independent variables
involve fewer technical concerns. Decisions here have substantive implications, however,
because they influence interpretation of the school effects. Centering independent
variables at the within-school level determines what is modeled; centering at the
between-school level determines what the effects mean.

In our multivariate models, all continuous, Level-2 independent variables were
normalized (i.e., SD = 1). The continuous measures of school social and academic
composition (average SES, proportion of low-achieving students, minority concentration)
were also transformed into z-scores (M = 0, SD = 1). However, the continuous
curriculum structure measures (number of courses offered below algebra, average
number of credits below algebra, variability in credits below algebra) were not
transformed into z-scores, because in these cases a value of zero is “true.” That is, a zero
on these variables represents no courses offered below algebra or no credits completed
below algebra. Of course, for dummy-coded Level-2 independent variables (e.g., whether
the school offers calculus), zero also has substantive meaning.

Results

Who Progresses Through the Mathematics Pipeline? Descriptive Results

Highest mathematics course completed. The highest mathematics course completed in
high school is not only a record of students’ academic success, but it also serves as a filter
for subsequent educational and vocational opportunities available to them (Hyde,
Fennema, & Lamon 1990). Figure 2 displays the distribution of students’ mathematics
progress. Its negative skew indicates that few students who stay in high school until
graduation remain at the low end. By the time they finish high school, only 8 percent of
seniors in this sample had dropped out of the pipeline prior to completing a traditional
Algebra I course (levels 1, 2, and 3 on this measure), the critical prerequisite for higher-
level academic mathematics courses in high school. Even though there are small
proportions of students at the very low end of the pipeline, over 50 percent of graduates
stopped midway through the pipeline (levels 4, 5, and 6, including Algebra I, II, plane
and analytic geometry). Over a third of seniors completed advanced mathematics courses
(levels 7 and 8, pre-calculus and calculus), the critical prerequisites for college
mathematics and science courses.
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Figure 2
Highest mathematics course completed for high school graduates
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Differences between students. Which types of students remain at the low end of the
pipeline? Which students proceed through the mathematics curriculum into the advanced
mathematics courses? Virtually all research demonstrates that mathematics coursetaking,
measured in years, is strongly related to students’ background characteristics (see reviews
by Hyde, et al 1990 and Oakes 1990). We also explored the relationship between student
characteristics and mathematics coursetaking. We remind readers that the variable we use
does not measure years of coursework, but rather progress through the mathematics
course pipeline. Table 1 displays the characteristics of high school graduates who attain
three levels of pipeline progress: (1) “low”: below algebra, (2) “middle”: algebra but
below pre-calculus, and (3) “high”: pre-calculus or calculus.

Table 1.--Group means of variables describing high school graduates, differentiated
by the highest mathematics course completed

(n = 3,430 students in 184 schools)

Below algebra
(n = 271)

Algebra but below pre-
calculus (n = 1,969)

Pre-calculus or calculus
(n = 1,190)

Variable Mean Mean Mean

Percent Female 44* 1 51 44*

Percent Minority 42 37 17*

Black, Non-Hispanic 18 17 8*

Hispanic 21 19 9*

Asian 3* 8 17*

Social Class (SES) 2 -.26* .14 .70*
(.63)3 (.78) (.71)

Mathematics GPA, 1.66* 2.21 3.04*
Grade 9 (.90) (.94) (.84)

Mathematics Achievement, 30.71* 46.55 64.44*
Grade 12 (8.41) (12.40) (9.53)

Highest Mathematics 2.48* 5.01 7.55*
Course Completed (.56) (.79) (.50)

*p<.05

1. For all variables, we tested two contrasts with one-way analysis of variance: Below Algebra (column 1)
vs. Algebra but below Pre-Calculus (column 2), and Algebra but below Pre-Calculus (column 2) vs. Pre-
Calculus or Calculus (column 3). Significance levels of the first contrast are included on means in column
1, and significance levels of the second contrast are included on means in column 3.
2. Social class is a z-score variable standardized on the full HSES sample.
3. SDs of continuous variables are in parentheses.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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Gender differences in mathematics coursetaking are mixed. Although fewer girls
complete pre-calculus or calculus than boys (44 percent of the students in this group are
females), girls are also less likely to end their mathematics coursetaking with non-
academic or low-level courses (i.e., below Algebra I). More girls than boys stop taking
math courses midway through the pipeline, whereas boys typically either stop early or
make it to the end of the pipeline {t = 2.42, t = 4.04, respectively}.

Disparities by social class and race/ethnicity are large, and they follow a common pattern.
Seventeen percent of the students who reach the end of the mathematics pipeline are
minority students, whereas nearly half (42 percent) of those at low levels are minority {t
= 8.18}. This is the pattern for black and Hispanic students {t = 6.69, 6 = 5.01,
respectively}; Asian students do not follow this pattern: although 17 percent of students
taking pre-calculus or calculus are Asian, 3 percent of those who end with the low-level
mathematics courses are Asian {t = 7.29}. Social class (SES) is also strongly related to
pipeline progress: high-SES students move further. Students in the low group have much
lower average SES than those in the middle group (effect size [ES] = .40 for the group
difference, t = 8.24).8 The largest difference is between students who dropped out of the
pipeline early and those who proceeded to the end (ES = .96, t = 19.22).

Students’ academic status and progress, measured by mathematics grades in ninth grade
and achievement near the end of twelfth grade, are strongly related to their progression
through the pipeline. Students who completed higher-level mathematics courses received
substantially higher mathematics grades in their first year of high school (GPA = 3.04)
and displayed less variability in GPA (SD = .84) than their counterparts who did not take
algebra (GPA = 1.66, SD = .90, t = 22.24 and F = 16.91). Further, these students
exhibited substantially higher mathematics achievement in their final year of high school
(64.44 vs. 30.71, ES = 3.54 SD, t = 44.75). The SES and performance of students
remaining midway through the pipeline is more variable than the groups at either extreme
{F = 15.84 and F = 99.07, respectively}.

School Factors Associated With Greater Student Progress in the Mathematics
Curriculum: Descriptive Results

High- vs. low-progress schools. Although the distribution of students’ progress through
the mathematics pipeline is negatively skewed, the distribution of school average
progress is close to normally distributed (see figure 3). Across all schools, the average
progress ranges from a low near three (a school where the average progress leaves
students below algebra) to a high of eight (a school where _all_ students reach calculus).9

We characterize high-progress schools as those where average student progress through
the mathematics pipeline is more than one SD above the mean of this variable across
schools; low-progress schools are those in which average student progress is more than
one SD below the mean. Because this variable is close to normally distributed, a third of
all schools fall in either of these two categories, with as many schools of high as of low
progress.
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Figure 3
School average of highest mathematics course completed for high school graduates
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What distinguishes schools with different levels of average progress in the mathematics
course pipeline? Table 2 presents information on school composition and structure,
mathematics curriculum structure, and average school achievement for three groups of
schools: (1) schools of low average progress [ranging from 3.0 to 4.43; 15.8 percent of
the schools]; (2) schools of middle average progress [ranging from 4.43 to 6.5; 66.8
percent of the schools]; (3) schools of high average progress [ranging from 6.5 to 8.0;
17.4 percent of the sample].

Differences between schools.  School composition and structure. Descriptive differences
between the school groups in table 2 appear to be larger than those between the groups of
students shown in table 1. Consistent with individual predictors of progress, high average
levels of pipeline progress are associated with low-minority and high-SES enrollments,
and fewer low-achieving students. Conversely, three fourths of the low-progress schools
have high minority enrollments (40 percent or more minority students), and, on average,
nearly half of the students in low-progress schools earned a C or below in ninth grade
mathematics. There are also differences by school sector: all of the low-progress schools
are public schools; 14 percent of the high-progress schools are public schools {t = 6.48}.
These findings are consistent with other research that has shown large differences in
academic coursetaking between students in public and Catholic schools (e.g., Bryk, et al
1993; Lee & Bryk 1988). High-progress schools are also substantially smaller, on
average {t = 5.11}, a structural feature associated with school sector.
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Table 2.--Group means of variables describing high schools, differentiated by the
school average of students’ highest mathematics course completed

(n = 184 schools)

Variable Low average coursetaking
(n = 30)

Middle average coursetaking
(n = 123)

High average coursetaking
(n = 31)

A. School composition
Percent high minority

schools
75*1 23 4*

Percent of low-achieving
students

47* 29 26

Average SES -.26*
(.36)2

.23
(.40)

.83*
(.22)

B. School structure
Percent Catholic schools 0 13 55*

Percent NAIS schools 0 2 31*

School size 1426
(785)

1300
(748)

649*
(425)

C. Structure of mathematics curriculum
Percent offering calculus 45* 83 100*

Mean, number of courses
offered below algebra

4.63
(.82)

4.14
(1.55)

2.11*
(1.92)

Mean, credits taken
below algebra

1.21*
(.44)

68
(.40)

.09*
(.11)

SD, credits taken below
algebra

.96* .82 .24*

D. Student Achievement
Mean, math GPA, grade

9
1.96*
(.29)

2.38
(.40)

2.64*
(.30)

SD, math GPA, grade 9 .93 .96 .98

Mean, math achievement,
grade 12

40.42*
(5.15)

50.46
(6.59)

58.41*
(5.33)

SD, math achievement,
grade 12

13.13* 12.03 12.15

Mean, highest math
course completed

4.08*
(.35)

5.42
(.54)

7.21*
(.57)

SD, highest math course
completed

1.35 1.39 .81*

p<.05

1. For all variables, we tested two contrasts with one-way analysis of variance: Low Average Coursetaking
(column 1) vs. Middle Average Coursetaking (column 2), and Middle Average Coursetaking (column 2) vs.
High Average Coursetaking (column 3). Significance levels of the first contrasts are included on the means
in column 1, and significance levels of the second contrast are included on the means in column 3.
2. SDs of continuous variables are in parentheses.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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Curriculum structure. It is expected that average coursetaking reflects curriculum
structure. All of the high-progress schools offer calculus (a necessity for students to elect
it) but less than half of the low-progress schools offer this course. Although not offering
calculus prevents students from taking the course, it may also be a reasonable omission
for schools in which there is little demand for the course.

Low- and middle-progress schools offer nearly twice as many math courses below
algebra as high-progress schools. Furthermore, low-progress schools more consistently
offer a larger number of such courses (the SD of the means = .82), while high-progress
schools—those that offer fewer such courses on average—display much more variability
(SD of the means = 1.92, F = 17.00). Although low- and middle-progress schools offer
similar numbers of these courses, students in low-progress schools complete more low-
level coursework than students in middle-progress schools (average number of credits per
student: 1.2 vs. 0.7, t = 6.73).10 Almost no students in high-progress schools complete
coursework below the level of algebra (average number of credits per student: .09).

Students in low-progress schools display substantially more variability in low-level
coursetaking than students in high-progress schools {F = 10.63}. In low-progress
schools, many students take additional credits below algebra, while other students in the
same school are taking no credits below algebra (these bimodal distributions result in the
larger average SD for low-progress schools [.96]). High-progress schools display the
least variability in low-level mathematics coursetaking: in the typical high-progress
school, very few per-pupil credits below algebra are completed (M = .09), and high-
progress schools consistently display this pattern (SD of the means = .11). Furthermore,
students within the high-progress schools are more similar in their coursetaking behavior
(average SD = .24, t = 11.8).11

School achievement. The achievement-related antecedents and results of high progress in
schools are clear and consistent. On average, students in high-progress schools did better
in their ninth grade math courses (GPA = 2.6, or a B-) than students in low-progress
schools (GPA = 2.0, or a C, t = 7.37), although all schools (low-, middle-, and high-
progress schools) display similar within-school variability in grades. Twelfth-grade
mathematics achievement is over 40 percent higher in high- than low-progress schools
(58.4 vs. 40.4; a difference of ES = 1.09 SD, t = 11.59).

Summary of descriptive differences. On virtually every variable we considered in our
multivariate models, both between students and between schools, there were statistically
significant differences related to students’ progress through the mathematics pipeline.
Group differences among students were associated with social background (SES,
race/ethnicity) and academic performance at both the beginning and end of high school.
There were also differences in average pipeline progress by school sector, by school size,
and by the structure of the high school curriculum. Although these differences suggest
curriculum structure effects on student achievement, it is important to remember that the
mean differences displayed in tables 1 and 2 are descriptive—they do not take other
characteristics of students and schools into account. We know that many of the variables
we consider here are correlated. Thus, we investigate these questions within a
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multivariate format. As we discussed, it is also appropriate to consider these questions
within a multilevel format. We move to these analyses now.

Multivariate and Multilevel Analyses

Unconditional HLM models. Table 3 displays the psychometric properties of the two
outcome variables in this study: the highest mathematics course completed and
mathematics achievement at twelfth grade. These results were computed as fully-
unconditional HLM models of the two outcomes. Two statistics are especially useful
here. First, we see that each of these outcomes demonstrated moderately high (and quite
similar) lambda reliability (.770 for coursework; .719 for mathematics achievement). As
school effects may be estimated only on the proportion of variability in the outcome that
is systematically between schools, the intraclass correlation (ICC) is also informative.
The estimated ICCs here were relatively high. Over two-fifths of the total variance in the
measure of highest course completed (41.3 percent) lay between schools. Although not
quite so high, more than one-third (35.2 percent) of the total variance in twelfth-grade
mathematics achievement was between schools. These ICCs are somewhat higher than
those in similar studies investigating the effects of the high school curriculum on student
achievement (Lee & Bryk 1989; Lee & Smith 1995; Lee, Croninger, & Smith 1997). The
relatively high ICCs of these outcomes, combined with their moderately high reliabilities,
indicate the likely presence of school effects.

Table 3.--HLM psychometric properties of student outcomes: Highest mathematics
course completed and mathematics achievement in grade 121

(n = 3,430 students in 184 schools)

Model 1 Model 2
                                                       Highest Mathematics Course Completed         Mathematics Achievement

Pooled Within-School Variance .592 .685
(Sigma-Squared)

Between-School Variance (Tau) .321 .267

Within-School SD 2 .769 .828

Between-School SD 2 .567 .753

Reliability (Lambda) .770 .719

Intraclass Correlation, Unadjusted (ICC)3 .352 .280

Intraclass Correlation, Adjusted (ICC)3 .413 .352
1. Outcome variables are in a z-score metric (M=0, SD=1) for this and other HLM analyses.
2. The within-school SD is the square root of sigma-squared; the between-school SD is the square root of
Tau.
3. Unadjusted ICC = Tau /(Tau + Sigma; Adjusted ICC = Tau /(Tau)+(Sigma * Lambda).

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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Within-school HLM models.  Table 4 displays three within-school (Level 1) HLM
models. Each model is similar, in that it has a similar set of independent variables.
Because all variables included in these models were either z-scored or dummy-coded, the
beta coefficients shown in table 4 are in an effect-size (SD) metric (see technical note 8).
Using effect sizes allows us to interpret effects both substantively and statistically.
(nominal significance levels are indicated by p-values). Model 1 of table 4 displays
results for our within-school analysis of the highest mathematics course completed;
Model 2 displays similar results for mathematics achievement. What distinguishes
Models 2A and 2B is that the highest mathematics course completed is included in the
within-school HLM in Model 2B but not in Model 2A. In these models, the intercept and
SES slopes become outcomes in our between-school HLM models to follow.
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Table 4.--Within-school HLM models of highest mathematics course completed and
mathematics achievement in grade 12

(n = 3,430 students in 184 schools)

Model 1
Highest mathematics

course completed

Model 2A
Mathematics achievement

without coursetaking

Model 2B
Mathematics achievement

with coursetaking

Variable β Coefficient β Coefficient β Coefficient

Intercept(β0) -.066 -.057 -.064

Social Class (SES)(β1) .194* .166* .034

Gender (Female)(β2) -.055* -.179* -.141*

Minority Status(β3) -.046 -.333* -.305*

Mathematics GPA, (β4)
Grade 9

.310* .338* .131*

Highest Mathematics (β5)
Course Completed

.658*

The Chi-Square Table

Parameter Estimated parameter Degrees of variance(Tau) Chi-square freedom
Highest math course

Intercept .332 183 2855*
SES slope .027 183 231*

Mathematics achievement
(Without coursetaking)
Intercept .290 183 2551*
SES slope .034 183 215*

(With coursetaking)
Intercept .326 183 4233*
SES Slope .031 183 212

*p<.05

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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Model 1. Both SES and ninth grade mathematics GPA are positively and significantly
related to mathematics course pipeline progress, although the magnitudes of effects are
small for SES (Þ = .194, t = 7.85) and moderate for GPA (Þ = .310, t = 23.36). Gender
has a significant effect that is quite small (Þ = -.055, t = -1.97); on average, girls are
slightly less advanced in the pipeline. In this multivariate within-school HLM model,
minority status is unrelated to progress in the mathematics pipeline {t = -1.25}. The chi-
square statistics at the bottom of table 4 indicate that both average progress (the intercept,
Þ0) and its relationship with SES within schools (the slope, Þ1) varies significantly
between schools. This suggests that they are appropriate for modeling as outcomes in
between-school HLMs.

Model 2. All measures of students’ demographic and academic background are
significantly related to achievement in mathematics at the end of high school, as shown in
Model 2A. Minority students and girls have lower achievement in mathematics; students
from higher-SES families and those with higher math grades in ninth grade achieve at
higher levels _{t = 6.19 and t = 24.22, respectively}. The magnitude of the SES and
gender effects is small; the effects for minority status and math GPA are of moderate
magnitude. However, once students’ coursework in mathematics is taken into account
(Model 2B), the SES effect drops to non-significance {t = 1.48} and the influence of
math GPA is more than halved (from .338 to .131, t = 11.07).12 Minority and gender
effects on achievement are relatively unchanged between Models 2A and 2B (i.e., the
achievement gaps between male and female students, and between minority and majority
students) are unaffected by their progress in the mathematics pipeline {t = -16.10 and t =
-6.21 respectively}. Students’ progress in the mathematics coursework pipeline is
strongly related to achievement in this multivariate model (Þ = .658, t = 45.74).

Regardless of social background and students’ academic status at the beginning of high
school, and regardless of the high school they attend, students’ achievement in
mathematics is strongly influenced by how far in the math pipeline they get.13 In this
subject, students achieve at higher levels when they take more advanced courses. Of
course, students’ progress in the pipeline is itself a function of their social and academic
backgrounds (as seen in Model 1 of table 4). As our model in figure 1 suggests, students’
demographic characteristics and their ability at the beginning of high school have both
direct and indirect effects on achievement; the indirect effects “pass through” the courses
students take during their high school career. A major objective here, however, is to
investigate how the structure of the high school mathematics curriculum influences
achievement. To pursue this question, we turn to our Level-2 HLM school effects
models.

Between-school HLM models. Results of our investigation of curriculum structure effects
on students’ progress in the mathematics pipeline are displayed in table 5 (Model 3). As
we explained earlier, this analysis includes the within-school model on this outcome
shown in Model 1 of table 4. We investigate two outcomes here: (1) the adjusted school
average of the highest math course students complete (Þ0) and (2) the relationship
between SES and coursework (Þ1). We interpret these two outcomes as measures of
effectiveness and equity.
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Two types of school effects are considered: (1) school composition and structure (which
we use to control for academic and social differences among schools) and (2) curriculum
structure. The emphasis here is on the latter. We began the modeling process with a full
set of controls for school selectivity (average SES, school minority concentration, the
proportion of low-achieving students in the school, school size, and school sector) on
both the effectiveness and equity outcomes. However, in the models displayed in table 5
we dropped several control variables due to non-significance. We followed a rule
favoring model parsimony to maximize the stability of our HLM analyses (although in
each model we retained a full and identical set of curriculum structure measures).
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Table 5.--Between-school HLM model of highest mathematics course completed

(n = 3,430 students in 184 schools)

Model 3
Highest Mathematics Course Completed

                                                                 γ Coefficient

Random effects

Intercept (β0)
Intercept .041

Composition and structure
Average SES .163*
Proportion of low-achieving students -.125*
Catholic school .107
NAIS school .275*

Curriculum structure
Courses offered below algebra -.041
Mean, credits taken below algebra -.258*
SD, credits taken below algebra .020
Calculus offered .243*

SES/coursetaking slope (β1)
Intercept .026

Composition and structure
Average SES .076*

Curriculum structure
Courses offered below algebra -.002
Mean, credits taken below algebra -.017
SD, credits taken below algebra .102*
Calculus offered -.016

Fixed Effects
Gender (female) (β2) -.056*
Minority status (β3) -.034
Mathematics GPA, grade 9 (β4) .310*

The Chi-Square Table

                                      Estimated Parameter   Degrees of
Parameter               Variance (Tau)     Freedom Chi-Square
Intercept                         .075         175       640*
SES/Coursetaking Slope       .021         178       209
*p<.05

Note: Minority concentration and size were dropped from the intercept model. Minority concentration, size,
sector, and proportion of low-achieving students were dropped from the SES/Coursetaking slope model.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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Average pipeline progress. Students move farther in the mathematics pipeline if they
attend schools with higher average SES and fewer low-performing students {t = 3.56 and
t = -3.87 respectively}. Although there were large observed sector differences shown in
table 2, in these multivariate and multilevel models differences in pipeline progress
between public and Catholic schools are small and non-significant {t = 1.19}. However,
students in NAIS schools move significantly farther in the mathematics course pipeline
than their public school counterparts (gamma = .275, t = 2.23). Sector differences in
pipeline progress all but disappear once differences in factors such as curriculum
structure are taken into account. The effects of curriculum structure are evident in this
model. On average, the level of students’ progress in the mathematics course pipeline is
lower when the school’s students take more low-level courses (those below algebra, t =
5.27).14 On average, students move farther in the mathematics course pipeline when
calculus is available in the school.

There are few school effects on the SES/coursetaking slope. Coursetaking is less
equitably distributed in higher-SES schools (gamma = .076, t = 2.20). Schools are also
less equitable if the variability in low-level courses taken is higher (recall that positive
effects increase the SES slope, which measures increased inequity, t = 2.45). However, in
schools that offer no low-level courses (and hence students complete no low-level
coursework), there is no significant social inequity (gamma = -.026, t = 0.28). Although
measures of curriculum structure influence the intercept (itself a mean), a distributional
measure (the SD of low-level credits) had an effect on the social distribution outcome.
Fixed effects in this model (gender, minority status, and mathematics ability) are very
similar to those shown in table 4.

How well has this school-effects model explained variance in average pipeline progress
and the SES slope? We estimated this by comparing the taus from the within-school
models (in table 4) to the taus shown in the bottom panel of table 5. For the school
average of the highest mathematics course completed, 77.4 percent of the between-school
parameter variance has been explained [(.332 - .075)/ .332]. For the social distribution of
pipeline progress, however, the model explained 22.2 percent of the variance. The
difference in proportions of variance explained for the two outcomes is attributable, at
least in part, to the fact that slopes are generally estimated with considerably lower
reliability (see technical note 14).

Average mathematics achievement. The between-school HLM models with mathematics
achievement as an outcome are shown in table 6. The within- school model is identical to
that shown in Model 2B of table 4, where students’ progress in the mathematics course
pipeline is included as a control. Along with gender, minority status, and ninth grade
math GPA, this variable is estimated as a fixed effect. Again, the four fixed effects are
virtually unchanged between Level-1 (table 4) and Level-2 models (table 6).15 The
distinction between Models 4A and 4B relates to the variability in coursetaking. Model
4A includes the four curriculum structure variables we included in Model 3 of table 5,
whereas Model 4B adds the school average of the highest mathematics course completed
and the standard deviation of that measure to the existing set of curriculum structure
measures.
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Table 6.--Between-school HLM models of mathematics achievement in grade 12
(n = 3,430 students in 184 schools)

                                                                                                                                                                                                
       Model 4A             Model 4B

                         Mathematics Achievement   Mathematics Achievement
                               Without Aggregate                   With Aggregate

                                                                                        School Coursetaking                 School Coursetaking    
                                                                                               γ Coefficient                               γ Coefficient           

Random Effects

Intercept (β0)
Intercept -.001 -.001

Composition and Structure
Average SES .358* .281*
Proportion of Low-Achieving Students -.125* -.088*

Curriculum Structure
Courses Offered Below Algebra -.027 -.017
Mean, Credits Taken Below Algebra -.101* .002
SD, Credits Taken Below Algebra -.003 -.024
Calculus Offered .114 -.023

Mean, Highest Mathematics .240*
Course Completed

SD, Highest Mathematics .081*
Course Completed

SES/Mathematics Achievement Slope (β1)
Intercept   -.049 -.152

Composition and Structure
Average SES   .023 -.004

Curriculum Structure
Courses Offered Below Algebra  -.016 -.005
Mean, Credits Taken Below Algebra -.031 -.003
SD, Credits Taken Below Algebra  .086* .110*
Calculus Offered -.017 -.020

Mean, Highest Mathematics .073
Course Completed

SD, Highest Mathematics -.026
Course Completed

Fixed Effects
Gender (Female) (β2) -.141* -.141*
Minority Status (β3) -.303* -.302*
Mathematics GPA, Grade 9 (β4) .131* .131*
Highest Mathematics Course Taken (β5) .656* .658*

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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Table 6.--Between-school HLM models of mathematics achievement in grade 12--
Continued

Chi-Square Table

Parameter Estimated parameter
variance (Tau) Degrees of freedom Chi-square

Without Coursetaking, Model 4A
Intercept .077 177 1048*
SES/Achievement Slope .031 178 208

With Coursetaking, Model 4B
Intercept .067 175 924*
SES/Achievement Slope .028 176 217*
*p<.05

Note: Minority concentration, size, and sector were dropped from the intercept model. Minority
concentration, size, sector, and proportion of low-achieving students were dropped from the
SES/Achievement slope model.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Effectiveness Study (HSES:90/92).
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In both Models 4A and 4B, mathematics achievement is higher in schools with higher
average SES and with a lower proportion of low-achieving students. With curriculum
structure taken into account, we again dropped non-significant measures of school
composition and structure (minority concentration, school sector, school size).
Comparing effects of curriculum structure on average mathematics achievement in
Models 4A and 4B, we see that average pipeline progress, and its variability, are strongly
and significantly related to achievement. When average pipeline progress is not taken
into account (Model 4A), achievement is lower in schools where the mean number of
credits of low-level courses is higher. Though pipeline progress is related to calculus
being offered (Model 3, table 5), here whether or not calculus is offered is unrelated to
achievement.

Thus, schools’ average achievement levels are higher when, on average, their students
move farther in the mathematics course pipeline, but also when there is more variability
in this pipeline measure within the school. There are few curriculum structure effects on
the social distribution of mathematics achievement by SES. In Models 4A and 4B,
variability in low-level coursetaking (i.e., average credits taken below algebra) is
positively related to the SES/achievement slope. More variability in low-level
coursetaking fosters a more inequitable social distribution of achievement in high
schools. Although they are strongly related to average achievement (effectiveness), the
two measures of pipeline progress are unrelated to the distribution of achievement within
schools (equity).

The two between-school models shown in table 6 have explained over three fourths of the
between-school variance in mathematics achievement: 76.6 percent for Model 4A; 79.4
percent for Model 4B. However, the proportion of total variance in the SES/achievement
slopes is only slightly affected by these between-school models (i.e., only 9.7 percent has
been explained in Model 4B).

Discussion

Summary of Findings

Observed differences. The number and type of mathematics courses offered and taken in
high school are associated with many characteristics of students and schools. In our
descriptive analyses, several background characteristics were associated with less
progress in the curriculum (being black or Hispanic, being from a lower-SES family,
earning lower math grades early in high school, being female). A similar pattern was
found for high school curriculum structure. Schools with more minority students, with
lower average SES, and with more low-achieving students demonstrate less average
progress through the mathematics course pipeline. Average progress also differed by the
school structural characteristics of sector (private schools show more progress) and size
(students in smaller schools make more progress). However, these analyses did not take
account of interrelationships between various background characteristics.
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All of the students in this sample stayed in high school until graduation. Comparisons of
HSES students who were included and excluded in this study (appendix A) show the
excluded sample to be disadvantaged in several respects (e.g., lower SES, lower grades in
ninth grade—see appendix table A-1). Those comparisons provide evidence to suggest
that the association between background and coursetaking in this study would be even
larger if our sample included students who dropped out of high school. Thus, our
estimates of such social stratification in these outcomes probably represent a lower bound
for the full high school population.

Determinants of students’ progress through the high school mathematics curriculum.
Individual students’ achievement in mathematics is associated strongly with their
progress through the mathematics curriculum. Even in multivariate models which take
account of students’ social background and academic status at the beginning of high
school, students’ progress in the mathematics course pipeline is the strongest single
predictor of their achievement—twice the strength of any other factor.

The association between coursetaking and achievement demonstrated in other research
motivated our attempts to identify its determinants. In particular, we wanted to know
whether the number and type of courses the school offers influences how far through the
standard academic mathematics sequence students get, and ultimately how both these
factors influence achievement. Thus, the focus of this study was on the structure of the
high school math curriculum and how it influences both students’ progress in the
mathematics pipeline and also their achievement.

Two features of the high school mathematics curriculum were found to be especially
influential in determining how far students get. One element targets the low end of the
curriculum: more coursetaking activity at the low end of the curriculum (below the level
of Algebra I) leads to students making less progress. On the other end, we found that
students move farther through the curriculum in schools that offer calculus. Further, when
there is less variation in the number and type of low-level courses taken, the courses
students take are more equitably distributed by family social class. Our multivariate
analyses indicated that in schools whose curricula include fewer courses taken below
algebra and more high-end offerings (especially calculus), students progress farther in the
mathematics curriculum.16

Curriculum structure and achievement. In general, we conclude that the findings of this
study provide evidence that is consistent with the constrained curriculum approach laid
out at the beginning of the report. When the high school mathematics curriculum is
structured by limiting low-end course options, students typically move farther through the
curriculum and average achievement in the school is higher. However, more variation
within schools in how far the students get in the pipeline, on average, is associated with
higher achievement, not lower.17 Although average progress in the mathematics pipeline
was unrelated to social equity in the distribution of achievement, more variability among
low-level credits in that curriculum resulted in more inequality in achievement within
schools by student SES.18
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Sector, curriculum, and achievement. In this study, there were few significant effects of
school sector on the outcomes. Although no-difference findings typically are not
discussed in a report such as this, we highlight our non-findings regarding school sector
for several reasons. Several other studies about the high school curriculum have used a
school sector focus (e.g., Bryk, et al 1993; Lee & Bryk 1989). We also used sector
differences as a guiding framework to structure our review of the literature. In addition,
in this sample we found observed sector differences in curriculum, reported in the
descriptive information in table 2.

We offer two possible explanations for the lack of sector differences here. The first
focuses on our analytic models. Once curriculum structure was included in the
multivariate models, in general the effects of school sector (i.e., comparisons of Catholic
and NAIS schools to public schools) disappeared. Of course, academic organization (or
curriculum structure) represents a major difference between private and public secondary
schools, as we described at the beginning. Therefore, controlling for structural differences
explained away sector differences. A second explanation focuses on our sample. Because
all of the schools in the HSES sample are located in or near America’s largest cities,
schools in rural areas, those in and around towns and villages, and schools in mid-sized
cities are not represented. It is also possible that the difference between this sample of
schools and students and samples used in prior studies of this topic (that were closer to
being nationally representative) accounts for differences between our findings and those
of other studies with a similar focus.

Some Implications of These Findings

Composition. What kinds of students go to which types of schools, and what happens to
those students in their schools, are fundamental questions embedded in school effects
studies such as this one. In this study, we found strong effects for school social and
academic composition. The HLM models took into account many social and academic
characteristics of students, as well as the structure of the high school curriculum.
However, even when these controls were included, students’ progress in the mathematics
course pipeline and their achievement were shown to be adversely affected when there
are high proportions of low-achieving students in the school, even when students’ own
academic status at the beginning of high school is taken into account.

This finding is consistent with conclusions made by Barr and Dreeben (1983) and by
Rutter and his colleagues (1979). Although those two studies examined learning in
schools with different contexts, the authors of both studies described the detrimental
effects on overall achievement when there are large proportions of low-performing
students in an educational setting. The context for Barr and Dreeben’s study was first-
grade classrooms; Rutter et al. studied inner-city London secondary schools.

We found that social as well as academic composition is important; the social-class level
of the school influences achievement, even when several academic characteristics of
students and schools were taken into account. This finding touches on the issue of access.
U.S. students are mapped to high schools either through residential location, by parental
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choice among public schools, or through parents’ and students’ interest, ability, and
willingness to consider private schools. Residential location, by far the most common
determinant of school social and academic composition, is associated with family
income. Increasingly, students and their families may choose the high school they attend.
Choice of school, as well as willingness to exercise choice, is also related to family
background (Carnegie Foundation for the Advancement of Teaching 1992; Lee,
Croninger, & Smith 1994). The issue of access involves equity between schools, whereas
the focus on equity in this study was within schools. Nevertheless, our findings
underscore the importance of school social composition in determining average
coursetaking and average achievement, above and beyond the structure of the curriculum.

Low-level mathematics courses. Most studies of curriculum structure and achievement
have focused on the high end of the mathematics curriculum. Our investigation of schools
that offer large numbers of low-level courses—and the association of this type of
curriculum with students’ coursetaking and achievement—are new. We demonstrate that
when schools offer many low-end courses, students don’t move very far into the higher
end of the curriculum. When schools offer fewer of these courses, students take fewer of
them (see technical note 16). Instead, they take more advanced courses, the type of
courses that much research (including this study) has shown to be associated with
achievement (Lee, et al [1993] review this research). Virtually every high school, district,
and state requires at least two years of mathematics to graduate, and some require more.
Thus, students have to take some mathematics courses. The question is, “Which ones do
they take?”

Although taking low-level mathematics courses is associated with lower achievement, the
curriculum in comprehensive high schools typically contains many such courses. The
rationale for offering these courses may be that high school staff feels a responsibility to
respond to perceived or actual student demand. When such courses are available,
however, many students choose (or are counseled into) them. Some students are highly
motivated or follow advice from parents who are well aware of the long term
implications of taking demanding courses. Other adolescents, however, may not be
academically ambitious or prepared to dive into demanding academic courses, and some
parents may not have the experience and knowledge to offer guidance in this respect. The
results of this study are consistent with conclusions made by Philip Cusick, who
discussed the implications of extensive student choice in high schools that offered a
broad curriculum with many undemanding courses. He called this system: ...electiveness
accompanied by an open, non-tracked system... There are high school students who are
either very mature or who have sufficient parental guidance to help them make their
choices. But for those who are neither mature nor receiving any parental guidance, such a
system may further disadvantage the already disadvantaged (Cusick 1983, p.76).

We also found that high school curriculum structure influences social equity in
achievement. When there is greater variation in a school’s pattern of mathematics courses
taken below Algebra I, there is more inequity in both coursetaking and achievement
within the school. It is often socially disadvantaged students who take large numbers of
low-level courses (Lee & Bryk 1988, 1989; Lee, Smith, & Croninger 1997; Oakes 1990).



35

These results, coupled with findings that demonstrated that schools where students took
many low-end courses had lower achievement, suggest a direction for reform of the
mathematics curriculum in U.S. high schools. High schools might consider the impact of
offering no more than a very small number of courses below the level of Algebra I. These
are, in essence, remedial courses. Taking such courses should be an unusual event,
intended only as remediation to prepare students to take academic math courses.19

Perhaps schools and districts might want to re-evaluate whether students should be able
to satisfy graduation requirements with low-level courses. If these types of courses meet
these requirements, students can graduate without having taken any academic courses.

Specialized vs. constrained curriculum, revisited. The findings of this study are consistent
with the constrained curriculum approach in high school mathematics. However, the
specialization model remains dominant in U.S. comprehensive high schools. Historically,
the comprehensive public high school has been an institution that under one roof serves
students with a wide range of abilities, interests, and future plans (Cusick 1983; Powell,
et al 1985). The need to serve a diverse group of students in U.S. schools is as important
today as it was at the beginning of this century. There are, however, several modes of
meeting this goal. U.S. public high schools have traditionally approached this task by
offering separate programs to diverse groups of students (Oakes 1985; Powell, et al
1985). Catholic high schools, with a similar tradition of educating socially and academic
diverse students and families, historically approached the same task rather differently
(Bryk, et al 1993).

This curriculum full of specialization and choice became the dominant mode of public
secondary school design when young people could leave high school and move into
relatively high paying jobs that required few skills learned in school. As Murnane and
Levy (1996) point out, however, the workplace that young people now face looks quite
different. These authors conclude that all students need solid mathematical skills to
function in the workplace of the 21st century, whether or not they are planning to attend
college, whether or not they are intellectually curious, and whether or not they are highly
motivated to engage in academic work while they are in high school. Regardless of future
plans or present inclinations, all students now need a solid base in mathematics.

Our results show that high schools where students take more mathematics courses offer
fewer low-end courses. When schools offer mostly demanding academic courses,
students advance further through the academic math curriculum. This pattern of student
coursetaking is associated with their attaining higher achievement by the time they finish
high school. In general, the results described in this report and the conclusions and
implications we draw from them are consistent with several other of our published
articles that focus on the general topic of curriculum structure (Lee 1993; Lee & Bryk
1988, 1989; Lee, Croninger, & Smith 1997; Lee, Smith, & Croninger 1997).

Other Conclusions From This Study

How this study differs from other school effects studies. Because school effects studies
investigate how the characteristics of schools influence the students attending those
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schools, analysis in such studies should reflect the nature of the research questions—they
should be multilevel. Because this study falls into the school effects category, we used
such multilevel methods. Methodologically, the study described in this report is similar to
several other recent studies on this topic that we described at the beginning. However,
this research differs in other ways from those studies. The comments in this section may
be most relevant for researchers considering the HSES data for their own studies. In
particular, we discuss some differences between the HSES data compared to NELS:88.

To whom may we generalize? One difference is the sample. Compared to school effects
studies that used NELS:88 data, the HSES data offer several advantages. One is larger
within-school sample sizes. Statistical theory tells us that larger within-group samples
lead to more precise estimates of the random parameters investigated in multilevel
analysis (here, we estimated coursetaking and achievement, as well as relationships
between both of these outcomes and student SES within each school). Another advantage
is that NCES has supplied school-level design weights with the HSES data. High-school
weights are not included in the NELS data files; researchers who wished to pursue this
type of study had to either confine their analyses to the student level, run multilevel
analyses unweighted, or make their own school weights. None of these options is
satisfactory for secondary data analysts, particularly those who may not be fully familiar
with the NELS school “sampling strategy.”

On the other hand, researchers who use the HSES data should give considerable thought
to how the sample of schools and students used in this study departs from national
representativeness. The original sample of HSES schools comes only from the areas in
and around America’s largest cities, so schools in rural areas are excluded. Researchers
also need to consider the procedure used to augment the sample of tenth graders within
the HSES schools. In each high school in the HSES sample, the entire group of NELS
students who were selected originally (in 1988) and were tenth graders (in 1990) was
retained in the HSES within-school sample. However, augmentation samples of students
in each school were drawn randomly from among the remaining tenth graders in the
school. Thus, the combined sample of students within schools actually is two separate
samples: one is a de facto sample (the original NELS students) and one is close to a
randomly drawn sample. As these are actually two student samples, researchers cannot be
sure how representative the combined sample of students in each school is of the
population of 1990 tenth graders in that school. Additionally, the large amount of missing
data in the HSES leaves researchers unclear about the representativeness of the
operational sample even compared to the original HSES sample described in the
codebook (Scott, et al 1996). These questions about sampling raise issues about the
population of students and schools to whom results should be generalized.

Statistical control for ability. The structure of the HSES dataset, and how it differs from
that of the “parent” NELS data files, may have influenced the findings from this study.
The base year of HSES is 1990, when students were near the end of the tenth grade. Data
were collected for the first time from the augmented portion of the student sample half
way through high school, compared to the full NELS (for which data are available from
students before they entered high school in 1988). Thus, for only part of the HSES
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sample are test scores available at high school entry. If researchers wish to measure
achievement gain over the four years of high school, which is necessary if they wish to
assess the full impact of attending high schools on students (the essence of a school
effects study), then the HSES dataset as a whole will not allow this kind of investigation.
Our approach to this problem was to include a proxy measure of mathematical ability, the
grades students earned in math during their first year of high school. Of course, use of
this proxy factors out a quarter of students’ experiences in high school.

We suggested that this measure was a reasonable proxy for mathematical ability. On the
other hand, our measure is clearly not as good as a score on a test of achievement that is
on the same scale as the outcome measure. We recognize that this control for
mathematical ability at the start of high school may offer imperfect adjustment for this
important personal characteristic. In addition to tapping student ability, course grades
usually reflect school grading policies, relative student performance, and non-academic
behavior. The lack of objective ability measures on students just before they enter high
school, particularly achievement, is a drawback of using HSES data for school effects
study compared to NELS, where test scores are available on virtually all students at
eighth grade.

Our conclusions here are identical to those made by Lee and Bryk (1989), who
commented on their research using the High School and Beyond data:20 “There is always
the possibility, of course, that the estimated school effects may be somewhat different if
we had a better measure of the initial ability of students” (1989, p.186). Although we
could have used the measure of mathematics achievement at the end of tenth grade as a
statistical control for ability, we suggest that by doing this we would be controlling away
even more of the school effects we wish to estimate.

Were sophomore achievement used as a proxy for differences in ability
on entry into high school, the effects of school organization on the
social distribution of achievement would be almost entirely adjusted
away because much of these distributional differences are likely to be
in place by the end of the sophomore year (Lee & Bryk 1989, p. 177).

A new measure of curriculum structure. The variable we used to operationalize students’
progress in the mathematics pipeline represents an innovation in several respects over
past efforts to measure the construct of coursetaking. First, rather than focusing only on
the number of mathematics courses taken (or even the number of academic courses
completed), our measure focuses on the most advanced course students have taken in
high school. Thus, this measure serves as an indicator of both the quantity and the content
of courses taken. Second, because we drew information about coursetaking from
students’ transcripts rather than from self-reports, the measure is quite reliable. Third, the
school-level aggregate of this measure (and its standard deviation) represents one of
several indicators (or perhaps a byproduct) of the structure of the high school
mathematics curriculum. Hopefully, our efforts here represent an advancement in
conceptualizing high school curriculum structure. Other researchers should consider this
new indicator and perhaps apply the idea to other subjects in the curriculum.
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The effects on learning are indirect. Both our findings and our conceptualization of how
the structure of the high school mathematics curriculum influences students’ achievement
in this subject (from figure 1) suggest an alternative approach. Our findings indicate that
curriculum structure influences achievement mostly indirectly, following a two-stage
process. In the first step, what courses a school offers (how many of which type)
determines in large part what courses students take, even after accounting for their
demonstrated performance in the subject. In the second step, the number and type of
courses students take determine their achievement. Research on this topic might focus
more fruitfully on investigating indirect effects such as these, rather than the typical
approach of estimating only direct influences on achievement. Actually, it is usually total
effects that researchers what to know, represented by the combination of direct and
indirect effects.

Final Comments

Our final comments are both substantive and methodological. Our results suggest that
where students go to high school has implications for their success. The composition of
some high schools, with large numbers of low-achieving students and large proportions
of economically disadvantaged students, is associated with lower student achievement
(above and beyond the disadvantage individual students experience from low SES and
low achievement status at entry). The implications from the findings of this study also
pertain to possible reform of the high school math curriculum, at both low and the high
end. The results may also have implications for the curriculum in elementary and middle
schools. Mathematics is a cumulative subject requiring mastery of lower-level concepts
before more advanced topics can be undertaken. To reach a skill level in mathematics
during high school that is recognized as useful after graduation, in general students
should be computationally and conceptually able to take Algebra I at high school entry
(i.e., in the 9th grade).

In at least three respects, this study represents an innovation compared to other recent
studies of curriculum structure (some of them our own). One contribution is the new
measure of curriculum structure, one that adds a new dimension to this work. Another
contribution is the larger samples of students within schools compared to other studies
with NELS data. Larger within-group samples allow more precise estimates of the
constructs that are the focus of any study of this type. A third contribution relates to the
conceptualization of the process through which curriculum structure influences
achievement, a process that is to a great extent indirect as well as direct.

On the other hand, we see a few limitations to using the HSES data for investigations of
this type. One is the smaller and potentially unrepresentative sample of high schools.
Another is the lack of data on a substantial proportion of HSES students as they enter
high school, as well as difficulties involved in estimating school effects only for the last
half of high school. Clearly, researchers who are interested in pursuing investigations that
focus on school effects need to consider these issues as they undertake their work and
make decisions about the best data and methods to use.
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Technical Notes

1. Although the words excellence and effectiveness have similar meanings in the
context of this study, we use the first in reference to student outcomes and the
second in reference to school outcomes.

2. The initial baseline sample size was 9,146 students. After data collection,
however, the effective sample size dropped to 7,642 (Scott, et al 1996). We began
our sample selection with this group. The excluded students had no questionnaire
data.

3. We created a new flag for students with complete mathematics achievement
scores (both tenth and twelfth) because we found that the original test flag
(S290TPFL) includes students with incomplete mathematics test information.

4. In both the text of this report and in Appendix C (where we describe the
construction of all variables used in the study), we provide somewhat more
information than we would for a scholarly article about the same study (e.g., we
have provided actual names of HSES variables for sampling and variables).
Because these data are new and somewhat unfamiliar to researchers, even those
who are familiar with NELS, we hope to make others’ analyses of HSES data
somewhat easier than ours has been.

5. Schools who belong to the National Association of Independent Schools are
homogeneous in the sense that the schools typically are quite selective in two
regards. First, the tuition at these schools are quite high (especially compared to
Catholic schools), so the schools are selective in an economic sense. Second,
many of these schools have academic entrance criteria, so that many NAIS
schools are selective in an academic sense. The title “independent” is quite
appropriate; the schools are almost entirely autonomous from external control. In
other places, we have referred to NAIS schools as “elite private schools.”

6. During the HLM estimation procedure, in the presence of unequal within-school
sample sizes, each school’s contribution is weighted proportionally to its
statistical “precision.” As the within-school sample size decreases, so does its
precision. Consequently, such schools (with fewer than 5 sampled students) are
downweighted during the estimation process. Eliminating such schools from the
analysis, although not absolutely necessary, tends to improve the efficiency of the
algorithm (Bryk & Raudenbush 1992).

7. Group-mean centering is a scaling alternative to grand-mean centering. In the
former, the option we employed in this study, the within-school predictors are
centered around their corresponding school means. This results in intercepts that
can be interpreted as the adjusted mathematics progress (or mathematics
achievement) for “average” students in the schools (where “average” is relative to
the schools’ students). In the latter, the within-school predictors are centered
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around the single grand mean. This results in intercepts that can be interpreted as
the adjusted mathematics progress (or math achievement) for “average” students
(where “average” is defined independent of schools).

8. The purpose of using effect sizes (measured in SD units) is that they are
consistent across outcomes measured in different metrics. Thus, they represent a
standardized measure of the strength of a statistical relationship. Substantive
interpretation of effect sizes suggests that effects over .5 SD are considered large,
those between .3 and .5 SD are moderate, those between .1 and .3 SD are small,
and those below .1 SD are trivial (Rosenthal & Rosnow 1984).

9. Naturally, such claims about the students in a school (e.g., all students in the
school complete calculus) depend upon the randomness of the within-school
sample. Strictly speaking, all students sampled from the school completed
calculus. The larger within-school sample sizes available in HSES minimize the
likelihood that such patterns are subject to substantial sampling error.

10. The average number of completed credits below algebra is a rather gross estimate
of average coursetaking behavior in the school in large part because of the severe
positive skew within the school: in many schools a large proportion of the
students complete no low-level coursework in mathematics. Hence, the school
average combines students with no low-level coursework and students with
possibly many years of low-level coursework.

11. There is a distinction between within-category variation (captured by the SDs of
the means for each of the three groups: low, middle, and high) and within-school
variation (captured by the within-school SDs). The first measure of variation is an
estimate, for example, of the similarity of all high-progress schools (e.g., high-
progress schools as a group offer on average fewer low-level mathematics courses
[mean number of courses = 2.1, see table 2], but there is substantial deviation
from that mean within the category of high-progress schools [standard deviation
of the means = 1.9, see table 2]). In other words, there are some high-progress
schools which offer fewer low-level courses and some high-progress schools
which offer more low-level courses. In addition, we consider the within-school
SDs which are a measure of the variability around the school mean, or a measure
of the similarity of students within the school.

12. Taking social and academic background into account in these within-school
HLMs has increased the lambda reliabilities of the intercepts somewhat: .806 for
the highest course taken (Model 1), .775 for mathematics achievement in Model
2A, and .852 for achievement in Model 2B, compared to .770 and .719 for the two
measures as shown in table 3. The SES/outcome slopes are much less reliable: the
reliability of the SES/coursetaking slope is .237, and the SES/achievement slope
reliability is .260 for Model 2A and .329 for Model 2B. These reliabilities are
comparable to those reported in other school-effects studies that consider slopes
as outcomes.
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13. The within-school HLM models shown in table 4 are rather different from OLS
(ordinary least squares) regressions, in that the hierarchical structure of these
models takes systematic differences between high schools into account. This is a
major advantage of HLM over OLS.

14. The measure of low-level courses offered had almost no effect, whereas the
measure of the number of credits in low-level courses completed was significantly
related to the outcome. It is possible that the differences in effects from the two
measures (which supposedly tap the same general construct) relate to the source
of the information for each. Principals may not have an accurate picture of the
courses actually offered in any given year (but rather may be reporting on those in
the school’s course catalogue). On the other hand, students can only take courses
that are actually taught. Thus, our credits measure represents a more accurate
accounting of what a school’s mathematics curriculum actually represents.

15. We also ran a set of HLM analyses with the same two sets of curriculum structure
controls shown in table 6, but where the within-school model was identical to that
shown in Model 2A of table 4. As the results were very similar to those shown in
table 6, we have not included them here.

16. Our multivariate HLM models include several measures of a school’s curriculum
structure. As indicated in Appendix C, the measure of courses offered was drawn
from principals’ reports, whereas the measures of courses taken were aggregated
from student reports. These two measures, which tap the same construct, are
highly correlated. It is likely that the collinearity between high schools’ offering
more courses and a large amount of coursetaking activity in those courses is
measuring the same thing. Because we use the aggregate measure of student
coursetaking as a proxy measure of offerings (i.e., high school curriculum
structure), we draw conclusions related to schools’ curricular offerings. Lee and
Smith (1995), Lee, Smith, and Croninger (1997) and Lee, Croninger, and Smith
(1997) follow this same procedure for measuring curriculum structure.

17. More variation within schools suggests the possibility of more students at the low
end and/or the high end of the mathematics course pipeline. In general, larger
within-school variation is associated with lower average pipeline progress (r = -
.36). However, after controlling for average progress, the fact that greater
variation leads to higher achievement suggests that the greater variation in this
sample is most likely associated with more students at the higher end of the
pipeline.

18. We have chosen to put a substantive meaning on this finding. However, it is
possible that there is an artifactual explanation. The findings for social
composition are similar to those reported in many studies (including our own), but
our findings about the academic composition are unusual. It is possible that this
context effect is due, at least in part, to our use of the aggregate of our proxy



42

measure of student ability—ninth grade mathematics GPA—as a measure of
academic composition.

19. The typical practice for remediation in Catholic high schools is quite different
from remedial courses in comprehensive public high schools (Bryk, et al 1993).
If, for example, a student entered a Catholic high school without the skills to
succeed in Algebra I, the student would typically be enrolled in that class as a
ninth grader. However, he or she would also be enrolled in a remedial (and non-
credit) class simultaneously; the student would be taking two math classes at the
same time. Remediation would continue until the student was able to succeed in
the regular academic mathematics course on his/her own. In these school settings,
remedial courses do not serve as alternative ways to satisfying graduation
requirements in any subject. Rather, their purpose is to bring students up to
competence to succeed in academic courses. Obviously, this type of program
assumes that, eventually, all students can succeed in an academic curriculum.

20. High School and Beyond (HS&B) is a nationally representative longitudinal study
of high school students’ educational progress conducted by the U.S. Department
of Education. Data on base year samples of high school sophomores and seniors
were collected in 1980, with the same students followed with biennial data
collections. Researchers recognized a limitation in the HS&B design and data
structure: there were no data available on students as they entered high school or
during the early years of high school. To a great extent, this difficulty with HS&B
guided the design of NELS:88. The HSES data suffer, however, from some of the
same difficulties in design as HS&B.
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Appendix A: Analysis of differences between included and excluded members of the
analytic sample

Rationale

The purpose of this analysis is to examine potential differences between the students and schools
included in our analytic sample and those students and schools that were excluded from the
analysis through our sample selection criteria. The discussion is intended to describe (1) the
direction of mean differences between the included and excluded samples, (2) the effect of the
missing data on our analyses, and (3) the generalizability of our findings.

Analytic Sample

Our investigation required information about student demographics, coursetaking behaviors,
math achievement, and a number of school structure characteristics. We selected students with
complete questionnaire information (10th and 12th), complete mathematics test information
(10th and 12th), complete transcript information (9th, 10th, 11th, and 12th), and complete
demographic information (race/ethnicity, socioeconomic status, and gender). We also selected
students in schools with administrative questionnaires available (10th and 12th), and schools that
were public, Catholic, or private schools affiliated with the National Association of Independent
Schools (NAIS). Finally, we selected only those schools with 5 or more students who satisfied
the above criteria. These selections resulted in an analytic sample of 3,430 students in 184
schools.

Excluded Sample

The HSES Data File User’s Manual (Scott, et al 1996) indicates that 9,146 students were
selected for the 1990 baseline student sample (p. 33). This sample explicitly excluded students
with the following characteristics: (1) part-time students; (2) students who transferred out of the
school after the student roster was compiled; (3) students who were on the roster but not in tenth
grade, or those who had been absent or truant for 20 consecutive days and were not expected to
return to school; (4) physically or mentally disabled students who were unable to fill out the
questionnaires or take tests; (5) students for whom English or Spanish was a second language and
who lacked language proficiency to complete the questionnaires and tests; and finally (6) those
students who were deceased (p. 34). Although 9,146 students were selected for the baseline
sample, the User’s Manual notes that five of these baseline students, three of whom filled out
questionnaires, were found to have been sampled in error. These cases were included in the
weighting, but were not included on the HSES data file (p. 33).

Of the 9,141 students initially selected for the baseline sample, only 7,642 students completed
questionnaires. These participating students constitute the effective student sample (see the HSES
Data File User’s Manual, 1996, table 6.1.1-1). Unfortunately, not all of these tenth-grade
students remained in the same school between 1990 and 1992. Unlike the NELS:88 study design,
HSES did not attempt to follow students who dropped out or transferred to a different school. In
addition to these losses, not all of the tenth-grade students who remained in the same school
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between 1990 and 1992 chose to fill out HSES survey questionnaires in 1992. Those students
who left school or chose not to participate in the 1992 followback were excluded from our
analytic student sample. Similarly, 247 schools were selected for the baseline school sample, but
only 242 participated in the baseline questionnaires. These schools constitute the effective school
sample from which we drew our sample.

The samples of 7,642 students in 242 schools provide the basis for our analysis of differences
between those students and schools that were included in our analytic sample and those that were
not. Since 3,430 students and 184 schools were included in our analytic sample, a maximum of
4,212 students and 58 schools should be considered as the excluded group. Because the number
of cases missing information was different for different variables, we include specific excluded
sample values in appendix tables A-1 and A-2.

Procedure

We first identified all participating baseline students (7,642) using the S1STAT baseline status
indicator. Students who were included in our analytic sample (3,430) were coded 1, and students
excluded from the sample (4,212) were coded 0. We then used t-tests to examine potential
differences between the included and excluded students for all of the continuous student
variables used in our study: socioeconomic status, 9th-grade mathematics grade point average,
highest mathematics course completed, and 12th grade mathematics achievement. We used chi-
square tests to examine potential differences between student-level categorical variables: gender
and minority status. Note that all tests of student variables were based on unweighted means.

We followed a similar procedure to investigate potential differences between the 184 schools
included in our analytic sample, and the remaining 58 schools that were not included in the
analysis. We then compared the two groups of schools (included and excluded) on the school-
level variables used in our study: average socioeconomic status, mean and SD of the 9th-grade
mathematics grade point average, mean and SD of the highest level of mathematics courses
completed, the average number of courses below algebra that a school offers, the mean and SD of
the number of below algebra math credits taken by students, the mean and SD of 12th-grade
mathematics achievement, school size, the number of students per school, the proportion of low-
achieving students per school, school sector, a school’s minority status, and the percent of
schools offering calculus. Note that these tests use school weights.

Findings for Excluded Sample: Students

The results of the comparisons clearly indicate that the included and excluded student samples
are demographically and academically different (see appendix table A-1). The excluded sample
of students includes a significantly larger percentage of minorities [t=7.01] and is of
significantly lower socioeconomic status [t=-8.65] compared to the students in the analytic
sample. Excluded students also show significantly lower prior mathematics grades [t=-6.71], and
significantly lower 12th grade mathematics achievement levels [t=-2.03]. The highest level of
mathematics completed by the excluded students is significantly lower than the highest level of
mathematics completed by those students in the analytic sample [t=-19.49]. The findings in
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appendix table A-1 clearly indicate that those students who were excluded from the analytic
sample are also more disadvantaged.

Findings for Excluded Sample: Schools

The differences between included and excluded schools appear less systematic than differences
between included and excluded students (see appendix table A-2). In terms of school
composition, the sample of excluded schools had a significantly larger percentage of minority
students [t=3.13), but the included and excluded samples are not significantly different in
average socioeconomic status [t= .67]. The proportion of low-achieving students in the excluded
school sample was significantly lower than the proportion of low-achieving students in the
analytic sample [t=-11.15]. This is a curious finding that is discussed below in more detail.

In terms of structural characteristics, the average size of the excluded schools is significantly
smaller than the average size of the schools in our analytic sample [t=-5.19]. The excluded
schools also have significantly smaller within-school student samples [t=-7.93]. The analytic
sample includes significantly larger proportions of Catholic [t=-2.35] and NAIS private schools
[t=-2.42]. Given that we explicitly excluded non-NAIS private schools from our analysis, it is
also unsurprising that the two samples show a significant difference in terms of sector [t=11.90].

Appendix table A-2 indicates that included and excluded schools also show a number of key
differences in the school composition and structure, and the structure of the mathematics
curriculum. The most pronounced trend is that schools in our analytic sample tend to have
significantly more variation in mathematics measures (prior grades [t=-8.72], 12th grade
achievement [t=-5.58], and highest course completed [t=-6.05]), although average levels of
these outcomes do not vary significantly between groups [12th grade achievement, t=-1.01;
highest math course completed, t=-.90]. A key exception to this trend is that the average of prior
mathematics grades in excluded schools was significantly higher than the average prior grades in
our analytic sample [t=3.68]. This is consistent with the earlier finding that excluded schools had
lower proportions of low-achieving students.

Although excluded schools have a significantly higher percentage of minority students [t=3.13],
a characteristic that tends to be associated with higher levels of poverty, the excluded sample
shows no SES deficit [t=.67]. Moreover, these excluded schools appear to be advantaged in
terms of student grades (recall that the proportion of low-achieving students is the proportion of
students with mathematics grades below C) [t=3.68]. Despite the indication of high student
grades, excluded schools are much less likely to offer calculus compared to schools in the
analytic sample which have higher proportions of students with low grades [t=-5.93]. These
seeming inconsistencies may be due, in part, to the collection of schools excluded from the
analysis. The unweighted excluded sample includes 37 public schools, 2 Catholic schools, 4
NAIS schools, and 15 non-NAIS private schools. Further analysis revealed that the excluded
public schools have lower SES [t=-2.48], larger minority enrollments [t=3.76], lower average
9th grade mathematics grades [t=-2.10], and lower average 12th grade achievement [t=-2.25]
than their public school counterparts in the analytic sample. The presence of these two
subsamples within the excluded group helps to explain the high percentage of minority students
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and the lack of significant social class differences between included and excluded schools.
Moreover, it seems that evidence of higher grades in the excluded schools could stem from
several sources. The increased selectivity of non-public schools is likely to reduce the proportion
of students with low mathematics grades and to increase the number of students with higher
average early mathematics grades. Since non-public schools compose 69 percent of the weighted
excluded sample, the influence of selectivity on mathematics grades is more pronounced in the
set of excluded schools.

Summary

The purpose of this analysis is to examine whether systematic differences exist between those
students and schools included in our analytic sample and those that are not. Ideally, the included
and excluded samples would not differ. Such a finding would support the claim that our analytic
sample was representative of the full HSES sample, and therefore generalizable to urban and
suburban students and schools in the 30 largest U.S. metropolitan areas. However, we cannot
make this claim. The analytic sample used for this study systematically excludes certain students.

Although significant compositional, structural, and curricular differences exist between schools
that were included and excluded from the analysis, these differences are not systematic, and do
not suggest that excluded schools are either more advantaged or more disadvantaged. However,
further analysis of the excluded sample suggests that excluded public schools were significantly
more disadvantaged in terms of composition and curricular structure compared to public schools
included in the analysis. This suggests that our multivariate analyses may not provide adequate
control for select school characteristics.

The HSES sample was designed to represent students and schools in the urban and suburban
portions of the 30 largest U.S. metropolitan areas. The previous analysis suggests that our sample
is generalizable to a slightly more affluent segment of students and schools within these areas.
We recognize that sample selection always represents a balance between samples adequate for
the type of analysis employed and generalizability. Because the full HSES sample itself is not
representative of the U.S. high school population of students and schools, we conclude that our
sample selection criteria are appropriate.
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Appendix Table A-1.--Means and sample sizes for student-level variables

(Included, n = 3,430; excluded, n = 4,212)

Variable Included students Excluded students Excluded students

Mean Mean
Variable-Specific

Sample Size1

Percent Female 48 49 4,212
Percent Minority 30 38* 4,073
Social Class .30 .14* 3,940
Mathematics GPA, Grade 9 2.46 2.28* 2,472
Highest Math Course Completed 5.69 4.80* 2,701
12th-Grade Mathematics Achievement 51.50 50.33* 932
* p<.05

1. Excluded sample means were calculated using excluded cases with available information.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Effectiveness Study
(HSES:90/92).
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Appendix Table A-2.--Means and sample sizes for school-level variables

(Included, n = 184; excluded, n = 58)

Variable Included schools Excluded schools Excluded schools

Mean Mean
Variable-Specific

Sample Size1

A. School Composition 26 46* 56
Percent High Minority Schools 31 14* 58
Percent of Low-Achieving Students .29 .33 57
Average SES 2.46 2.28* 2,472

B, School Structure
Percent Catholic Schools 20 9* 58
Percent NAIS Schools 8 2* 58
Percent “Other” Private Schools 0 58* 58
School Size 1176 616* 58
Student Count Per School 2 31 21* 58

C. Structure of Mathematics Curriculum
Percent Offering Calculus 82 44* 42
Mean, Courses Offered Below Algebra 3.77 3.70 58
Mean, Credits Taken Below Algebra .63 .72 42
SD, Credits Taken Below Algebra .71 .66 42

D. Student Achievement
Mean, Mathematics GPA, Grade 9 2.38 2.65* 42
SD, Mathematics GPA, Grade 9 .96 .69* 33
Mean, Mathematics 12 Achievement 50.77 49.24 49
SD, Mathematics 12 Achievement 12.21 9.91* 40
Mean, Highest Mathematics Course Completed 5.62 5.47 38
SD, Highest Mathematics Course Completed 1.26 .76* 31
* p<.05

1. Excluded sample means were calculated using excluded cases with available information.
2. This variable provides the mean number of students in each school in our sample. To obtain this number, we
aggregated the student ID variable to the school level and created a new variable, which we called “count.” The
mean of this variable for each group is presented here.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Effectiveness Study
(HSES:90/92).
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Appendix B: A brief discussion of school- and student-level weights in the HSES data set

The Need for Weights
Because of the complex sampling strategies involved in the HSES data set, the development of
school-weights was an especially complicated process:

The difficulty in developing weights stemmed from the method of “selecting”
the 10th-grade schools constituting the baseline sample. Tenth-grade schools
were selected as a direct consequence of the fact that one or more NELS:88
first follow-up sample members attended the school in 1990. HSES schools
were not selected with known probabilities from an initial completed sampling
frame. Therefore, to create school weights, it was necessary to determine for
each HSES school the probabilities associated with students’ transition from a
NELS:88 base year (1988) eighth-grade school to a particular 10th-grade
school in 1990 (HSES Data File User’s Manual, 1996, p. 35)

Selecting a School-Level Weight

Three distinct baseline weighting procedures (employing distinct probability models) resulted in
a set of school-level weights (see the HSES Data File User’s Manual, 1996, for a complete
discussion of the weights). These three weights are not highly correlated with one another.
Weight 1 (the Spencer-Foran weight) and weight 3 (the Qian-Frankel weight) are most highly
correlated (r = .5656), whereas weights 2 (the Kaufman weight) and 3 are only modestly
correlated (r = .2855). Weights 1 and 2 have a rather low relationship to one another (r = .1496).

In keeping with the low correlations between them, the weights perform in a differential fashion
and “none of the weighting models provides consistently close agreement between population
and sample estimates” (Appendix M, HSES Data File User’s Manual, 1996. p. M-6). Our own
preliminary exploration of the three weights in the context of simple HLM models of 12th-grade
mathematics achievement was similarly nonconclusive. Although the size of coefficients
changed under the four conditions (unweighted and weighted separately by each of the three
school-level weights), in general the significance levels did not. The chi-square statistics testing
between-school variation in outcomes increased when weighted, but the significance levels
remained similar.

Neither our analyses nor those described in Appendix M of the HSES Data File User’s Manual
provided unequivocal evidence of the greater efficacy of a particular school-level weight.
Consequently, the choice of a school-level weight seems to remain rather arbitrary. We decided
to use the Qian-Frankel weight, in part because it is most strongly related to the other two
(especially to the Spencer-Foran weight).

Concerns with the Student-Level Weights

Despite the indicated optimism—“Once school weights were developed, the calculation of
student weights was a relatively straightforward process” (HSES Data File User’s Manual, 1996,
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p. 36)—the construction of the HSES student-level weights proved to be less than “straight-
forward”:

Given the way in which the HSES student sample was selected, students within
a selected HSES school can be treated as two strata: students who were
members of the NELS:88 sample and those who were not. Since all of the
students who were members of the NELS:88 sample and who were enrolled in
a HSES school were included in the HSES student sample with certainty, the
probability P3 (the conditional probability that the 10th-grade student is in the
HSES student sample, given that the student’s 10th-grade school is in the
HSES school sample) for these students equals 1. The students who were not
members of the NELS:88 student sample were selected by systematic random
sampling, which approximates simple random sampling without replacement.
Therefore, P3, for these students is equal to their within-school selection
probability (HSES Data File User’s Manual, 1996, p. 40).

While the conceptualization of the student sample as composed of two strata is straightforward
enough, the assignment of P3 = 1 for those HSES students who were members of the NELS:88
sample results in practical concerns for both (a) the overall student weights (used for descriptive
purposes, factor analyses, preliminary OLS regression models, etc.) and (b) the within-school
weight (used for HLM modeling). All but one of the student-level HSES weights (the exception
being the student-level, 8-12 panel weight, S288PNWT) systematically downsize the original
NELS:88 students within the HSES sample. This downsizing is not modest in magnitude, but
essentially eliminates those cases from statistical analyses. Hence, the twofold strata are replaced
with what amounts to a single stratum.

Roughly one third (unweighted) of the entire HSES sample is drawn from the original NELS:88
students. This is also true of our reduced study sample of 3430. These relative proportions are
true, however, for the unweighted samples only. Employing the HSES weights reduces the
stratum of NELS:88 students to less than 5 percent of the sample. This alteration in the relative
proportions of sample membership affects the magnitude and significance of parameter estimates
in multivariate models: weighted and unweighted results are often quite dissimilar, much more so
than with other NELS studies (e.g., High School and Beyond, NELS:88).

In their current state, the HSES student-level weights are not effective or useful. New weights are
being constructed that preserve both strata of the student sample. All analyses we present in this
report involving student-level data are unweighted at the student level. This includes: (a)
descriptive information on the student sample, and (b) HLM models (weighted using the school-
level weight only—without the within-school student weight).
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Appendix C: Details of construction of variables and weights used in the study of
curriculum structure and mathematics achievement

All variables used in this study were drawn from the following HSES files: student, school, and
transcript.

Variables Describing Students:  Outcome Measures
12th Grade Mathematics Achievement.  A continuous variable measuring IRT-estimated

number right on the 12th grade mathematics test (S22XMIRR from student file) [M =
51.50, SD = 15.22]. For multivariate analysis, normalized on students to a z-score metric
[M = 0, SD = 1].

Highest Level of Mathematics Course Completed.  Eight-level variable constructed from
NELS/HSES student transcript data (student course credits in mathematics). The scale
was created by selecting the highest level of mathematics course each student completed
with a passing grade during his/her four years in high school. More detail on the logic of
construction, and how the variable behaves in multivariate analyses, is available from the
authors. The variable will be available on new releases of NELS and HSES data from
NCES [M = 5.69, SD = 1.66]. For multivariate analysis, normalized on students to a z-
score metric [M = 0, SD = 1].

Level 1: No Mathematics.  Student took no mathematics courses in high school.
Level 2: Non-Academic.  General mathematics 1 or 2, basic mathematics 1, 2, or 3,

consumer mathematics, vocational mathematics, or review.
Level 3: Low Academic.  Pre-algebra, algebra I stretched over two years, informal

geometry.
Level 4: Middle Academic I.  Algebra I, plane geometry, solid geometry, unified

mathematics 1 or 2, pure mathematics.
Level 5: Middle Academic II.  Algebra II, unified mathematics 3.
Level 6: Advanced I.  Algebra 3, algebra/trig, analytic geometry, trigonometry,

probability, statistics, independent study.
Level 7: Advanced II.  Pre-calculus, introductory analysis.
Level 8: Advanced III.  Calculus, AP calculus, calculus/analytic geometry.

Variables Describing Students:  Background Characteristics
Social Class (SES).  Socioeconomic status (composite includes parents’ education, father’s

occupation, family income, and several educationally-oriented household possessions
[S2SES from the student file]), normalized on students to a z-score metric (M = 0, SD =
1).

Gender.  Gender of student; coded 1 = female, 0 = male (recoded S1SEX from the student file).
[48.2 percent are female, 51.8 percent are male]

Minority Status.  Race/ethnicity of student; coded African American, Hispanic, or Native
American = 1; White or Asian = 0 (recoded S1RACE from the student file). [30.3 percent
are minority, 69.7 percent are non-minority]
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9th Grade Mathematics Grades.  A continuous variable indicating students’ grades (at the end
of 9th grade) in the subject of mathematics (taken from the transcript file) [M = 2.46, SD
= 1.01]. For multivariate analysis, normalized on students to a z-score metric [M = 0, SD
= 1].

Variables Describing Schools:  Mathematics Curriculum Structure
School Mean, Highest Mathematics Course Completed.  A school aggregate from student

transcript data; the within-school average of the student-level measure: highest
mathematics course completed. This measure represents the average highest mathematics
course completed for each school [average of the school means = 5.62, standard deviation
of the school means = 1.09]. For multivariate analysis, normalized on schools to a z-score
metric [M = 0, SD = 1].

School SD, Highest Mathematics Course Completed.  A school aggregate from student
transcript data; the within-school standard deviation of the highest mathematics course
completed. This measure represents the variability of students’ mathematics coursetaking
in each school [average of the school standard deviations = 1.26, standard deviation of the
school SDs = .46]. For multivariate analysis, normalized on schools to a z-score metric
[M = 0, SD = 1].

Number of Mathematics Courses Offered Below Algebra.  School-reported curriculum
offerings, sum of six dummy-coded course offerings indicators: S1C75R2 (General
Mathematics, grade 9), S1C75S2 (General Mathematics, grades 10-12), S1C75T2
(Business Mathematics), S1C75U2 (Consumer Mathematics), S1C75V2 (Remedial
Mathematics), S1C75W2 (Pre-Algebra), [M = 3.77, SD = 1.79]. For multivariate
analysis, normalized on schools to standard deviation units [M = 2.20, SD = 1.00].

School Mean, Number of Mathematics Credits Completed Below Algebra.  A school
aggregate measure from student transcript data; the within-school average number of
credits completed in the following mathematics courses [CSSC codes]: 270100
(MATHEMATICS, OTHER GENERAL), 270101 (MATHEMATICS 7), 270103
(MATHEMATICS 8), 270104 (MATHEMATICS 8, ACCEL), 270106
(MATHEMATICS 1, GENERAL), 270107 (MATHEMATICS 2, GENERAL), 270108
(SCIENCE MATHEMATICS), 270109 (MATHEMATICS IN THE ARTS), 270110
(MATHEMATICS, VOCATIONAL), 270111 (TECHNICAL MATHEMATICS),
270112 (MATHEMATICS REVIEW), 270113 (MATHEMATICS TUTORING), 270114
(CONSUMER MATHEMATICS), 270300 (APPLIED MATHEMATICS, OTHER),
270601 (BASIC MATHEMATICS 1), 270602 (BASIC MATHEMATICS 2), 270603
(BASIC MATHEMATICS 3), 270604 (BASIC MATHEMATICS 4), 270401 (PRE-
ALGEBRA), 270402 (ALGEBRA 1, PART 1), 270403 (ALGEBRA 1, PART 2), 270409
(GEOMETRY, INFORMAL), [average of the school means = .63, standard deviation of
the school means = .49]. This measure represents the average number of low-level
mathematics courses completed for each school. For multivariate analysis, normalized on
schools to standard deviation units [M = 1.26, SD = 1.00].
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School SD, Number of Mathematics Credits Completed Below Algebra.  School aggregate
measures from student transcript data; the within-school standard deviation in the number
of credits in the following mathematics courses [CSSC codes]: 270100
(MATHEMATICS, OTHER GENERAL), 270101 (MATHEMATICS 7), 270103
(MATHEMATICS 8), 270104 (MATHEMATICS 8, ACCEL), 270106
(MATHEMATICS 1, GENERAL), 270107 (MATHEMATICS 2, GENERAL), 270108
(SCIENCE MATHEMATICS), 270109 (MATHEMATICS IN THE ARTS), 270110
(MATHEMATICS, VOCATIONAL), 270111 (TECHNICAL MATHEMATICS),
270112 (MATHEMATICS REVIEW), 270113 (MATHEMATICS TUTORING), 270114
(CONSUMER MATHEMATICS), 270300 (APPLIED MATHEMATICS, OTHER),
270601 (BASIC MATHEMATICS 1), 270602 (BASIC MATHEMATICS 2), 270603
(BASIC MATHEMATICS 3), 270604 (BASIC MATHEMATICS 4), 270401 (PRE-
ALGEBRA), 270402 (ALGEBRA 1, PART 1), 270403 (ALGEBRA 1, PART 2), 270409
(GEOMETRY, INFORMAL). [average of the school standard deviations = .71, standard
deviation of the school SDs = .37]. This measure represents the variability of low-level
mathematics coursetaking in each school. For multivariate analyses, normalized on
schools to standard deviation units [M = 1.88, SD = 1.00].

Calculus Offered.  In order to explore the availability and influence of calculus in the
mathematics curriculum, we considered data from three sources: (1) the HSES Course
Offerings File, (2) the HSES School File, and (3) the HSES Student Transcript File.
Unfortunately, the Course Offerings File proved to be a problematic data source with
substantial missing data. Over 30 of the schools in our analytic sample were missing
course offerings data, and data from other schools seemed highly unlikely (e.g., one
school claimed calculus as the only math course available, another school was coded as
offering three years of low-level, general math and one year of calculus).

Data from the second and third sources resulted in two possible measures. The first
variable used school responses (S1C75EE1 and S1C75FF1) to identify those schools that
claimed to offer calculus. Unfortunately, 40 schools in our analytic sample were missing
information about their calculus course offerings. Given the substantial amount of
missing information, we decided to explore the possible use of aggregated student-level
data.

We constructed the second variable by first identifying all students whose transcript
information indicated that they had taken calculus (students who scored at the highest
level on the math coursetaking variable, MTHQUAL8). We then aggregated these scores
to the school-level in such a way that if at least one student in the school indicated that
they had taken calculus, the school was identified as offering calculus. One of the
advantages of this method is that it identifies whether calculus was actually taken in a
school, and not simply whether a calculus course was “on the books.” None of the
schools in our analytic sample had missing data for this variable.

Comparisons between these two measures of the availability of calculus revealed some
inconsistencies: (1) there were schools claiming to offer calculus but no one in our school
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sample had elected it, and (2) there were schools claiming not to offer calculus but
sample members had nonetheless completed a calculus course. In the first instance, the
discrepancy could simply be due to sampling, but it could also reflect a course that is
offered only “on paper.” In the second instance, the discrepancy might occur if a student
went elsewhere (i.e., a nearby college) for calculus instruction. Additional inquiries led us
to believe that the measure based on actual course election was better suited for use in the
multivariate models. Consequently, the availability of calculus is coded 1 = at least one
student in the within-school sample completed calculus, and 0 = no one in the within-
school sample completed calculus [82 percent of schools offer calculus, 18 percent do
not].

Variables Describing Schools:  Composition and Structure
School Sector.  Two dummy variables (created from G10CTRL2, from school file):

Catholic, coded Catholic = 1, public and elite private schools coded 0.
NAIS, coded NAIS = 1, public and Catholic schools coded 0.
In multivariate analyses, public schools serve as the comparison group [72.1 percent are
public, 19.9 percent are Catholic, 8.0 percent are private].

School Mean, SES.  A school-level aggregate; the within-school average of the student SES
variable described above [average of the school means = .29, standard deviation of the
school means = .49]. This measure represents the average SES of each school. For
multivariate analysis, normalized on schools to a z-score metric [M = 0, SD = 1].

School Size.  Continuous variable indicating the number of students enrolled in each school
(S1C2 from the school file) [M = 1176, SD = 748]. For multivariate analysis, normalized
on schools to a z-score metric [M = 0, SD = 1].

Minority Concentration.  A dummy-coded variable (a sum of the percent Native American 10th
graders [S1C27A], percent Hispanic 10th graders [S1C27D], and percent Black (not
Hispanic) 10th graders [S1C27E], from the school file); schools with proportions of
minority students 40 percent or above coded 1, others coded 0. [26 percent of schools are
high minority, 74 percent are low minority]

Proportion of Low-Achieving Students.  This measure indicates the proportion of students in
each school who earned below a ‘C’ in 9th grade mathematics [M = .31, SD = .18]. For
multivariate analysis, normalized on schools to a z-score metric [M = 0, SD = 1].

School Mean, 12th Grade Mathematics Achievement.  A school aggregate; the within-school
average of 12th grade mathematics achievement [average of the school means = 50.77,
standard deviation of the school means = 8.09]. This measure represents the average 12th
grade mathematics achievement for each school. Used for descriptive purposes only.

School SD, 12th Grade Mathematics Achievement.  A school aggregate; the within-school
standard deviation of 12th grade mathematics achievement [average of the school
standard deviations = 12.21, standard deviation of the school SDs = 2.47]. This measure
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represents the variability in 12th grade mathematics achievement for each school. Used
for descriptive purposes only.

School Mean, 9th Grade Mathematics Grades.  A school aggregate; the within-school average
of 9th grade mathematics grades for each school [average of the school means = 2.38,
standard deviation of the school means = .41]. This measure represents the average 12th
grade mathematics grades for each school. For multivariate analysis, normalized on
schools to a z-score metric [M = 0, SD = 1].

School SD, 9th Grade Mathematics Grades.  A school aggregate; the within-school standard
deviation of 9th grade mathematics grades [average of the school standard deviations =
.96, standard deviation of the school SDs = .19]. For multivariate analysis, normalized on
schools to a z-score metric [M = 0, SD = 1].

Weight
School-Level Weight.  For all school-level analyses, descriptive and multivariate, we employ

S1SCWT3, which is the Qian-Frankel weight [normalized to have a mean of 1 on our 184
schools].
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Appendix D: A brief description of typical hierarchical linear models used in the study of
curriculum structure and mathematics achievement

Within-School Models

A simple form of Hierarchical Linear Model (HLM) used in this study consists of two equations,
a within- and a between-school model. Some of the parameters estimated in the within-school
model become outcomes to be explained in between-school equations. Our within-school model
investigates the mathematics achievement at the end of high school of student i in school j, Yij, as
a function of a student’s k social and academic background characteristics, Xijk, and random
error, eij. The X-variables discussed here are socioeconomic status (SES), gender, minority
status, and students’ grades in mathematics in the first year of high school, and the highest level
of mathematics course the student has taken over the four years of high school. A typical HLM
within-school equation is as follows:

MATHACH ij = βj0 + βj1SESij + βj2FEMALEij + βj3MINORITY ij +

βj4MTHGDESij + βj5MATHCRSij + Rij.

The βjk regression coefficients are structural relations occurring within school j that
indicate how achievement within each school is distributed across the measured student
characteristics. In the HLM model that we investigated here, we were particularly interested in
two β parameters:

βj0 = the average 12th-grade math achievement score for students in school j (adjusted for
academic and social background), and

βj1 = the relationship between SES and achievement among students in school j, which
we refer to as the SES/achievement slope.

In this model we initially estimated all distributional effects (the β parameters) in our HLM
analyses. However, we were not interested in modeling the additional parameters as functions of
the school organization or curricular structure. The limited sample size (and resulting degrees of
freedom) within schools constrains our ability to estimate random parameters, but it does not
limit the number of fixed variables that may be included as statistical controls. Consequently,
between-school variability in the other within-school controls (gender, minority status, 9th-grade
grades, and coursetaking) is typically constrained to 0 (i.e., they do not vary randomly between
schools). Thus, a final within-school model might be:

βij = βj0 + βj1SESij + β2FEMALE + . . . + β5MATHCRSij + eij.
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Between-School Models

In the second set of equations, we model the random-effect β parameters, adjusted for student
characteristics, as functions of school-level organizational and structural characteristics (W-
variables). We estimate a single between-school model for each outcome, estimating the effects
of contextual features on the two outcomes (β0 and β1). A typical between-school model is as
follows:

            βkj = γk0 + γk1W1j + γk2W2j + ... + γkpWpj + Ukj.

The parameters of interest here are the effects associated with aspects of the school’s curriculum
structure (W variables), represented by the γpk (gamma) coefficients. In this instance, we might be
interested in modeling between-school differences in adjusted math achievement as a function of
two curriculum structure (W) variables: the average number of low-level math courses taken
(LOWCRDTS) and whether the school offers calculus (CALCULUS). Although this model is
considerably simplified from the full HLM models in this paper, a typical HLM between-school
model might be:

AVMTHACH ( βj0) = γ00 + γ10LOWCRDTSj + γ20CALCULUSj + Uj0.

In this model, we interpret the gamma coefficients as school effects on average achievement as
having following meaning:

γ00 = grand mean for adjusted 12-grade mathematics achievement;

γ10 = the effect of the average low-level courses taken in each school on average
mathematics achievement;

γ20 = the effect of calculus availability in each school on average math achievement.

Similarly, we could model β1, the SES/achievement slope—a direct measure of the social
distribution of achievement in a school—as a function of factors describing school curriculum
structure.

SES SLOPE (βj1) = γ01 + γ11LOWCRDTSj + γ21CALCULUSj + Uj1.

Gamma coefficients, which quantify school effects on this measure of social equity within
schools, have the following interpretation:

γ01 = grand mean for the relationship between SES and achievement (typically this is a
positive relationship);
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γ11 = the effect of the average low-level courses taken in each school on the
SES/achievement slope (a positive effect increases inequity; a negative effect means
more social equity); and

γ21 = the effect of calculus availability in each school on the SES/achievement slope
(similar meaning for positive and negative effects).

Because error terms in HLM within-school (eij) and between-school models (Ukj) are complex,
conventional linear model techniques (e.g., analysis of variance or ordinary squares regression)
are inadequate for the estimation procedure. However, developments in statistical theory and
computation, available through the HLM software, make such estimation possible with
maximum likelihood procedures (see Bryk and Raudenbush, 1992, for details). Briefly, the total
variance in each outcome is partitioned into two components: parameter and error variance. Only
effects on the parameter variance are estimated in HLM. This is an important distinction, as it is
only variability in the structural parameters, Var(βjk), which can be explained by factors
describing curriculum structure. Efforts to estimate school effects with general linear model
methods have typically resulted in their being systematically underestimated for this reason.
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