APPENDIXD

(EOSE Findings and Recommendations 1980-2002

Appendix D summarizes CEOSE findings and recommendations as reported in minutes and each of its biennial reports to Congress. Each biennial summary is presented in a table that states the findings; indicates whether they apply "inside NSF," or "outside" in the broader scientific community, or both; and provides the recommendations made by CEOSE at the time. The title of each table states the year the biennial report was published and identifies the Congress to which it was delivered. Since CEOSE biennial reports were issued in various years and in various formats, and since CEOSE has had periods of greater or lesser activity during its existence, the tables in Appendix D are uneven in length, content, and year of issue.

The CEOSE membership list included in each report period is also provided, both to acknowledge those whose work on the Committee resulted in the cited findings and recommendations, and to underscore the rich scientific, institutional, geographic, and demographic diversity that has characterized CEOSE membership throughout its history.

The CEOSE membership of 2003-2004 thanks Dr. Walter V. Collier and his colleagues at C\&A Technologies, Inc., for extracting these summaries from CEOSE minutes and biennial reports and for preparing Appendix D.

Summary of CEOSE (CEOST) Findings and Recommendations
 Broadening Participation Overall
 Year: 1981 Congress: 96th

CEOSE Findings	Setting	CEOSE Recommendations
A major problem for women and minority scientists is underutilization (i.e., higher unemployment, slower career advancement and lower salaries than their majority male counterparts). ${ }^{1}$	Inside/ outside NSF	National Science Foundation (NSF) should (1) leverage its influence on universities and research institutes to promote more equitable employment opportunities for women and minorities; (2) have the Division of Personnel and Management assess performance plans and include statement of equal opportunity for women and minorities; (3) staff should visit grantee sites to encourage women and minorities to enter S\&E; (4) train Program Officers on women's and minority issues, and expand mailing list for announcements to women and minorities; (5) keep Executive and Management Council informed about women and minority initiatives; (6) target women and minority programs for FY 1983 funding; (7) establish National Science Board (NSB) pre-college commission; and (8) begin collecting data on women and minorities. ${ }^{2}$
Due to Federal budget cuts, the NSF submitted no new programs or legislative recommendations to the Office of Management and Budget (OMB) and to the Congress to promote equal S\&E employment opportunities for women and minorities in FY 1981. Instead, NSF focused on current programs, policies and activities, and collaborated with others to achieve greater participation of women and minorities in science and engineering. ${ }^{3}$	Inside NSF	Funding for career facilitation and re-entry programs should be included in NSF budget for FY 1982 and future years. Funds for National Research Opportunity Grants should be restored to these budgets. A study of personnel policies in connection with NSF grants should be conducted. Appropriate sex/race distributions should be considered in awarding grants. NSF should place a priority on gathering statistics on women and minorities. Affirmative action policies of grantees should be considered. Minority women should be specifically included in all programs. ${ }^{4}$
Implementing proposals throughout the research directorates requires an effective management structure. ${ }^{5}$	Inside NSF	NSF's management structure is not optimized to facilitate participation of minorities and other underrepresented groups. ${ }^{6}$

${ }^{1}$ Minutes of CEOSE Subcommittee on Women, September 16-17, 1981, p. 7.
${ }^{2}$ Ibid., pp. 2-3 and 8.
${ }^{3}$ Proposals of the National Science Foundation to Promote the Full Participation of Minorities and Women in Science and Engineering, December 15, 1981, pp. 3-4.
${ }^{4}$ Ibid., p. 5.
${ }^{5}$ Ibid., p. 14.
${ }^{6}$ lbid.

Summary of CEOSE (CEOST) Findings and Recommendations
 Year: 1981 Congress: 96th
 Target Group: Women

CEOSE Findings	Setting	CEOSE Recommendations
Women in S\&E are under- represented within the NSF organization.	Inside NSF	CEOSE proposed strategies for the Foundation's division directors and program officers to involve women in science and technology on many fronts: (1) staff awareness orientation; (2) announcements for funding and technical assistance; and (3) involvement on proposal review, advisory panels and committees. ${ }^{8}$
The number of students enrolled in science and mathematics drops markedly in the senior year of high school. Even fewer girls than boys pursue science curricula.	NSF	Outside Programs should be undertaken to reduce differences in science and engineering education between boys and girls. ${ }^{.0}$ Funds in grants should be made available for women and minority high school and college students to participate in research and/or research related activities at organizations with established programs to promote women in S\&E. ${ }^{11}$
Historically, women face barriers that restrict their professional options in S\&E. ${ }^{12}$	Inside/ outside NSF	Proposals for improving the status of women and minorities in the Foundation's programs concerned with research in the academic community should be considered by NSF. ${ }^{13}$

[^0]
Summary of CEOSE (CEOST) Findings and Recommendations
 Year: 1981 Congress: 96th Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations					
There's evidence that participation of minorities in S\&E is low. ${ }^{14}$	Inside/ outside NSF	Increase awareness and sensitivity of NSF staff to problems blocking minority entry to S\&E professions. Improve representation of minorities on NSF professional staff and panels. Ensure NSF announcements go to minority institu- tions. Offer supplemental funding support and technical assistance for minority research grant applicants. Continue support for Minority Research Initiation program.					
${ }^{15}$			$	$	Minority scientists need to be acquainted with NSF programs. ${ }^{16}$	Inside NSF	Minority scientists and key administrators might spend several months in residence at the NSF. ${ }^{6,617}$
:---	:---	:---					
Minority students and girls have higher drop-out rates from science programs at the junior high and high school levels than other students. ${ }^{14}$	Out- side NSF	Maintaining student interest and continuing study in secondary school science and mathematics is all the more important. ${ }^{15}$					
NSF has demographic data on participants in NSF fellowship programs. ${ }^{16}$	Inside NSF	Data collection on minority groups and women needs to be improved for better tracking and summary of NSF policies. ${ }^{17}$					
While the number and proportion of doctorates in S\&E fields have increased over the last decade, the overall proportion of those awarded to minorities remains relatively low. ${ }^{18}$	Out- side NSF	NSF should consider the implementation of a set goal for doctoral degrees for minorities. ${ }^{19}$					
It is imperative that the Foundation coordinates its efforts, experience and resources with those of other sectors to improve the participation of minorities in S\&E. ${ }^{20}$	Inside/ outside NSF	(1) Develop ways for the Federal and private sectors to work together to increase contributions by minorities to science and technology, and (2) monitor progress. ${ }^{21}$					

[^1]
NATIONAL SCIENCE FOUNDATION COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND TECHNOLOGY MEMBERSHIP LIST 1981

Dr. Cora B. Marrett, Chairperson
Professor of Sociology
University of Wisconsin
Madison, WI

Dr. Don Colesto Ahshapanek
Biology Department
Haskell Indian Junior College
Lawrence, KS
Dr. Carol Jo Crannell
NASA Goddard Space Flight Center Greenbelt, MD

Dr. Ewaugh Fields
Dean, University of the District of Columbia
Washington, DC
Mr. Robert A. Finnell
Executive Director of Mathematics, Engineering, Science Achievement University of California, Berkeley
Berkeley, CA

Dr. John E. Gibson, Dean
School of Engineering \& Applied Science
University of Virginia
Charlottesville, Virginia

Dr. Robert H. Harvey
Vice President
Knoxville College
Knoxville, Tennessee

Dr. Lilli S. Hornig
Executive Director
Higher Education Resource Services
Wellesley College
Wellesley, Massachusetts

NATIONAL SCIENCE FOUNDATION
COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND TECHNOLOGY STAFF SUPPORT
(As of May 1981)

EXECUTIVE SECRETARY
Mrs. Mary F. Poats
National Science Foundation
Washington, DC
Mrs. Louise J. McIntire
Staff Secretary
National Science Foundation
Washington, DC

Mrs. Lois. J. Hamaty
Staff Associate
National Science Foundation
Washington, DC

NSF LIAISONS FOR SUBCOMMITTEES

Subcommittee on Women	Subcommittee on Minorities
Dr. Mary E. Clutter	Dr. Langley A. Spurlock

Summary of CEOSE (CEOST) Findings and Recommendations
 Broadening Participation Overall
 Year: 1981-1982 Congress: $97^{\text {th }}$

CEOSE Findings	Setting	CEOSE Recommendations
The apparent retreat from the enforcement of equal opportunity legislation, affirmative action policies and programs threatens to reverse the gains made by underrepresented groups.	Inside/ outside NSF	NSF should (1) bolster and protect affirmative action policies and other equal opportunity legislation to remove barriers against underrepresented persons which results in disproportionate or unequal opportunities for them; and (2) build "equality assurance" in all Foundation programs and steadfastly enforce equal opportunity and affirmative action legislation throughout the Federal Government. ${ }^{2}$
The data on women, minority and persons with disabilities sub-groups of scientists and engineers are far from adequate.	Inside/ outside NSF	If programs appropriate to the needs and experiences of various groups are to be devised, we must have better understanding of these groups. ${ }^{4}$
The current shortage of S\&E personnel will persist unless there is greater recruitment of women from all backgrounds, including the physically disabled.	Inside/ outside NSF	To help overcome barriers faced by women scientists and engineers, NSF should (1) initiate greater recruitment efforts; (2) inform women about NSF grant opportunities; (3) increase mentoring and research support on the undergraduate level; (4) continue funding for NSF re-entry programs; and (5) support research to assess demand for skilled S\&E personnel. ${ }^{6}$
Minority and physically handicapped women are neither entering nor advancing in scientific and technical careers at rates commensurate with their numbers in the population.	Inside/ outside NSF	NSF should (1) continue financial support of targeted women's programs; (2) reinstate funds for programs modeled after the career workshops and the educational project for the handicapped; and (3) enlist public and private organizations to lend their support to proven performance-enhancing educational models. ${ }^{\text {a }}$

[^2]| CEOSE Findings | Setting | CEOSE Recommendations |
| :---: | :---: | :---: |
| A matched sample study found that women scientists earn less than their male counterparts, especially in chemistry; and that women are less likely to get promoted. ${ }^{9}$ | Outside NSF | NSF should contact universities to hold student discussion groups; and the NSB should incorporate criteria within the research project selection process that draw attention to this issue of wage and advancement disparities. ${ }^{10}$ |
| The untapped pool of potential S\&E women prospects now predominate in student populations. ${ }^{11}$ | Outside NSF | NSF should (1) continue funding targeted science and education programs at all levels; and (2) emulate successful educational S\&E models in and outside of the Foundation. ${ }^{12}$ |
| Equality of access and advancement is needed to assure equal opportunity throughout the careers of women to attract large numbers of them in scientific research. ${ }^{13}$ | Inside/ outside NSF | NSF should (1) develop programs targeted to women scientists who are involved in research projects, review panels and all other phases of the research process; and (2) fund programs facilitating the entry and re-entry of women scientists and engineers. ${ }^{14}$ |
| Significant gaps exist in the data currently available on women, minority women and women with physical handicaps. ${ }^{15}$ | Inside NSF | NSF should (1) gather data that are detailed enough to describe the unique problems as well as the successes of women, minority women and women with handicapsand the subgroups among them; and (2) conduct comparison studies to assess the demand and market value of skilled S\&E personnel versus the potential economic loss for the underutilization of women in these target groups. ${ }^{16}$ |
| Minority women comprise 12 percent of the population and 1 percent of the doctoral scientists and engineers. ${ }^{17}$ | Inside/ outside NSF | CEOST recommended improvements: (1) more accurate data, demographic classifications of minority subgroups; (2) greater minority representation in Federal programs; (3) special-interest programs that address needs not met by other programs for women and/or minorities; (4) collaborations with minority outreach and professional organizations; and (5) mentoring programs. ${ }^{18}$ |

[^3]| NSF staff reported that the agency's data collection system on sex and race was deficient, in that cross-tabulated data are not available. ${ }^{19}$ | Inside NSF | Strongly urged NSF to revise its system to make sex/race cross-tabulations possible. ${ }^{20}$ |
| :---: | :---: | :---: |
| A number of changes were proposed in the "1981 Proposals of the NSF to Promote The Full
 Participation of Minorities and Women In S\&E". ${ }^{21}$ | Inside/ outside NSF | Proposals included the following:
 - Division of Personnel and Management is to assess performance plans that include statements on equal opportunities for minorities and women.
 - NSF staff to visit grantee sites to encourage women to enter S\&E and submit proposals.
 - Program Officers are to be trained on issues of equal opportunities.
 - Mailing lists are to be expanded to ensure more women and minorities receive NSF announcements.
 - NSF Executive and Management Councils to be informed about women and minority equal opportunity initiatives.
 - Targeted women and minority programs to be funded in FY 1983.
 - Support for resource centers to be continued.
 - NSB Commission on Pre-college Education in Mathematics, Science and Technology to be established.
 - NSF to begin collecting data on women and minorities who submit proposals to NSF. ${ }^{22}$ |

[^4]
Summary of CEOSE (CEOST) Findings and Recommendations Year: 1981-1982 Congress: $97^{\text {th }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
For minority scientists and engineers, few apply for research funds from the Foundation or serve on the panels that review grant applications.	Inside/ outside NSF	The Foundation should develop identifiable programs for increasing the number of minorities, who participate in research projects, review panels, and all other phases of the research process. ${ }^{24}$
African American, Hispanic, and Native Americans are more than 22\% of the population, yet account for less than 3\% of the Ph.D.s in science and technology awarded annually.	Inside/ outside NSF	Development of any future minority or women- focused programs at the NSF should involve input from the National Network of Minority Women in Science (MWIS) using CEOST Subcommittee on Minorities as the liaison contact. ${ }^{26}$
Exemplary programs exist to increase the pool of minority scientists.	Inside/ outside NSF	The Foundation should review and replicate exemplary programs, so that increasing numbers of minorities can benefit from these programs. ${ }^{28}$
Hispanics were less than 1\% of science and engineering workforce in 1979; 3\% of B.A.s in S\&E, 2\% of masters and 1.4\% of doctorates.	Inside/ outside NSF	Much stronger links should be established between CEOST and organizations concerned with Hispanic education and involvement in
science and technology. ${ }^{30}$		

[^5]
Summary of CEOSE (CEOST) Findings and Recommendations
 Year: 1981-1982 Congress: $97^{\text {th }}$
 Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
The physically handicapped are neither entering nor advancing in S\&E careers.	Inside/ outside NSF	Undertake efforts to eliminate discriminatory barriers to career advancement. ${ }^{35}$
Major investments in academically oriented science education programs at all levels can expand the pool of disabled individuals to enter S\&E careers.	Outside NSF	Give high priority in policy decisions and budget allocations to science education programs at every level for disabled students prepared to complete post high school programs in S\&E. ${ }^{37}$
Significant gaps exist in the data currently available on disabled scientists and engineers.	Inside/ outside NSF	Gather data that are detailed enough to describe the unique problems as well as the successes of subgroups, such as the disabled, in S\&E.
The NSF formerly operated several programs for the education of disabled persons through the project on the	Inside NSF	NSF should reinstate funding for these programs. ${ }^{41}$

[^6]
NATIONAL SCIENCE FOUNDATION
 COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND TECHNOLOGY MEMBERSHIP LIST 1982

Dr. Cora B. Marrett, Chairperson	
Professor of Sociology	Dr. Clara Sue Kidwell
University of Wisconsin	Associate Professor
Madison, WI	Native American Studies Program University of California, Berkeley
Dr. Robert H. Harvey, Vice Chairperson	Berkeley, CA
Vice President	
Knoxville College	Dr. Diana Marinez
Knoxville, TN	Associate Professor
	Department of Natural Science
Dr. Don Colesto Ahshapanek	Michigan State University
Biology Department	East Lansing, MI
Haskell Indian Junior College	
Lawrence, KS	Dr. Sheila Pfafflin
	District Manager
Dr. Carol Jo Crannell	Human Resources Department
NASA Goddard Space Flight Center	American Telephone and Telegraph Company
Greenbelt, MD	Morristown, NJ
Dr. Alexander Cruz	Dr. Margaret W. Rossiter
Department of Environmental	Office for History of Science and Technology
Population and Organismic Biology	Berkeley, CA
University of Colorado	
Boulder, CO	Ms. Danuta K. Smith
	ARCO Chemical Company
Dr. Ewaugh Fields	Philadelphia, PA
Dean, University of	
the District of Columbia	Dr. Carl Spight
Washington, DC	Vice President for Corporate Research AMAF Industries, Incorporated
Mr. Robert A. Finnell	Columbia, MD
Executive Director of Mathematics,	
Engineering, Science Achievement	Dr. Eugene H. Cota-Robles
University of California, Berkeley	Professor of Biology
Berkeley, CA	Biology Board of Studies
	University of California, Santa Cruz
Dr. John E. Gibson, Dean	Santa Cruz, CA
School of Engineering and Applied	
Science	EXECUTIVE SECRETARY
University of Virginia	Mrs. Mary F. Poats
Charlottesville, VA	Special Assistant to the Assistant Director for Engineering
Dr. Lilli S. Hornig	National Science Foundation
Executive Director	Washington, DC
Higher Education Resource Services	
Wellesley College	
Wellesley, MA	

CEOSE Findings	Setting	CEOSE Recommendations
The basic issues of equal access for all to science education, employment and advancement, once education is completed remain the same. ${ }^{1}$	Inside/ outside NSF	NSF and educational agencies should support research that would identify clearly the specific educational needs of women and other underutilized groups and the conditions affecting their performance in science and mathematics. In addition, to regain women who dropped out of S\&E, re-entry programs should be reinstated. The Career Facilitation programs were eliminated in the Federal budget decision of 1981.2
The indiscriminate use of Scholastic Aptitude Test in mathematics (SAT-M) may well be at the root of sex and race discrimination in science. ${ }^{3}$	Outside NSF	NSF should: (1) support research to clarify this issue and should help to educate the public and scientific community in the proper interpretation of such tests; and (2) science education provided through Federal legislation should specifically mandate consideration of the educational needs of girls and women. ${ }^{4}$
Half of all future scientists and engineers are educated at major research universities where more than 90% of the Federal support for research is spent. ${ }^{5}$	Inside/ outside NSF	CEOSE recommended that these institutions bring their enrollments of women and other underrepresented groups into better alignment with the population distributions. ${ }^{6}$
Science and engineering graduate training play a unique and critical role in career preparation. ${ }^{\text {² }}$	Inside/ outside NSF	The Graduate Education Subcommittee of the Committee recommended that there should be substantial increases in stipends, fellowships, and research assistantships for women and other underrepresented groups. In addition, NSF should continue to support all existing programs that aid women. ${ }^{8}$
Adequate data must be collected if the Committee and the Foundation are to measure progress towards equal opportunity.'	Inside/ outside NSF	CEOSE recommended that NSF develop a database on women scientists and engineers, by sex and race/ethnicity. ${ }^{10}$ (continued)

[^7]	Better quality data on	Inside/
participation of target groups in		
S\&E fields are needed to		
facilitate progress of programs. ${ }^{11}$		
:---		
outside		
NSF	\quad	of procedures for monitoring the involvement of
:---		
disabled persons on grants and contracts funded by		
the Foundation. ${ }^{12}$		

${ }^{11}$ Ibid, p. 3.
${ }^{12} \mathrm{lbid}$.

CEOSE Findings	Setting	CEOSE Recommendations
Barriers to education and career advancement prevent too many women from contributing their talents to the nation's scientific and technological enterprise.	Inside/ outside NSF	Congress should enlist all Federal agencies in the quest for equal opportunity; and it should incorporate explicit language during the reauthorization process to assure that programs in science and technology address the needs of women and other underrepresented groups in S\&E. ${ }^{14}$
Unless STEM programs provide appropriate access for women students, the pool of scientists and engineers will fall short of the nation's needs.	Inside/ outside NSF	NSF should accumulate and disseminate information on pre-college program models that have successfully attracted and educated women in science and engineering.
Deficiencies caused by lack of qualified teachers, inadequate equipment, crowded facilities, sexism and poverty inhibit the education in science for many students.	Outside NSF	CEOSE recommended the continuation of former Foundation-sponsored activities: The Resource Centers for Science and Engineering (RCSE) program, and the Women in Science program. ${ }^{18}$
Women in engineering chose that career later in life than did their male counterparts.	Inside/ outside NSF	CEOSE recommended that new program initiatives specifically should avoid the creation of unnecessary lockstep sequences and aim for flexibility in access and timing. ${ }^{20}$
Women's colleges have traditionally had far better records in preparing their students for science and technology careers than have the majority of co-educational institutions. ${ }^{21}$	Outside NSF	CEOSE recommended that NSF undertake programs similar to the Research Improvement in Minority Institutions (RIMI) program in women's colleges. ${ }^{22}$

[^8]| The presence of women faculty evidently plays a considerable part in making science and engineering studies seem more feasible. ${ }^{23}$ | Inside/ outside NSF | NSF should encourage more hiring of women, especially in the tenured ranks. In addition, Congressional action should be taken to make Title IX applicable to all programs within institutions which receive Federal funds. This will enable NSF to establish voluntary cooperative programs to foster equal access to S\&E. ${ }^{24}$ |
| :---: | :---: | :---: |
| The shift from student aid to loan programs has had especially discouraging effects on the participation of the most talented women. ${ }^{25}$ | Inside/ outside NSF | CEOSE recommended collaboration between the Federal government and academic institutions to disseminate information to women about opportunities for graduate financial assistance. ${ }^{26}$ |
| Women scientists are twice as likely as identically prepared men to hold "revolving door" appointments while the men hold tenure-track positions. ${ }^{27}$ | Inside/ outside NSF | CEOSE noted that the proposed Research Opportunities for Women Scientists and Engineers (ROW) program was a much-needed effort to deal with the difficulties many women have encountered in obtaining independent research funding. About half of all major research universities do not allow non-tenure-track staff to serve as principal investigators. ${ }^{28}$ |
| There is a need for broadening the base of supported international activity to include education in the sciences, both formal and informal, including efforts to increase women's participation in such programs. ${ }^{29}$ | Inside/ outside NSF | CEOSE supported programs of cooperative research and related activities between American and foreign scientists and institutions for the purpose of strengthening the endeavor of the U.S. S\&E community. NSF should encourage women scientists and engineers to participate in these programs and to become members of international scientific teams. ${ }^{30}$ |
| A successful program supporting research, mathematics and scientific education for women scientists was targeted for elimination. ${ }^{31}$ | Inside NSF | Congress should review this agency's activities and channel funds for science education in the interim through the NSF until questions about this setback can be resolved. ${ }^{32}$ |

[^9]Summary of CEOSE (CEOST) Findings and Recommendations

Year: 1983-1984 Congress: $98^{\text {th }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
Alaskan Natives, Native Americans, African Americans, Mexicans, and Puerto Rican Americans are severely under- represented in S\&E; and data on these subgroups are insufficient.	Inside/ outside NSF	NSF should encourage the other data collection agencies to obtain more detailed information on subgroups within the larger minority category. ${ }^{34}$ NSF should collect data and monitor race/gender of personnel supported by NSF research contracts and grants. ${ }^{35}$
National attention to the state of pre-college education overall has not served to focus discussions on the particular needs of minority populations in science and mathematics.	Outside NSF	NSF should respond to the National Science Board (NSB) Commission report and Congressional interest in serving all the pre-college population, and seek input from CEOSE in ways to reach those represented by the Committee.3. Support pre-college education, with specific attention given to increasing the pool of minority, women, and disabled students. ${ }^{38}$
Since minority students are "at risk" in the educational system, intervention programs in science and engineering are needed at all levels. ${ }^{39}$	Outside	Effective programs are needed at all levels to address the serious underrepresentation of minority students in S\&E career preparation. ${ }^{40}$
Already, 23 of the Country's 25 largest school districts shave mostly minority school populations. ${ }^{41}$	Outside NSF	Proposals designed to reach all minority groups should demonstrate an understanding of the differences among the various target groups and the strategies needed to reach these students. ${ }^{42}$
Retention programs are needed for minority students in undergraduate science and engineering programs. ${ }^{43}$	Outside NSF	Efforts similar to the National Institute of Health's (NIH's) Minority Biomedical Research Support and Minority Access to Research Careers programs should be adopted at NSF as well as re- establishment of NSF's Resource Center programs that help to maintain retention in science curriculums. ${ }^{\text {ma }}$

[^10]| The aggregating of all data on Asian Americans makes it impossible to determine if various Asian populations have differential access problems. ${ }^{45}$ | Inside/ outside NSF | The Committee urged that Congress support CEOST in addressing the concerns of Asian Americans in science and engineering. ${ }^{46}$ |
| :---: | :---: | :---: |
| Most African American, Mexican, Native American and mainland Puerto Rican students attend majority institutions as their primary source of B.A. training. ${ }^{47}$ | Outside NSF | CEOST urged the establishment of programs to support undergraduate research experience for minorities, women, and disabled students. ${ }^{48}$
 The Foundation should focus on issues that will increase minority applicants and participants in the NSF fellowship programs and the budget for the Minority Resource Institute (MRI) should be increased $\$ 500,000$ per year. ${ }^{49}$ |

[^11]
Summary of CEOSE (CEOST) Findings and Recommendations

$$
\text { Year: 1983-1984 Congress: } 98^{\text {th }}
$$

Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
National attention is needed on the state of pre-college education for disabled students.	Inside/ outside NSF	As research directorates seek to establish goals, they should include support of pre-college education, with efforts to increase the pool of disabled students.
The NSF has made some attempts to address CEOST concerns over provision of data on disabled scientists and engineers.	Inside NSF	More data are needed to determine the extent and nature of participation in Foundation programs by disabled persons in S\&E..53 The Foundation should adopt methods used by NIH. ${ }^{54}$
NSF must seek better accommodations between the legitimate claims to equal access and opportunity of disabled persons, and the equally legitimate deficiencies caused by lack of qualified teachers, inadequate equipment, and crowded facilities. ${ }^{55}$	Inside/ outside NSF	The Resource Centers for S\&E program should be supported, given their success in overcoming barriers.

[^12]
NATIONAL SCIENCE FOUNDATION COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND TECHNOLOGY MEMBERSHIP LIST 1984

Dr. Don Colesto Ahshapanek, Chairperson
Biology Department
Haskell Indian Junior College
Lawrence, KS

Dr. Bernard J. Bulkin
Vice President
Research and Graduate Affairs
Polytechnic Institute of New York
New York, NY

Dr. Thomas W. Cole, Jr.
President
West Virginia State College
Institute, WV

Dr. Carol Jo Crannell
NASA Goddard Space Flight Center
Greenbelt, MD

Dr. Alexander Cruz
Department of Environmental
Population and Organismic Biology
University of Colorado
Boulder, CO

Dr. Ewaugh Fields
Dean,
University of the District of
Columbia
Washington, DC

Mr. Robert A. Finnell
President,
NACME
White Plains, NY

Dr. John E. Gibson
School of Engineering and Applied
Science
University of Virginia
Charlottesville, VA

Dr. Robert H. Harvey
Vice President
Knoxville College
Knoxville, TN

Dr. Lilli S. Hornig
Executive Director
Higher Education Resource Services
Wellesley College
Wellesley, MA

Dr. Clara Sue Kidwell
Associate Professor
Native American Studies Program
University of California, Berkeley
Berkeley, CA

Dr. William K. LeBold
Director, Education, Research and
Information Systems
Purdue University
West Lafayette, IN

CEOSE Findings	Setting	CEOSE Recommendations
The numbers and patterns of participation in science and engineering by underrepresented U.S. citizens do not bode well for our economic and national security needs. ${ }^{1}$	Inside/ outside NSF	To further understanding and to achieve significant progress in this area, CEOST recommended that there be a sizeable investment in staff to assist the Committee, as well as support for research and studies as warranted. ${ }^{2}$
Industry, academia, government, and professional and honorific organizations clearly have practices that deny leadership positions to women and other underrepresented groups. ${ }^{3}$	Inside/ outside NSF	CEOST urged Congress to either create a committee with Federal government-wide responsibility for equal opportunity activities in science and engineering, or that the mission of CEOST be expanded to encompass this broader scope--in order to address this inter-institutional problem of discriminatory practices. ${ }^{4}$
Quality education in science, mathematics and technology is a key to access careers in science and engineering. ${ }^{5}$	Outside NSF	NSF and Congress should look to successful educational models and replicate them nationally. ${ }^{6}$
The levels of literacy that are needed by citizens in a pluralistic society are increasingly based in science and technology. ${ }^{7}$	Inside/ outside NSF	NSF should develop technologies that increase the depth, breath and scope of science and mathematics teaching; and to conduct research that will reveal ways to effectively teach women and other students. ${ }^{8}$
Groups presently underutilized in S\&E will comprise close to 65% of the available new entrant population. ${ }^{9}$	Inside/ outside NSF	NSF must be sensitive to the inclusion within the talent pool of those who have traditionally been underutilized--specifically women, minorities, and persons with disabilities. ${ }^{10}$ (continued)

[^13]| The NSF should not be
 expected to shoulder the
 entire responsibility for Federal
 government programs to
 promote access and
 advancement for these
 groups. | Inside/
 outside | NSF should call for broader agency involvement in
 developing and supporting focused programs in
 institutionalizing concerns for underrepresented groups
 in regular programs, and in increasing their numbers
 among staffs, advisors and reviewers. |
| :--- | :--- | :--- |
| Access remains the most
 formidable barrier to minorities
 and other underrepresented
 groups. | Inside/
 outside
 NSF | CEOST urged the NSF to identify barriers to educational
 access by minorities, women and persons with
 disabilities, and to work with organizations, industry,
 government, universities, and schools in supporting
 intervention programs. ${ }^{14}$ |
| More contact is needed among
 agency and department heads
 in addressing human resource
 needs in S\&E. | Inside
 NSF | CEOST urged that strong efforts be devoted to
 dissemination and replication of successful models and
 approaches to the problems relating to disabled
 scientists and engineers. ${ }^{16}$ |
| Women, minorities and
 persons with disabilities are
 absent from tenured full
 professor faculty positions,
 and at high management levels
 in science-focused agencies
 such as the NSF. | Inside/
 outside
 NSF | CEOST recommended that NSF provide employment
 opportunities for underrepresented groups within NSF
 staff positions. ${ }^{18}$ |
| CEOST has found great merit
 in ongoing programs such as
 Minority Research Initiation,
 and Visiting Professorships for
 Women and Research
 Opportunities for Women. ${ }^{19}$ | Inside
 NSF | Congress/NSF must reassess the value of these
 programs. ${ }^{20}$ |

[^14]Summary of CEOSE (CEOST) Findings and Recommendations
Year: 1985-1986 Congress: $99^{\text {th }}$
Target Group: Women

CEOSE Findings	Setting	CEOSE Recommendations
Women comprised an average of	Outside	CEOST urged Congress to support specific
21.8% of scientists and engineers	NSF	NSF attention to access by women and other
employed in academic institutions that		underrepresented groups in its authorization and funding of science and engineering educational programs. ${ }^{22}$
received more than 40% of NSF research grants. ${ }^{21}$		end

Summary of CEOSE (CEOST) Findings and Recommendations
 Year: 1985-1986 Congress: $99^{\text {th }}$
 Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
More interchange is needed among those persons charged with developing, monitoring and implementing programs for persons with disabilities in S\&E.	Inside NSF	Congress should carefully reassess the need for programs that were discontinued in 1981 for their potential contribution to promoting access to and advancement in science and engineering by persons with disabilities. ${ }^{24}$
Access remains the most formidable barrier to persons with disabilities. ${ }^{25}$	Inside/ outside NSF	CEOST urged the NSF to identify general and scientific discipline specific barriers to educational access by persons with disabilities and to work with organizations in developing intervention programs. ${ }^{26}$

[^15]
NATIONAL SCIENCE FOUNDATION COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND TECHNOLOGY MEMBERSHIP LIST 1986

Dr. Shirley M. McBay, Chairperson
Dean for Student Affairs
Massachusetts Institute of Technology
Cambridge, MA
Dr. Lenore Blum
Department of Mathematics and
Computer Science
Mills College
Oakland, CA
Dr. Kimiko O. Bowman
Oak Ridge National Laboratory
Oak Ridge, TN
Dr. Josephine Dunbar Davis, Dean
Graduate Studies
Albany State College
Albany, GA
Dr. Mario J. Gonzalez, Jr.
Associate Dean for Academic Affairs
College of Engineering
University of Texas, Austin
Austin, TX
Dr. Ralph F. Guertin
Advanced Communications
The Mitre Corporation
Bedford, MA
Captain Phillip C. Johnson
Deputy Director
Department of Ecology
State of Washington
Dr. Nilda Martinez-Rivera
T.J. Watson Research Laboratory
Yorktown Heights, NY
IX

Dr. Donald F. St. Mary
Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA

Dr. Gail E. Thomas
Department of Sociology
Texas A\&M University
College Station, TX
Dr. Ernest G. Uribe
Department of Botany
Washington State University
Pullman, WA

Dr. Sally Wood
Department of Electrical Engineering
and Computer Science
University of Santa Clara
Santa Clara, CA

Dr. Irving K. Zola
Department of Sociology
Brandeis University
Waltham, MA

Dr. Mary L. Good, President Engineered Materials Research
Allied-Signal Corporation
Des Plaines, IL

Dr. Caryn L. Navy
Raised Dot Computing, Incorporated
Madison, WI
EXECUTIVE SECRETARY
Ms. Mary M. Kohlerman
Program Director
Instructional Materials Development
National Science Foundation
Washington, DC

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 1987-1988 Congress: 100 ${ }^{\text {th }}$

CEOSE Findings	Setting	CEOSE Recommendations
Many of the key factors in choosing S\&E fields as majors impede participation of underrepresented groups in S\&E.	Inside/ outside NSF	NSF must eliminate the inequities in S\&E salaries to attract more women, minorities and persons with disabilities.
NSF should provide for these groups more stable		
financial support at the graduate level, increase		
opportunities for research assistantships and		
provide greater clarity about the benefits to be		
derived from an advanced degree. ${ }^{3}$		

[^16]| CEOSE Findings | Setting | CEOSE Recommendations |
| :--- | :--- | :--- |
| Girls need early intervention in
 mathematics and science
 preparation to increase college
 enrollments. ${ }^{8}$ In high school,
 females take fewer years of
 mathematics and science
 classes than males, and are less
 likely to enroll in advanced
 courses for these subjects. | Outside
 NSF | For girls as early as age 9, CEOSE recommended that
 NSF develop programs and research to increase their
 interest in mathematics and science at the elementary
 and middle school levels. Funding to support these
 efforts was also strongly advised..10 |
| Fewer college-bound women
 show an interest in studying
 S\&E. Their interest tends to
 be less in quantitatively-based
 fields such as physics,
 chemistry and engineering and | Outside
 more in the life sciences and
 health areas. | NSF should provide targeted programs to motivate and
 support women undergraduates to pursue science and
 engineering. |
| Women are less visible in
 decision-making roles in
 industry and government. ${ }^{13}$
 And, in academe, women are
 less likely to be tenured than
 men. ${ }^{14}$ | Inside/
 outside
 NSF | NSF should launch a major effort to make experienced
 women more visible to women entering the S\&E
 workforce..15 |

[^17]Summary of CEOSE Findings and Recommendations
Year: 1987-1988 Congress: 100 ${ }^{\text {th }}$ Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations			
There is low representation of minorities among the senior staff at the NSF and an absence of minorities on the National Science Board. ${ }^{16}$	Inside NSF	CEOSE urged the Director of the Foundation and the National Science Board Chair to signal to the President that minority representation on the Board is critical. Foundation needs to increase diversity among its staff by more intensified efforts. ${ }^{18}$			
There is a severe shortage of minority mathematics and science teachers. Only 3\% of mathematics and 5\% of science teachers in grades 10 through 12 are African-American. ${ }^{19}$	Outside NSF	NSF should support school collaborations that focus on the production of pre-college science and mathematics teachers and address the dearth of minority S\&E faculty. ${ }^{20}$			
NSF needs to also support initiatives to					
increase the number of minority faculty at					
the university level. ${ }^{21}$			$	$	These high-ability students should be
:---					
singled out for special nurturing beginning					
with the pre-freshman summer and					
continuing through to the post-doctorate					
level.					

[^18]| Most of the public school districts are comprised mainly of minority students, whose dropout rates exceed 50%. ${ }^{2}$ | Outside NSF | University/school and industry collaborations should be formed to encourage and support inner city and rural school retention in mathematics and science curriculums. ${ }^{29}$ |
| :---: | :---: | :---: |
| Native Americans are less than 1% of the population and their representation among S\&E in the labor force is less than $1 \% .^{30}$ | Inside/ outside NSF | CEOSE should establish a Native American task force within the Committee; and NSF should hire a Native American to work out of Office of the Director. ${ }^{31}$ |
| Hispanics constitute 7\% of the population, 6% of labor force, but only 2% of S\&E. ${ }^{32}$ | Inside/ outside NSF | Programs that help minority students bridge the gap between high school and college, continuing through the postdoctoral level, must be in place to increase minority participation. ${ }^{33}$ |
| A comprehensive approach to the participation of minorities in mathematics, science and engineering is needed from pre-college to postdoctoral levels. ${ }^{34}$ | Inside/ outside NSF | Programs that help minority students bridge the gap between high school and college, continuing through the postdoctoral level, must be in place to increase minority participation. ${ }^{35}$ |

[^19]
Summary of CEOSE Findings and Recommendations
 Year: 1987-1988 Congress: 100 ${ }^{\text {th }}$ Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
CEOSE remains concerned about the low representation of persons with disabilities among senior staff at the Foundation. ${ }^{36}$	Inside/ outside NSF	A scientist or engineer with a disability should be hired to work out of the Office of the Director of the NSF. ${ }^{37}$
The Foundation does not have specific programs for persons with disabilities beyond the Facilitation Awards to the Handicapped Program, which supports persons with disabilities within the NSF. ${ }^{38}$	Inside NSF	Existing programs to promote and sustain participation of minorities and women in S\&E careers should be expanded to include persons with disabilities. ${ }^{39}$
Major concerns for persons with disabilities within the past two years have included accessibility to facilities, scientific meetings, materials, use of lab equipment, and physical safety. ${ }^{40}$	Inside NSF	NSF should make scientific meetings more accessible to persons with disabilities, visually, or hearing impaired. ${ }^{41}$
Scientists and engineers with disabilities represent only 0.26% of workers with disabilities. ${ }^{42}$	Inside/ outside NSF	NSF should help to remove barriers that prevent persons with disabilities from contributing to our nation's scientific and engineering effort. ${ }^{43}$
To make scientists and engineers with disabilities more visible, the NSF supported the publication by the American Association for the Advancement of Science (AAAS), listing 950 such individuals. ${ }^{44}$	Inside NSF	Program officers should consider doing a special mailing of program guidelines to scientists and engineers with disabilities who were identified in the recent AAAS publication. ${ }^{45}$ (continued)

[^20]| The most serious problem for
 disabled scientists, engineers
 and students is accessibility all
 along the educational pipeline
 and workplace. ${ }^{46}$ | Inside/
 outside
 NSF | Large employers, in particular Federal agencies and their
 contractors, should set aside adequate funds in their annual
 budgets for improving accessibility for the persons with
 disabilities. ${ }^{47}$ |
| :--- | :--- | :--- |
| Recipients of NSF funds need
 clear information on how to
 conduct a barrier-free meeting
 for scientists and engineers
 with disabilities. | Inside
 NSF | NSF should play a leadership role in the removal of barriers
 that prevent many individuals with disabilities from
 contributing..49 |
| Students with disabilities often
 have special expenses over and
 above those of other university
 students. | Outside
 NSF | The NSF should develop a program like the Minority
 Fel/owships Program (MFP) for students with disabilities that
 would provide additional support for their special needs. ${ }^{51}$ |
| In 1987, among 14,000
 principal investigators, only 78
 or about 0.55\% had a
 disability. | Inside/
 outside
 NSF | The NSF should initiate a targeted grant program for
 scientists and engineers with disabilities. ${ }^{53}$ |
| To promote access of scientists
 and engineers with disabilities,
 an increase in visibility is
 needed of professors and
 research scientists who have
 disabilities and are active in
 their careers. | Inside
 NSF | A scientist or engineer should be hired to work out of the
 Director's office of the NSF or out of the STIA Directorate
 where several targeted programs are located. A scientist or
 engineer with disabilities should also be appointed to the
 National Science Board. ${ }^{55}$ |
| Scientists and engineers with
 disabilities are less likely to be
 supported for travel because
 adequate facilities may not be
 available. ${ }^{56}$ | Inside/
 outside
 NSF | A program should be initiated to support travel to meetings
 and conferences for scientists and engineers with disabilities,
 and provide funds to cover travel. ${ }^{57}$ |

${ }^{46} \mathrm{Ibid}$. , p. 22.
${ }^{47}$ lbid.
${ }^{48} \mathrm{lbid}$.
${ }^{49}$ lbid.
${ }^{50}$ Ibid., p. 23.
${ }^{51}$ lbid.
${ }^{52}$ Ibid., p. 24.
${ }^{53}$ lbid.
${ }^{54} \mathrm{lbid}$.
${ }^{55} \mathrm{lbid}$.
${ }^{56} \mathrm{lbid}$.
${ }^{57}$ lbid.

NATIONAL SCIENCE FOUNDATION
 COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND TECHNOLOGY MEMBERSHIP LIST 1988

Dr. Shirley M. McBay, Chairperson
Dean for Student Affairs
Massachusetts Institute of Technology
Cambridge, MA
Dr. Kimiko O. Bowman
Oak Ridge National Laboratory
Oak Ridge, TN
Dr. Josephine Dunbar Davis, Dean
Graduate Studies
Albany State College
Albany, GA
Dr. Kay Davis
Fernbank, Incorporated
Atlanta, GA
Dr. Mario J. Gonzalez, Jr.
Associate Dean for Academic Affairs
College of Engineering
University of Texas, Austin
Austin, TX
Dr. Ralph F. Guertin
Advanced Communications
The Mitre Corporation
Bedford, MA
Dr. Nilda Martinez-Rivera
Manager of Technical Education
Thomas J. Watson Research Center
Stormytown, NY

Dr. Caryn L. Navy
Raised Dot Computing, Incorporated
Madison, WI
Dr. Donald F. St. Mary
Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA

Dr. Ernest G. Uribe
Department of Botany
Washington State University
Pullman, WA
Dr. Sally Wood
Department of Electrical Engineering and Computer Science
University of Santa Clara
Santa Clara, CA
Dr. Irving K. Zola
Department of Sociology
Brandeis University
Waltham, MA

EXECUTIVE SECRETARY
Ms. Mary M. Kohlerman
Program Director
Director for Science and Engineering Education
National Science Foundation
Washington, DC

Summary of CEOSE Findings and Recommendations Broadening Participation Overall Year: 1989-1990 Congress: 101 th

Complete information for findings and recommendations were not available for the 1989-1990 period.

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 1991-1992 Congress: 102 ${ }^{\text {nd }}$

CEOSE Findings	Setting	CEOSE Recommendations
On the whole, under- represented groups in STEM have even less access than others to educational opportunities that allow them to develop expertise or literacy in science, mathematics and technology.	Inside/ outside NSF	CEOSE recommended the following goals to NSF (1) design new and comprehensive programs; and (2) integrate plans across Directorates and for foundation- wide initiatives for underrepresented persons in STEM. ${ }^{2}$
Economically, our national destiny depends on having a world-class scientific and technical workforce.	Inside/ outside NSF	CEOSE recommended that the NSF use its expertise to develop and plan diversity programs to necessitate change with results that can be evaluated. ${ }^{4}$
Neither women nor minorities can be even partially excluded from S\&E enterprises without squandering talent needed to solve pressing scientific, technological and economic problems.	Inside/ outside NSF	NSF must help (1) triple the number of women in scientific, engineering and mathematical professions, and (2) quadruple the number of minorities who enter two-year institutions and move on to earn bachelor degrees in science, mathematics and engineering. ${ }^{6}$
Education in science and mathematics presents serious challenges, at all levels, which are exaggerated for underutilized groups.	Inside/ outside NSF	NSF initiatives must achieve parity in participation rates for female and all other students in elementary, middle and high school science and mathematics. ${ }^{8}$

[^21]
Summary of CEOSE Findings and Recommendations
 Year: 1991-1992 Congress: 102 ${ }^{\text {nd }}$
 Target Group: Women

CEOSE Findings	Setting	CEOSE Recommendations
The gap between men and women along the S\&E educational pipeline originates in elementary grades.	Outside NSF	NSF should reduce by one-half and eliminate by the year 2010 gender as well as race/ethnic gaps in student achievement in pre-college science and mathematics. ${ }^{10}$ CEOSE recommended that NSF educational strategies double the undergraduate degrees awarded annually to women.
Although earning nearly 25\% of Bachelor's Degrees, women earn only 13% of the Ph.D. degrees in S\&E.	Inside/ outside NSF	NSF should work to triple the number of doctorate degrees awarded to women. ${ }^{13}$
Among doctorate level scientists and engineers employed in 4-year colleges and universities, women are less likely than men to be tenured.	Outside NSF	NSF should set goals to double the number of women faculty and college majors in the physical sciences, engineering and mathematics. ${ }^{15}$

Summary of CEOSE Findings and Recommendations
 Year 1991-1992 Congress: 102 ${ }^{\text {nd }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
Minority students have far less access to well-prepared teachers and other educational resources.	Outside NSF	A highly coordinated strategy needs to be established to address the entire science, engineering and mathematics education continuum for minority groups, from K-1 2.1
Disadvantaged minorities are underrepresented in the S\&E workforce. ${ }^{18}$	Inside/ outside NSF	NSF should adopt a strategy to triple the number of professional S\&E positions occupied by minorities by the year 2000. ${ }^{19}$

[^22]
Summary of CEOSE Findings and Recommendations
 Year: 1991-1992 Congress: 102 ${ }^{\text {nd }}$
 Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
Little is known about the achievements of students with disabilities in the S\&E pipeline.	Outside NSF	A strategy should be established that addresses the entire STEM education continuum for disabled students, including measurable competencies for all students K- $12 .^{21}$
Despite the growing population, only about 100,000 scientists and engineers with disabilities are employed.	Inside/ outside NSF	NSF should develop programs and initiatives to double by the year 2000 the number of professional S\&E jobs for disabled persons. ${ }^{23}$
Students with disabilities have less access to scientific, mathematical and technical materials than their non-disabled peers.	Inside/ outside NSF	NSF should develop programs and initiatives to reduce or eliminate by the year 2000 barriers to access in S\&E education for disabled persons.
Students with disabilities have less access to S\&E teachers who are disabled..26	Outside NSF	NSF should develop programs and initiatives to double by the year 2000 the number of disabled S\&E teachers. ${ }^{27}$

[^23]
NATIONAL SCIENCE FOUNDATION
 COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND ENGINEERING MEMBERSHIP LIST 1992

Dr. Jane Butler Kahle, Chairperson
Condit Professor of Science Education
Miami University
Oxford, OH

Dr. Eleanor Baum
Dean, Albert Nerkin School of Engineering
Cooper Union
New York, NY
Mrs. Marsha Findlay Bourque
Geologist
British Petroleum Exploration
Incorporated
Houston, TX
Mr. Charles R. Bowen
Director of Plans and Program
Administration
IBM Corporation
Thornwood, NY

Ms. Jeannette Brown
Research Chemist
Merck and Company, Incorporated
Rahway, NJ
Ms. Paula B. Duckett
Elementary Mathematics Specialist
River Terrace Community School
Washington, DC
Dr. Jacquelyne E. Eccles
Department of Psychology
University of Colorado
Denver, CO

Dr. David L. Goodstein, Vice Provost
California Institute of Technology
Pasadena, CA

Mr. Dwight Gourneau
Senior Engineering Manager
IBM Corporation
Rochester, MN
Dr. Edward Keller, Jr., Professor Department of Biological Sciences
West Virginia University
Institute, WV

Dr. Patti Talbot Ota, Vice Provost
Lehigh University
Bethlehem, PA
Dr. Anne S. Pruitt, Director
Center for Teaching
Excellence and Professor of Educational Policy and Leadership
Ohio State University
Columbus, OH
Mr. Robert Romero
Advanced Geophysicist
Marathon Petroleum Technology Center
Littleton, CO

Dr. Lawrence Scadden, Director
Rehabilitation Engineering Center
Electronic Industries Foundation
Arlington, VA
Dr. Sylvia Walker
Director, Center for the Study of Handicapped Children
Howard University
Washington, DC
EXECUTIVE COUNCIL LIAISON
Dr. Luther S. Williams, Assistant Director
Education and Human Resources
National Science Foundation
Washington, DC
EXECUTIVE SECRETARY
Ms. Mary M. Kohlerman
Directorate for Education and
Human Resources
National Science Foundation
Washington, DC
SENIOR PROGRAM ASSISTANT
Ms. Lorena P. Hawkins
Division of Human Resource
Development
National Science Foundation,
Washington, DC

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 1993-1994 Congress: $103^{\text {rd }}$

CEOSE Findings	Setting	CEOSE Recommendations		
NSF has made some progress in executing the goals related to women, minorities and persons with disabilities, as recommended in the 1992 CEOSE Report to Congress.'	Inside	NSF		In addition to continued work on those goals, CEOSE
:---				
recommended that NSF (1) continue to encourage more				
partnerships between two-and four-year colleges to				
increase interest and participation of underrepresented				
groups in STEM; (2) continue to hire within NSF more				
female, minority and disabled professional staff; (3)				
ensure that NSF's pool of reviewers and panelists are				
inclusive of the total population of scientists and				
engineers.				

[^24]
NATIONAL SCIENCE FOUNDATION COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND ENGINGEERING MEMBERSHIP LIST 1994

Dr. Patti Ota, Chairperson
Vice Provost
Lehigh University
Bethlehem, PA
Ms. Jeannette Brown
Visiting Professor of Chemistry
and Associate
Center for Pre-College Education
New Jersey Institute of Technology, Newark, NJ
Dr. Betty Davidson
Exhibit Planner
Boston Museum of Science
Science Park, Boston, MA
Dr. Jacquelynne S. Eccles
Professor of Psychology and
Research Scientist
Institute for Social Research
University of Michigan, Ann Arbor, MI
Dr. David Glover
Research Specialist
Department of Marine Chemistry and
Geochemistry
Woods Hole Oceanographic Institute
Woods Hole, MA
Dr. George C. Hill
Vice President for International
Programs and Professor/Director
Division of Biomedical Science
Meharry Medical College, Nashville, TN
Dr. William M. Jackson
Professor of Chemistry
Department of Chemistry
University of California, Davis, CA
Dr. Jane Butler Kahle
Condit Professor of Science Education
Miami University, Oxford, OH
Dr. Carolyn W. Meyers
Associate Dean for Research,
Associate Professor of Mechanical
Engineering, College of Engineering
Georgia Institute of Technology, Atlanta, GA
Ms. Anne S. Pruitt
Dean-In-Residence
Council of Graduate Schools
Washington, DC
Ms. Marilyn Suiter
Director, Education and Human Resources
American Geological Institute
Alexandria, VA

Dr. Teresa A. Sullivan
Vice Provost/Associate Dean
Office of Graduate Studies
University of Texas, Austin, TX

Dr. William Yslas Velez
Professor of Mathematics
Department of Mathematics
University of Arizona, Tucson, AZ
Dr. Lydia Villa-Komaroff
Associate Professor
Department of Neuroscience
Childrens Hospital,
Harvard Medical School, Boston, MA
Dr. Henry N. Williams
Associate Professor/Acting Assistant
Vice President Research
Department of Microbiology
Dental School, University of Maryland
Baltimore, MD
Dr. H. David Wohlers
Associate Professor, Science Division
Northeast Missouri State University,
Kirksville. MO

EXECUTIVE COUNCIL CO-LIAISON
Dr. Cora B. Marrett
Assistant Director for Social,
Behavioral and Economic Sciences
National Science Foundation, Arlington, VA
EXECUTIVE COUNCIL CO-LIAISON
Dr. Luther S. Williams
Assistant Director for Education
and Human Resources
National Science Foundation, Arlington, VA
EXECUTIVE SECRETARY
Dr. Wanda E. Ward
Staff Associate
Directorate for Education and Human Resources
National Science Foundation, Arlington, VA

DATA RESOURCES ANALYST

Ms. Susan T. Hill
Science Resources Analyst
Division of Science Resources Studies Directorate for
Social, Behavioral and Economic Sciences
National Science Foundation, Arlington, VA

RESOURCE STAFF SECRETARY

Ms. Betty Finch
Division of Elementary, Secondary
and Informal Education
Directorate for Education and Human Resources
National Science Foundation, Arlington, VA

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 1995-1996 Congress: 104 ${ }^{\text {th }}$

CEOSE Findings	Setting	CEOSE Recommendations
Significant portions of the American people are not full participants in science and technology (S\&E) either as professionals or with acceptable standards of scientific literacy.'	Inside/ outside NSF	The NSF should continue to work to remove barriers that limit the number of underrepresented individuals in the pool of successful principal investigators, possibly using strategies such as increasing the diversity of reviewers and panelists for grants that NSF awards. ${ }^{2}$
Trends in average mathematics test scores of students, aggregated by sex, race and ethnicity have shown limited improvement over the past 21 years. The same is true for science, over the past 24 years. ${ }^{3}$	Outside NSF	NSF should continue the goal of reducing gender, race and ethnicity-based differentials in science and mathematics by one-half by year 2000. ${ }^{4}$
Effective programs require effective leadership and such leadership includes achieving diverse representation of opinions and ideas. ${ }^{5}$	Inside NSF	NSF should achieve representation of women and the other underrepresented groups at all management and staff levels throughout the Foundation. Specifically: (1) place underrepresented persons in STEM on NSF grant review panels; (2) increase opportunities for faculty at less well-known institutions to collaborate with and be mentored by well-known members of the S\&E community; and (3) encourage more partnerships between two-year and four-year higher education institutions. ${ }^{6}$
The levels of participation still fall far below the proportional representation of the total U.S. population. ${ }^{7}$	Inside/ outside NSF	CEOSE recommended: (1) goals should be monitored using metrics and timetables that are appropriate; (2) NSF leadership must determine the best path to achieve a fully engaged science and engineering (S\&E) enterprise; (3) continue review of demographic trends in participation, with ongoing analysis for accuracy and completeness; and (4) collaborate with other Federal agencies that participate in S\&E to share S\&E population data and strategies on achieving full participation. ${ }^{8}$

[^25]
Summary of CEOSE Findings and Recommendations

Year: 1995-1996 Congress: 104 ${ }^{\text {th }}$
 Target Group: Women

CEOSE Findings	Setting	CEOSE Recommendations
Participation in mathematics and science classes by female students has generally increased, which has helped to reduce the gap with male students.9	Outside NSF	NSF should continue the goal of increasing participation of females in science and mathematics education. ${ }^{10}$
Women earned 31% of the total doctoral degrees in S\&E issued in $1995-$ a 17% increase from $1992 .^{.1}$	Inside/ outside NSF	NSF should continue the goal to double the number of women who attain doctorates in S\&E. ${ }^{12}$
The ratio of men to women in S\&E college faculty positions is 5 to 1. At the secondary-school level, women represented 51\% of the science and mathematics teachers in $1991 .^{13}$	Outside NSF	NSF should continue work on goal to double the number of women S\&E teachers by 2000..14
Women, who are 51\% of the total population, represent only 22.4% of the S\&E labor force. ${ }^{15}$	Inside/ outside NSF	NSF should continue the goal to increase the number of women in the S\&E labor force. ${ }^{16}$

[^26]Summary of CEOSE Findings and Recommendations

Year: 1995-1996 Congress: 104 ${ }^{\text {th }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
African Americans constitute 12\% of the population but are only 3.5% of the S\&E labor force. Hispanics are 10% of the population and 2.8% of S\&E labor force. Native Americans are 0.7% of the population and 0.2% of $\mathrm{S} \mathrm{\& E}$ labor force. ${ }^{17}$	Inside/ outside NSF	NSF should review demographic trends in participation to identify and track those population sectors under-participating in $\mathrm{S} \& \mathrm{E}$ relative to their size in the U.S. population. Also, NSF should meet with other Federal agencies that participate in S\&E to share data on S\&E population and strategies for achieving full participation. ${ }^{18}$
Underrepresented minority students who have attended a twoyear college are a significant part of the total group of students who receive bachelors and doctorates in S\&E. ${ }^{19}$	Outside NSF	CEOSE recommended that NSF continue to support partnerships between two- and fouryear colleges in encouraging and supporting students to remain in S\&E tracks. ${ }^{20}$
The number of minorities receiving S\&E doctoral degrees remains low: 3\% for African Americans and Hispanic Americans, and 0.3% for Native Americans. ${ }^{21}$	Inside/ outside NSF	NSF should continue the goal to double the number of minorities who attain doctorates in S\&E. ${ }^{22}$
African Americans comprised only 4\% of full-time S\&E faculty in higher education in $1992 .{ }^{23}$ Among secondary-school teachers of S\&E, African Americans comprise 7\% and Hispanic Americans comprise 3\%. ${ }^{24}$	Outside NSF	NSF should continue work on the goal to increase the number of minorities in the S\&E labor force. ${ }^{25}$
Minorities remain underrepresented in the pool of principal investigators. ${ }^{26}$	Inside/ outside NSF	NSF should remove barriers that limit minorities in the pool of successful principal investigators. ${ }^{27}$

[^27]
Summary of CEOSE Findings and Recommendations
 Year: 1995-1996 Congress: 104 ${ }^{\text {th }}$
 Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
Persons with disabilities constitute approximately 20\% of the population but only 5.4% of the S\&E work force. ${ }^{28}$	Inside/ outside NSF	NSF should continue work to remove barriers that limit the number of principal investigators with physical disabilities. ${ }^{29}$ NSF should achieve representation of persons with disabilities in all management and staff levels throughout the Foundation.
The collection of data on students with disabilities is severely limited, in part by its dependence on self- identification by subjects.31 The national data on persons with disabilities is woefully deficient, and without these data it is impossible to establish effective plans.	Inside/ outside NSF	Analyze the accuracy and thoroughness of internally and nationally collected data on persons with disabilities, and on degree achievement from associate through doctorate degree levels. ${ }^{33}$
Improve the extent and coverage of data on		
persons with disabilities, including data on		
science and mathematics achievements in		
grades K-12, and employment data. ${ }^{34}$		

[^28]
NATIONAL SCIENCE FOUNDATION
 COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND ENGINEERING MEMBERSHIP LIST 1996

Dr. George G. Hill, Chairperson Director for International Health Programs and Professor, Division of Biomedical Sciences Meharry Medical College Nashville, TN

Ms. Marilyn Suiter, Vice Chairperson
Director, Education and Human
Resources
American Geological Institute
Alexandria, VA

Dr. Patti T. Ota, Interim Provost
Office of the Provost
Lehigh University
Bethlehem, PA
Ms. Jeannette Brown
Faculty Associate, Center for
Pre-College Education
New Jersey Institute of Technology
Newark, NJ
Dr. George Castro
Associate Dean
College of Science
San Jose State University
San Jose, CA
Dr. Julius Chambers
Chancellor
North Carolina Central University
Durham, NC
Dr. Betty Davidson
Exhibit Planner
Boston Museum of Science
Boston, MA
Dr. David Glover
Research Specialist
Department of Marine Chemistry
and Geochemistry
Woods Hole Oceanographic
Institution
Woods Hole, MA

Dr. William M. Jackson
Professor of Chemistry
Department of Chemistry
University of California, Davis, CA

Dr. Eric Jolly
Educational Development
Center, Incorporated
Newton, MA
Dr. Jane Butler Kahle
Condit Professor of Science
Education
Miami University
Oxford, OH
Dr. Carolyn W. Meyers
Professor, Mechanical Engineering
College of Engineering
North Carolina A\&T State University
Greensboro, NC
Dr. Teresa A. Sullivan
Vice President and Graduate Dean
University of Texas, Austin, TX
Dr. William Yslas Velez
Professor of Mathematics
University of Arizona
Department of Mathematics
Tucson, AZ
Dr. Lydia Villa-Komaroff
Vice President
Northwestern University
Evanston, IL
Dr. Glen Wheless
Center for Coastal Physical
Oceanography
Old Dominion University
Norfolk, VA

Dr. Henry N. Williams
Associate Professor
Department of OCBS/Dental School
University of Maryland
Baltimore, MD
Dr. H. David Wohlers
Associate Professor of Chemistry
Truman State University
Kirksville, MO

EXECUTIVE SECRETARY
Ms. Susan Kemnitzer
National Science Foundation
Arlington, VA

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 1997-1998 Congress: 105 ${ }^{\text {th }}$

CEOSE Findings	Setting	CEOSE Recommendations
America needs well-trained educators at all levels to build a strong technical foundation, replenish and enhance tomorrow's technological workforce.	Inside/ outside NSF	NSF should continue to work in, and expand dissemination of, advanced curriculum and pedagogical development in conjunction with expanded programming in systemic reform initiatives. ${ }^{2}$
NSF non-focused programs are conducive to achieving the full participation of underrepresented groups by partnering in research with Minority-Serving Institutions (MSIs). ${ }^{-3}$	Inside/ outside NSF	CEOSE views such connective capabilities as critical to helping reduce the disparity between information-rich and information-poor communities. ${ }^{4}$
Compared with the total population in the STEM professoriate, NSF has disparate participation rates of Principal Investigators (PIs) from underrepresented groups. ${ }^{5}$	Inside NSF	Review panels and ad hoc reviewers should include persons from underrepresented groups to provide a fair appraisal of NSF proposals, especially those concerning the education of all students. ${ }^{6}$
America's increasingly diverse society is challenging the adequacy of current STEM education, research and workforce support structure. ${ }^{7}$	Inside/ outside NSF	The Committee recommended that NSF assert its leadership position to develop quality standards and practices to be used by organizations that will assure equitable access to information technology by all individuals and institutions. ${ }^{8}$
As technology becomes more ubiquitous within educational processes, it will become more critical for NSF to attend to issues of access and capacity for women and other underrepresented groups.'	Inside/ outside NSF	NSF technological initiatives, such as Fast Lane, require careful planning to ensure that they do not have a disparate impact on these underrepresented populations. ${ }^{10}$

[^29]
Summary of CEOSE Findings and Recommendations
 Year: 1997-1998 Congress: 105 ${ }^{\text {th }}$
 Target Group: Women

$\left.$| CEOSE Findings | Setting | CEOSE Recommendations |
| :--- | :--- | :--- |
| The high-school gender gap in
 mathematics and science
 achievement continues to
 close. | Outside | |
| NSF | | |\quad| NSF should develop initiatives to assist women and |
| :--- |
| other underrepresented groups to reach parity in |
| science, mathematics and engineering achievement and |
| participation. ${ }^{12}$ Also, current programmatic trends in |
| service to education should be continued. ${ }^{13}$ | \right\rvert\, | Women S\&E faculty amount to |
| :--- | :--- |
| 21% of total faculty, a much |
| lower representation than the |
| percent of women in the labor |
| force. ${ }^{14}$ | Inside/ | NSF |
| :--- |
| outside |\quad| Programs supporting women and other under- |
| :--- |
| represented groups should be increased to achieve |
| parity within the nation's universities as well as to |
| provide mentors and role models. ${ }^{15}$ |

[^30]| In step with the Government Performance and Results Act (GPRA), all NSF new program announcements and proposed solicitations include a statement indicating that proposers must address improving the participation of women/ other members of underrepresented groups. ${ }^{22}$ | Inside NSF | The Committee recommended that NSF should (1) take appropriate steps to ensure that all applicants as well as NSF staff adhere to this requirement and (2) enforce policies and implement management mechanisms concerning cost-sharing that reduce barriers for women and other underrepresented groups to compete for NSF awards. ${ }^{23}$ |
| :---: | :---: | :---: |
| Women were underrepresented (31\%) among NSF's program directors and division directors compared to their representation in the national workforce population (51%). ${ }^{24}$ | Inside NSF | NSF should seek to achieve better representation of underrepresented women, minorities and disabled persons at the scientific and engineering staff levels throughout the Foundation. ${ }^{25}$ |
| The involvement of students in cutting-edge research will encourage our nation's female and minority youth to choose science and engineering careers which will help America maintain its global scientific and leadership role. ${ }^{26}$ | Outside NSF | NSF should improve the infrastructures (i.e., human capital and resources) of MSIs that target women. ${ }^{27}$ NSF should enhance the collaborations developed among major research centers at research institutions and minority institutions and design activities that mutually benefit each party. ${ }^{28}$ |

[^31]
Summary of CEOSE Findings and Recommendations
 Year: 1997-1998 Congress: 105 ${ }^{\text {th }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
Minorities continue to be underrepresented among professional scientists and engineers within the Foundation. ${ }^{29}$	Inside NSF	NSF should seek to achieve better representation of minorities at the scientific and engineering staff levels throughout the Foundation. ${ }^{30}$
Minorities continue to be underrepresented among NSF proposal reviewers. ${ }^{3}$	Inside NSF	NSF should expand the diversity of review panels and ad hoc reviewers to include underrepresented groups across Directorates. ${ }^{32}$
It appears that the majority staff at NSF needs to be educated about the actual talents and benefits of having educators and researchers from diverse populations. ${ }^{33}$	Inside NSF	The Committee recommended the initiation of activities that contribute to the positive education of NSF staff on the benefits of a diverse population. ${ }^{34}$
In 1996, out of 2.66 million high school graduates, only 18,600 will receive a Ph.D. in S\&E—of which 1,300 will be underrepresented minorities. ${ }^{35}$	Outside NSF	CEOSE commended NSF's support for the newly established Minority Graduate Education program, designed to increase the number of minorities awarded doctorates in S\&E. ${ }^{36}$
For minorities, the differences in mathematics and science achievement on the NAEP assessment have narrowed in the past ten years. ${ }^{37}$	Outside NSF	NSF should continue its curriculum and pedagogical development, its data collection and analysis, and as a partner in policy development. ${ }^{38}$ (continued)

[^32]| The minority pre-college population will increase to 42% by 2030 . This shift in the composition of K-12 enrollment means that minority students who have the lowest grades in mathematics and science will comprise an ever-increasing population. ${ }^{39}$ And students in high-minority-enrollment schools are much more likely to be taught mathematics and science by teachers who are not certified. ${ }^{40}$ | Outside NSF | Activities must be continued to educate teachers so they will have proper competencies to teach science and mathematics concepts with K-12. ${ }^{4}$ |
| :---: | :---: | :---: |
| The aim of the CREST program has been to increase diversity in S\&E by supporting minority institutions, by encouraging and supporting students financially, and by increasing institutions effectiveness. ${ }^{42}$ | Outside NSF | NSF should increase its efforts in creating and implementing initiatives to improve faculty capacity of minority-serving institutions. ${ }^{43}$ Also, NSF should continue to support focused programs for minorities. Recently, many of these programs (e.g., Minority Graduate Fellowship Program) have been curtailed or eliminated due to so-called "race blind" policies of the Foundation---which may actually limit the ability to provide national programs aimed at minorities. ${ }^{44}$ |

[^33]
Summary of CEOSE Findings and Recommendations
 Year: 1997-1998 Congress: 105 ${ }^{\text {th }}$
 Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
Despite the assets that the disabled can bring to the STEM workforce, there are few efforts to improve workforce data, identify successful strategies, and support school-to-work programs for the disabled. ${ }^{45}$	Inside/ outside NSF	NSF should expand and support the development of a national data infrastructure concerning persons with disabilities in STEM. ${ }^{46}$
The percentage of persons with disabilities in the S\&E faculty pool is $6 \% .{ }^{47}$	Inside/ outside NSF	Programs supporting persons with disabilities in faculty positions should be increased to achieve parity within our universities as well as to provide mentors and role models. ${ }^{48}$
The Program for Persons with Disabilities (PPD) has committed to bring about needed change in academic and professional climates. ${ }^{49}$	Inside/ outside NSF	NSF should seek to achieve better representation of persons with disabilities at the S\&E staff levels throughout the Foundation; and to further promote education and employment in STEM for persons with disabilities. ${ }^{50}$
In 1997, the NSF made a total of 9,864 competitive awards, of which 102 were given to persons with disabilities. ${ }^{51}$	Inside NSF	To increase sensitivity to proposals from disabled scientists, NSF should expand the diversity of review panels and ad hoc reviewers to include disabled persons as well as other underrepresented groups in all areas of the Foundation. ${ }^{52}$
Facilities and technologies not user-friendly for disabled persons can prevent them from participating in NSF functions and activities. ${ }^{53}$	Inside NSF	NSF should address emergent issues and the capacity to employ new technologies for persons with disabilities. ${ }^{54}$
Data are sorely needed on the demographics and needs of persons with disabilities in STEM. ${ }^{55}$	Inside NSF	NSF should expand and support the development of a national data infrastructure concerning persons with disabilities in STEM, so as to better inform public policy and programming. ${ }^{56}$

[^34]Dr. Arturo Bronson, Chairperson
Director, Materials Center for
Synthesis and Processing
University of Texas, El Paso
El Paso, TX

Dr. Emi Ito, Vice Chairperson
Professor
Department of Geology and Geophysics
University of Minnesota
Minneapolis, MN
Dr. George Castro, Associate Dean
College of Science
San Jose State University,
San Jose, CA
Dr. Julius Chambers, Chancellor
North Carolina Central University,
Durham, NC

Dr. Beatriz Clewell
Principal Research Associate
The Urban Institute
Washington, DC
Dr. Lesia L. Crumpton
Associate Professor
Department of Engineering
Mississippi State University
Mississippi State, MS
Mr. C. Michael Gooden, President
Integrated Systems Analysts, Inc.
Arlington, VA
Dr. Paul N. Hale, Jr.
Director, Center for Rehabilitation
Science and Biomedical Engineering
Louisiana Tech University,
Ruston, LA

Dr. Benjamin Hart, Professor Department of Anatomy, Physiology and Cell Biology
School of Veterinary Medicine
University of California, Davis
Davis, CA

Dr. Eric Jolly, Vice President
Educational Development Center, Inc.
Newton, MA
Dr. Joe L. Martinez, Jr.
Director, Division of Life Sciences
University of Texas, San Antonio
San Antonio, TX

Dr. Gary S. May
Associate Professor
School of Electrical and
Computational Engineering
Georgia Institute of Technology
Atlanta, GA

Dr. Ken Pepion
Senior Project Director
Western Interstate Commission on
Higher Education (WICHE)
Boulder, CO
Dr. Norberto Salinas
Professor of Mathematics
Department of Mathematics
University of Kansas
Lawrence, KS

Dr. Claibourne Smith
Vice President, Technological and
Professional Development
DuPont Company
Wilmington, DE
Dr. Beverly Wright
Director, Deep South Center for
Environmental Justice
Xavier University of Louisiana
New Orleans, LA
EXECUTIVE LIAISON
Dr. Wanda E. Ward
Assistant to the Deputy Director for
Human Resource Development
National Science Foundation
Arlington, VA
EXECUTIVE SECRETARY
Mr. Darryl Gorman
Program Manager, Small Business
Technology Transfer Program
Directorate for Engineering
National Science Foundation
Arlington, VA

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 1999-2000 Congress: $106^{\text {th }}$

CEOSE Findings	Setting	CEOSE Recommendations
A reform of K-12 education is needed to increase the flow of skilled U.S. workers.	Inside/ outside NSF	CEOSE recommended that NSF collaborate extensively with the Department of Education and other Federal agencies in further developing national mathematics and science education enrichment programs. ${ }^{2}$ CEOSE recommended that NSF increase funding and support to programs that improve the skills and teaching capabilities of K-12 science and mathematics teachers across the nation. ${ }^{3}$
There is serious concern about the quality of teachers in science and mathematics for the K- 12 grades.	Outside NSF	NSF should encourage and participate in the adoption and implementation at the state level of: (1) comprehensive school standards for mathematics and science curricula; (2) mathematics and science teacher qualifications; (3) physical infrastructure; and (4) technological assets, built environments and assistive technologies. ${ }^{5}$
Just when the U.S. economy requires more STEM workers, the largest pool of potential workers continues to be isolated from STEM careers.	Inside/ outside NSF	CEOSE strongly advised NSF to replicate the "center model" for its upcoming Workforce Initiative. Characteristic programmatic attributes have a long history of success. ${ }^{7}$
Among employed non- Ph.D. scientists and engineers, women (54\%) were less likely than men (73\%) to be employed in business or industry.	Inside/ outside NSF	CEOSE recommended that NSF institute an award to recognize exemplary achievement of STEM workplace diversity by employers. ${ }^{9}$
There is limited demographic information on the scientists and engineers who act as reviewers for and advisors to NSF. ${ }^{10}$	Inside NSF	CEOSE recommended that NSF collect demographic data on review panelists and Committees of Visitors (COVs), in an effort to maintain diversity."

[^35]| NSF's merit-based
 review process includes
 evaluation of proposed
 grants that broaden
 opportunities and
 enable participation of
 underrepresented
 groups. | Inside
 according to a COV
 assessment, some
 improvements are
 needed in regard to the
 broader-impacts
 criterion. | |
| :--- | :--- | :--- | | CEOSE recommended that NSF leadership take a position of |
| :--- |
| demanding rather than simply encouraging greater use of broader |
| impact criterion. ${ }^{14}$ |
| CEOSE also recommended that an annual NSF-wide quantitative |
| assessment be implemented of the effects of the broader-impacts |
| criterion on STEM participation. |

[^36]Summary of CEOSE Findings and Recommendations
Year: 1999-2000 Congress: $106^{\text {th }}$
Target Group: Women

CEOSE Findings	Setting	CEOSE Recommendations
The United States risks losing its economic and intellectual pre-eminence, if the failure to prepare all its citizens for STEM careers persists.	Inside/ outside NSF	CEOSE continued its warnings to the NSF on the critical need to support greater participation by women.
In 1997, white women comprised 37.9\% of U.S. population and only made up 15.4% of the STEM workforce.	Inside/ outside NSF	CEOSE recommended that NSF institute an award to recognize exemplary achievement of STEM workplace diversity by employers in business, government and academia. ${ }^{27}$
Females complete advanced level high school mathematics and science courses at the same rate as males. However, females tend to hold more negative attitudes about mathematics than do their male peers. mathematics and science may be influenced by societal attitudes and media images that steer women away from STEM vocations.	Outside NSF	CEOSE recommended NSF: (1) conduct research on pre- college and undergraduate barriers and enablers; (2) conduct demonstration projects at the pre-college and undergraduate levels; and (3) provide direct support for graduate students and faculty. ${ }^{30}$
In the 1990s, women continued an established trend of increased enrollment in graduate STEM programs. ${ }^{31}$	NSF	Outside NSF
Women in college are under- represented in engineering and physics. They also drop out at higher rates than men do but not because of poor academic performance.	Outside NSF	CEOSE advised NSF to take the leadership role in advancing STEM participation by women in government and business. ${ }^{32}$
intervention programs for women at the undergraduate		
and graduate levels. ${ }^{34}$		

[^37]| In 1997, women attained 58% of graduate degrees in the social and behavior sciences, but only 17% of the engineering graduate degrees. ${ }^{3.5}$ | Outside NSF | NSF should more actively target women in promoting occupational opportunities in science. ${ }^{36}$ |
| :---: | :---: | :---: |
| Women with doctorates receive lower salaries than men and are more likely to be in the non-fulltime workforce. ${ }^{37}$ | Inside/ outside NSF | A partnership between NSF and other leaders in business, government and education is vital to overcome obstacles to meet the current critical need for STEM workers. ${ }^{38}$ |
| A substantial percentage of women with doctorates do not hold tenure-track positions, and if tenured, they are consistently more likely to be found in the junior rather than senior ranks. ${ }^{39}$ | Outside NSF | CEOSE recommended that NSF institute an award to recognize exemplary achievement of STEM workplace diversity by employers in academia and other sectors. ${ }^{40}$ |
| Female representation in decision-making positions at NSF Directorates parallels the ranking of women in the doctoral population. ${ }^{4}$ | Inside NSF | NSF should continue its policy of embedding diversity at all levels and in all programs throughout the Foundation. NSF should also delineate strategies for implementing this policy and establish measures of accountability. ${ }^{42}$ |
| While NSF total science and engineering staff grew from 38% in 1990 to 45% in 1999, women were largely in clerical positions. ${ }^{43}$ | Inside NSF | CEOSE suggested NSF consider using numeric targets for GPRA Goal 3 and incentives for increased diversity among NSF workforce of scientists, engineers and executives. ${ }^{44}$ |

[^38]
Summary of CEOSE Findings and Recommendations
 Year: 1999-2000 Congress: $106^{\text {th }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
While the percentage of underrepresented minorities enrolling in and completing graduate degrees in STEM has risen in the past decade, the numbers are still disproportionate to their size in the U.S. population. ${ }^{45}$	Inside/ outside NSF	The NSF should fund research on barriers to minority graduate degree attainment and design programs to address the identified barriers. ${ }^{46}$
The low numbers of Hispanics and African Americans in STEM tenuretrack faculty positions can be increased only by increasing the flow from these groups into the doctoral-trained workforce. ${ }^{47}$	Inside/ outside NSF	NSF should take a leadership role in more effectively bringing minorities into the STEM workforce, ensuring that America will retain a global competitive edge. ${ }^{48}$
CREST, formerly known as Minority Research Centers of Excellence, has upgraded the research capabilities of the most productive minority institutions, and increasing the number of minorities with degrees in STEM. ${ }^{49}$	Inside NSF	NSF should increase funding to build institutional infrastructure to support education of minorities and other underrepresented groups. ${ }^{50}$
African American and Hispanic students have lower enrollment rates than white students completing the two most rigorous levels of mathematics coursework-pre-calculus through calculus. ${ }^{51}$	Outside NSF	NSF should encourage and participate in the adoption and implementation at the state level of comprehensive school standards concerning mathematics, and science curricula. ${ }^{52}$ (continued)

[^39]| In 1998, HBCU-UP
 initiatives enrolled nearly
 20,000 minority students
 in STEM disciplines and
 awarded over 2,500 B.A.
 degrees. | Outside
 NSF | NSF should continue programs to enhance collaborations
 between major research institutions and institutions that serve
 minorities. ${ }^{54}$ |
| :--- | :--- | :--- |
| The majority of African
 American and Hispanic
 American students are
 isolated in schools that
 typically suffer from a
 grievous lack of resources. | Outside | |\quad| NSF |
| :--- |\quad| NSF should adopt comprehensive state-level school standards |
| :--- |
| concerning mathematics and science teacher qualifications, |
| physical infrastructure, technological assets, built |
| environments, and technologies. |

[^40]
Summary of CEOSE Findings and Recommendations
 Year: 1999-2000 Congress: $106^{\text {th }}$ Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
Data on persons with disabilities in STEM are seriously limited, which is due to several factors, including: varying definitions of disability; poor institutional record keeping on disability status, and issues of confidentiality.	Inside/ outside NSF	CEOSE emphasized the need to get better data on persons with disabilities, in order to inform and assess interventions targeted to this group. ${ }^{60}$
The disabled make up 20\% of the population, 14\% of the U.S. workforce, and 6\% of the STEM workforce. ${ }^{61}$	Inside/ outside NSF	Efforts to increase the flow of skilled U.S. workers must begin with the reform of K-12 education, which has failed to prepare persons with disabilities as well as other underrepresented groups. ${ }^{62}$
There have been budget constraints over the past few years for support of persons with disabilities activities-especially for accessibility to advances in information technology that would assist the disabled. ${ }^{63}$	Inside NSF	NSF should fund aggressive focused intervention efforts targeting persons with disabilities. ${ }^{64}$
The Program for Persons with Disabilities (PPD) has shown that 70\% of high school students who participated in PPD go on to higher education, and a majority continued to study STEM.	Inside	NSF broaden access for those with disabilities, NSF should (1) increase funding and support for
programs that improve the skills and teaching		
capabilities of K-12 science and mathematics		
teachers across the nation; (2) build the		
institutional infrastructure, including policy and		
procedural framework for relevant programs and		
technological advances; and (3) evaluate targeted		
programs for the disabled to determine outcomes		
for stated objectives. ${ }^{66}$		

[^41]| The disabled are less likely to
 graduate high school, enroll in a
 four-year college, or graduate than
 those without disabilities. | Inside/
 outside
 NSF | NSF should encourage and participate in the
 adoption of comprehensive school standards
 concerning mathematics and science curricula for
 students with disabilities. ${ }^{68}$ |
| :--- | :--- | :--- |
| Persons with disabilities are not
 disproportionately leaving STEM,
 but are simply not choosing or
 receiving full-time employment. ${ }^{69}$ | Outside
 NSF | A wide array of needs, accommodations, and
 technologies will be necessary to address the
 requirements of the diverse disabled population. ${ }^{70}$ |
| Little data are available for staffing
 with respect to persons with
 disabilities. ${ }^{71}$ | Inside/
 outside
 NSF | Educating institutions with regard to the
 contribution by the disabled in STEM, and making
 advances in assistive technology should be
 incorporated into facilitating more individuals with
 disabilities. ${ }^{72}$ |
| The Division of Human Resource
 Development (HRD) conducted
 research on pre-college and
 undergraduate barriers and
 enablers, demonstration projects,
 facilitation aids, and research on
 assistive technologies for persons
 with disabilities. | Inside
 NSF | NSF should continue to seek distribution of persons
 with disabilities at all staff levels in the Foundation
 to inform on the needs of persons with disabilities. ${ }^{74}$ |
| College-bound students with
 disabilities lag far behind their peers
 without disabilities on the SAT. ${ }^{75}$ | Inside/
 outside
 NSF | CEOSE recommended that NSF participate actively
 in promoting and selling STEM professions to all
 American youth by defining and highlighting
 occupations, developing economic data on
 availability of positions and professional tracks and
 developing salary structure information and
 comparisons. ${ }^{76}$ |

[^42]
COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND ENGINEERING MEMBERSHIP LIST 2000

Dr. Gary S. May, Chairperson
Professor
School of Electrical and
Computer Engineering
Georgia Institute of Technology
Atlanta, GA
Dr. Suzanne G. Brainard, Vice Chairperson
Executive Director
Center for Women in Science and
Engineering
University of Washington
Bothell, WA
Dr. Kenneth E. Barner
Associate Professor
Department of Electrical and
Computer Engineering
University of Delaware
Newark, DE
Mr. C. Michael Gooden, President
Integrated Systems Analysts, Inc.
Arlington, VA
Dr. Paul N. Hale, Jr.
Associate Dean for
External Programs
Louisiana Tech University
Ruston, LA
Dr. Bruce A. Jackson
Adjunct Assistant Professor of Biochemistry
Boston University School of Medicine
Boston, MA
Dr. Ken Pepion, Executive Director
Native American Program
Harvard University
Cambridge, MA
Dr. Claibourne Smith
Vice President
Technological and Professional
Development
DuPont Company
Dr. Paula E. Stephan
Associate Dean and
Professor of Economics,
The Andrew Young School of
Policy Studies, Georgia State University
Atlanta, GA

Director, Deep South Center for
Environmental Justice
Xavier University of Louisiana
New Orleans, LA
CEOSE FORMER MEMBERS:
Dr. Arturo Bronson
Director, Materials Center for
Synthesis and Processing
University of Texas, El Paso, TX
Dr. Lesia L. Crumpton
Associate Professor
Department of Engineering
Mississippi State University
Mississippi State, MI
Dr. Benjamin Hart, Professor
Department of Anatomy, Physiology
and Cell Biology
School of Veterinary Medicine
University of California, Davis, CA
Dr. Emi Ito, Professor
Department of Geology and
Geophysics
University of Minnesota
Minneapolis, MN
Dr. Joe L. Martinez, Jr.
Director, Division of Life Sciences
University of Texas, San Antonio, TX
EXECUTIVE LIAISON
Mr. John F. Wilkinson
Staff Associate for Workforce Development
National Science Foundation
Arlington, VA

EXECUTIVE SECRETARY
Dr. Bernice T. Anderson
Directorate for Education and Human Resources
National Science Foundation
Arlington, VA

Summary of CEOSE Findings and Recommendations
 Broadening Participation Overall
 Year: 2001-2002 Congress: 107 ${ }^{\text {th }}$

CEOSE Findings	Setting	CEOSE Recommendations
Research experience is often recognized as one of the key factors in retaining students in STEM pathways.	Inside/ outside NSF	CEOSE recommended that NSF: (1) strengthen the Research Experience for Undergraduates (REU) program to allow students to participate for multiple years; (2) extend research programs to high school students; (3) involve counselors and teachers who play a key role in course selection during the K-12 years; and (4) find funding for the most promising programs. ${ }^{2}$
The enforcement of the broaderimpact scriterion in the grant application process has not always been uniform across Directorates. ${ }^{3}$	Inside NSF	NSF needs to better enforce the broader-impacts criterion requirement, by providing proposers and reviewers with specific examples of what is expected of principal investigators. ${ }^{4}$
A diversity-embedded proposalreview process makes it easier for minority researchers to obtain NSF government-funded grants. ${ }^{5}$	Inside NSF	NSF should place a high priority on promoting diversity awareness within the organization and in the Foundation's proposal review process. ${ }^{6}$
The spirit of cooperation is a critical factor in increasing awareness of diversity and diversity issues within NSF. ${ }^{7}$	Inside NSF	NSF should promote diversity awareness internally, to every Directorate and office within the Foundation. ${ }^{8}$
Students from underrepresented groups with the potential to pursue careers in science, technology and engineering often make the decision to enter-or not enter-the STEM pathway during the middle and high school years. ${ }^{9}$	Inside/ outside NSF	NSF should identify, fund, replicate and adapt successful programs and best practices at the K-12 level; (2) enhance relationships with the Federal and state departments of education to upgrade the skill levels of mathematics and science teachers; (3) create continuous pathways from K12 and beyond, and develop methods to track students throughout the educational process; and (4) create accountability systems to measure progress and accomplishments of projects designed to improve science and mathematics skills.'
Unavailability of disaggregated data on underrepresented groups in STEM persists as a major problem.	Inside NSF	CEOSE recommended that disaggregated data be collected on underrepresented groups to assist in evaluating and formulating policy aimed at increasing their presence in STEM. ${ }^{12}$ (continued)

${ }^{1}$ CEOSE, Biennial Report to Congress 2002, p. 11.
${ }^{2}$ Ibid., p. 9.
${ }^{3}$ CEOSE Meeting Minutes, October 16-17, 2001, p. 5.
${ }^{4}$ Ibid.
${ }^{5}$ Ibid., p. 5.
${ }^{6}$ lbid.
${ }^{7}$ Ibid., p. 9.
${ }^{8}$ Ibid.
${ }^{9}$ Ibid., p. 13.
${ }^{10} \mathrm{Ibid} .$, pp. 2 and 13.
${ }^{11}$ CEOSE Meeting Minutes, February 7-8, 2002, pp. 6-9.
${ }^{12}$ Ibid.

Industry supported programs that provide research experience and mentoring are proving successful (e.g., Lucent Technologies' Project	Outside NSF	NSF should consider best practices from industry that can help inform and improve the efforts of NSF and educational institutions in promoting greater participation in STEM. ${ }^{14}$
GRAD, Bell Labs Science Program).		

[^43]
Summary of CEOSE Findings and Recommendations Year: 2001-2002 Congress: 107 ${ }^{\text {th }}$
 Target Group: Women

CEOSE Findings	Setting	CEOSE Recommendations
The proportion of women earning a Bachelor's Degree in S\&E doubled between 1966 and 2000. But, there still remains a paucity of women earning a doctorate in the S\&E fields.	Inside/ outside	NSF NSF should: (1) conduct research studies on the educational outcomes of underrepresented groups to develop effective strategies to retain women at risk of leaving the pathway to advanced degrees in STEM, and (2) identify and replicate successful mentoring programs. ${ }^{16}$
Women who obtain Doctoral Degrees in S\&E, except for the most recent recipients, are far less likely to be tenured than their male colleagues. ${ }^{17}$	Inside/ outside NSF	NSF should: (1) examine promotion and tenure policies at all institutions to uncover those with innovative and proven practices that result in women achieving tenure and promotional opportunities in higher numbers and (2) identify industry best practices that may inform and improve the efforts of both NSF and educational institutions to promote the inclusion of women. ${ }^{18}$
While progress has been made, America has failed to cultivate the vast pool of untapped talent among women in science and engineering (S\&E).	Inside/ outside NSF	NSF should adapt and continue to support model programs. An example is NSF's ADVANCEProgram, which supports approaches to improve the climate for women in academic institutions and facilitates their advancement to the highest ranks of leadership. ${ }^{20}$

[^44]
Summary of CEOSE Findings and Recommendations
 Year: 2001-2002 Congress: $107^{\text {th }}$
 Target Group: Minorities

CEOSE Findings	Setting	CEOSE Recommendations
In recent years, minorities have been as likely as whites to major in S\&E at the undergraduate level; but less likely to pursue graduate degrees. ${ }^{2}$	Outside NSF	Additional programs and policies need to be put into place to provide linkages and bridge programs between academic tiers. ${ }^{22}$ NSF should consider implementation of a set goal for doctoral degrees awarded to minorities. ${ }^{23}$ NSF Directorates should create fellowships and scholarships for minorities on existing grants in NSF programs. ${ }^{24}$
In 1999, minorities made up 21.4% of the total workforce in the U.S., but only 7.2% of the S\&E workforce. ${ }^{2}$	Inside/ outside NSF	Pathways to STEM careers should be examined and considered for ways to increase the participation of minorities and other underrepresented groups. ${ }^{26}$
There is a cadre of well-trained minority students coming out of top universities, but they are not eligible for faculty positions because they lack publications. Factors contributing to this include lack of mentoring. ${ }^{27}$	Inside/ outside NSF	Successful mentoring programs at all levels should be identified and closely examined in order to replicate their success. ${ }^{28}$
The lack of NSF participation with Tribal Colleges seems to remain a cultural problem.	Inside/ outside NSF	NSF should seek to increase Native American representation on CEOSE to provide greater input. ${ }^{30}$
Minority women are less likely to be tenured. ${ }^{31}$	Outside NSF	Promotion and tenure policies should be examined at all institutions to uncover those with innovative and proven practices that result in higher numbers of minorities and women in tenured positions. ${ }^{32}$

[^45]
Summary of CEOSE Findings and Recommendations
 Year: 2001-2002 Congress: 107 ${ }^{\text {th }}$
 Target Group: Persons with Disabilities

CEOSE Findings	Setting	CEOSE Recommendations
Persons with disabilities make up 1% of the total of all those earning S\&E doctorates.	Inside/ outside NSF	NSF should (1) consider the implementation of a set of goals for doctoral degrees awarded to members of underrepresented groups; and (2) develop additional initiatives and policies to provide linkages and bridge programs between academic tiers. ${ }^{34}$
Disabled persons make up 7.5\% of the college-educated U.S. workforce, but constitute a lower portion in S\&E occupations.	Inside/ outside NSF	Alternative pathways to STEM careers should be examined and considered as a way to increase the participation of persons with disabilities as well as other underrepresented groups.
Among employed scientists and engineers, approximately 64\% with disabilities are over age 50 while just 33\% of those without disabilities are over age 50.	Inside/ outside NSF	NSF should pay attention to the development of accommodations for scientists and engineers who become disabled during the course of their careers. ${ }^{38}$
SRS experiences continued difficulty in obtaining data on persons with disabilities. ${ }^{39}$	Inside NSF	NSF needs to improve data collection resources for CEOSE, in order for CEOSE to better advise NSF. ${ }^{40}$
Using disaggregated data will help increase awareness of untapped STEM talent among persons with disabilities. ${ }^{41}$	Inside/ outside NSF	To help policymakers broaden access and increase STEM participation, CEOSE requested comprehensive data on persons with disabilities and other underrepresented groups, regardless of the size of individual cells. ${ }^{42}$
Financial incentives help to ease the burden of student loan debt. ${ }^{43}$	Inside/ outside NSF	Recognizing the financial burden many persons with disabilities carry, NSF should increase stipends for graduate students to \$25,000 per year in 2003. ${ }^{44}$

[^46]
NATIONAL SCIENCE FOUNDATION COMMITTEE ON EQUAL OPPORTUNITIES IN SCIENCE AND ENGINEERING MEMBERSHIP LIST 2002

Dr. Willie Pearson, Jr., Chairperson
Professor and Chair
Georgia Institute of Technology
School of History, Technology and Society
Atlanta, GA
Dr. Indira Nair, Vice Chairperson
Vice Provost for Education
Professor, Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, PA
Dr. David R. Burgess
Professor of Biology
Boston College
Boston, MA
Dr. Marian Johnson-Thompson
Director of Education and Biomedical
Research Development
National Institute of Environmental
Health Sciences
National Institutes of Health
Bethesda, MD
Dr. Gustavo Roig
Director, Center for the Advancement of
Engineering Pre-College Education
Florida International University
Miami, FL
Dr. Thomas Windham, Director
Significant Opportunities in
Atmospheric Research and Science
University Corporation for Atmospheric Research
Boulder, CO
Dr. Lilian Shiao-Yen Wu
Program Executive, University Relations
IBM Corporation
Yorktown Heights, NY

FORMER MEMBERS:
Dr. Suzanne G. Brainard (Past Chair)
Executive Director
Center for Workforce Development
University of Washington
Bothell, WA

Dr. Kenneth E. Barner
Associate Professor
Department of Electrical and Computer
Engineering
University of Delaware
Newark, DE

Dr. Bruce A. Jackson
Assistant Professor, Biochemistry
Boston University School of Medicine
Professor and Chair, Biotechnology
Massachusetts Bay Community College
Wellesley Hills, MA

Dr. Paula E. Stephan
Professor of Economics and
Senior Associate
Policy Research Center
Georgia State University
Atlanta, GA
Dr. Gary Toranzos
Professor, Department of Biology
University of Puerto Rico
Rio Piedras, PR
EXECUTIVE LIAISON:
Mr. John F. Wilkinson
Staff Associate for Workforce
Development
National Science Foundation
Arlington, VA

[^0]: ${ }^{7}$ Minutes of CEOSE Subcommittee on Women, September 16-17, 1981, p. 7.
 ${ }^{8}$ lbid., pp. 4-9.
 ${ }^{9}$ Ibid., p. 10.
 ${ }^{10}$ Minutes of Subcommittee on Women, May 28, 1981, p. 3.
 ${ }^{11}$ Minutes of Subcommittee on Women, September 16-17, 1981, p. 10.
 ${ }^{12}$ lbid., pp. 2 and 16-17.
 ${ }^{13}$ lbid., p. 15.

[^1]: ${ }^{14}$ Ibid., p. 9.
 ${ }^{15} \mathrm{Ibid}$.
 ${ }^{16}$ Ibid., p. 13.
 ${ }^{17}$ CEOSE Meeting Minutes, May 27-28, 1981, p. 5.
 ${ }^{18}$ Ibid., p. 7.
 ${ }^{19} \mathrm{lbid}$.
 ${ }^{20}$ Ibid., p. 16.
 ${ }^{21}$ Ibid.

[^2]: ${ }^{1}$ Annual Report of the National Science Foundation Committee on Equal Opportunities in Science and Technology, October 1982, p. 14.
 ${ }^{2}$ Ibid., Executive Summary, p. 4 and pp. 10 and 19-20.
 ${ }^{3}$ Ibid., p. 13.
 ${ }^{4}$ Ibid.
 ${ }^{5}$ Ibid., Executive Summary, p. 1.
 ${ }^{6}$ Ibid, pp. 27-28.
 ${ }^{7}$ Ibid., Executive Summary, p. 1.
 ${ }^{8}$ Ibid., pp. 6-9.

[^3]: ${ }^{9}$ Summary Minutes of Subcommittee on Women Meeting, CEOSE, February 4-5, 1982, p. 1.
 ${ }^{10}$ Ibid.
 ${ }^{11}$ Ibid., p. 8.
 ${ }^{12}$ Ibid., pp. 9 and 10.
 ${ }^{13}$ Annual Report of the National Science Foundation Committee on Equal Opportunities in Science and Technology, October 1982, Executive Summary, p. 2.
 ${ }^{14} \mathrm{Ibid}$, p. 10.
 ${ }^{15}$ Ibid., Executive Summary, p. 2.
 ${ }^{16} \mathrm{Ibid} .$, p. 3 and pp. 6 and 28.
 ${ }^{17}$ lbid., p. 33.
 ${ }^{18} \mathrm{lbid} .$, pp. 10 and 35.

[^4]: ${ }^{19}$ CEOSE Subcommittee Meeting Minutes, July 13-14, 1982, p. 7.
 ${ }^{20}$ Annual Report of the National Science Foundation Committee on Equal Opportunities in Science and Technology, October 1982, Executive Summary, p. 34.
 ${ }^{21}$ CEOSE Meeting Minutes, April 6-7, 1982, p. 2.
 ${ }^{22}$ Ibid., pp. 2 and 3.

[^5]: ${ }^{23}$ Annual Report of the National Science Foundation Committee on Equal Opportunities in Science and Technology, October 1982, p. 10.
 ${ }^{24}$ Ibid.
 ${ }^{25}$ Ibid., p. 32.
 ${ }^{26}$ Ibid.
 ${ }^{27}$ Ibid., p. 33.
 ${ }^{28} \mathrm{lbid}$.
 ${ }^{29}$ Ibid., p. 36.
 ${ }^{30}$ Ibid., p. 37.
 ${ }^{31}$ Ibid., p. 38.
 ${ }^{32}$ Ibid.
 ${ }^{33}$ Ibid., p. 39.

[^6]: ${ }^{34}$ Ibid., Executive Summary, p. 2.
 ${ }^{35}$ Ibid., p. 4.
 ${ }^{36}$ Ibid., p. 2.
 ${ }^{37}$ Ibid., p. 3.
 ${ }^{38}$ Ibid., p. 2.
 ${ }^{39}$ Ibid., p. 3.
 ${ }^{40}$ Ibid., p. 7.
 ${ }^{41}$ lbid.

[^7]: ${ }^{1}$ The Continued Quest for Equal Opportunity, CEOST Second Annual Report to Congress, p. 1.
 ${ }^{2}$ Ibid., pp. 1, 14 and 19.
 ${ }^{3}$ Ibid., p. 6.
 ${ }^{4}$ Ibid., pp. 6 and 14.
 ${ }^{5} \mathrm{lbid}$.
 ${ }^{6}$ Ibid.
 ${ }^{7}$ Ibid., p. 8.
 ${ }^{8} 1 \mathrm{lbid}$.
 ${ }^{9}$ Ibid., p. 11.
 ${ }^{10}$ Ibid., p. 9.

[^8]: ${ }^{13}$ Ibid, p. 1.
 ${ }^{14}$ Ibid.
 ${ }^{15}$ Ibid., p. 5.
 ${ }^{16}$ Ibid., p. 1.
 ${ }^{17}$ lbid., p. 7.
 ${ }^{18}$ Ibid.
 ${ }^{19} \mathrm{lbid}$.
 ${ }^{20} \mathrm{Ibid}$.
 ${ }^{21}$ Ibid.
 ${ }^{22}$ Ibid.

[^9]: ${ }^{23} \mathrm{lbid}$.
 ${ }^{24} \mathrm{lbid} ., \mathrm{pp} .8$ and 14.
 ${ }^{25}$ Ibid., p. 8.
 ${ }^{26}$ Ibid., p. 8.
 ${ }^{27}$ Ibid., p. 9.
 ${ }^{28}$ lbid.
 ${ }^{29}$ lbid., p. 20.
 ${ }^{30} \mathrm{lbid}$. , pp. 20 and 21.
 ${ }^{31}$ Ibid., p. 22.
 ${ }^{32}$ lbid.

[^10]: ${ }^{33}$ Ibid., p. 23.
 ${ }^{34} \mathrm{Ibid}$.
 ${ }^{35}$ CEOST Minority Subcommittee Meeting Minutes, May 3,1983, p. 3.
 ${ }^{36}$ The Continued Quest for Equal Opportunity. Second Annual Report of The CEOST, April 1984, p. 23.
 ${ }^{37}$ Ibid., p. 29.
 ${ }^{38}$ Ibid., p. 30.
 ${ }^{39}$ Ibid., p. 23.
 ${ }^{40}$ Ibid., p. 24.
 ${ }^{41}$ Ibid., p. 25.
 ${ }^{42}$ Ibid., p. 29.
 ${ }^{43}$ Ibid., p. 31.
 ${ }^{44} \mathrm{lbid}$.

[^11]: ${ }^{45}$ Ibid., p. 27.
 ${ }^{46}$ Ibid., p. 31.
 ${ }^{47}$ Ibid.
 ${ }^{48} \mathrm{lbid}$.
 ${ }^{49}$ CEOST Meeting Minutes, April 19, 1984, p. 1.

[^12]: ${ }^{50}$ The Continued Quest for Equal Opportunity. Second Annual Report of the CEOST, 1984, p. 23.
 ${ }^{51}$ Ibid., p. 30.
 ${ }^{52}$ Ibid., p. 27.
 ${ }^{53}$ Ibid., p. 23.
 ${ }^{54}$ CEOST Meeting Minutes, January 6, 1984, p. 1.
 ${ }^{55}$ Ibid., p. 7.
 ${ }^{56} \mathrm{lbid}$.

[^13]: ${ }^{1}$ The Third Report of the National Science Foundation CEOST, p. 4.
 ${ }^{2}$ Ibid., p. 7.
 ${ }^{3}$ Ibid., p. 10.
 ${ }^{4}$ Ibid., p. 13.
 ${ }^{5}$ Ibid., p. 15.
 ${ }^{6}$ Ibid., p. 14.
 ${ }^{7}$ Ibid., p. 15.
 ${ }^{8}$ Ibid.
 ${ }^{9}$ Ibid., p. 2.
 ${ }^{10}$ Ibid., p. 4.

[^14]: ${ }^{11}$ Ibid., p. 5.
 ${ }^{12}$ Ibid., p. 5.
 ${ }^{13}$ Ibid., p. 10.
 ${ }^{14}$ Ibid., p. 16.
 ${ }^{15}$ Ibid., p. 6.
 ${ }^{16}$ Ibid., p. 14.
 ${ }^{17}$ Ibid., p. 10.
 ${ }^{18}$ Ibid., p. 5.
 ${ }^{19}$ Ibid., p. 13.
 ${ }^{20} \mathrm{Ibid}$.

[^15]: ${ }^{21}$ Ibid., p. 7.
 ${ }^{22}$ Ibid., p. 15.
 ${ }^{23}$ Ibid., p. 6.
 ${ }^{24}$ Ibid., p. 13.
 ${ }^{25}$ lbid., p. 10.
 ${ }^{26}$ Ibid., p. 16.

[^16]: ${ }^{1}$ Fourth Report to The Congress of the CEOSE, April 1988, p. 19.
 ${ }^{2}$ Ibid.
 ${ }^{3}$ Ibid.
 ${ }^{4}$ Ibid.
 ${ }^{5}$ lbid.
 ${ }^{6}$ CEOSE Meeting Minutes, October 27, 1988, p. 1.
 ${ }^{7}$ Ibid., p. 3.

[^17]: ${ }^{8}$ Fourth Report to The Congress of the CEOSE, April 1988, pp. 9 and 10.
 ${ }^{9}$ Ibid., p. 17.
 Ibid.
 Ibid.
 Ibid., p. 18.
 lbid.
 ${ }^{14} \mathrm{Ibid}$.
 ${ }^{15} \mathrm{Ibid}$.

[^18]: ${ }^{16}$ Ibid, p. 2.
 ${ }^{17}$ Ibid.
 ${ }^{18}$ Ibid., p. 14.
 ${ }^{19}$ Ibid., p. 2.
 ${ }^{20}$ Ibid., p. 3.
 ${ }^{21}$ Ibid., pp. 2-3.
 ${ }^{22}$ Ibid., p. 3.
 ${ }^{23}$ Ibid.
 ${ }^{24}$ Ibid.
 ${ }^{25}$ Ibid.
 ${ }^{26}$ Ibid., p. 4.
 ${ }^{27}$ Ibid.

[^19]: ${ }^{28}$ Ibid.
 ${ }^{29}$ Ibid.
 ${ }^{30}$ Ibid., p. 9.
 ${ }^{31}$ Ibid., p. 14.
 ${ }_{3}^{32}$ Ibid., p. 9.
 ${ }^{33}$ lbid., p. 15.
 ${ }^{34}$ Ibid., p. 12.
 ${ }^{35}$ Ibid., p. 15.

[^20]: ${ }^{36}$ Ibid., p. 2.
 ${ }^{37}$ Ibid., p. 24.
 ${ }^{38}$ Ibid., p. 10.
 ${ }^{39}$ lbid., p. 23.
 ${ }^{40}$ Ibid., p. 21.
 ${ }^{41}$ Ibid., p. 5.
 ${ }^{42}$ Ibid., p. 21.
 ${ }^{43}$ Ibid., p. 22.
 ${ }^{44}$ Ibid., p. 21.
 ${ }^{45}$ lbid., p. 6.

[^21]: ${ }^{1}$ Goals for The Coming Years. Committee on Equal Opportunities in Science and Engineering, December 1992, p. 9.
 ${ }^{2}$ Ibid.
 ${ }^{3}$ Ibid., p. 4.
 ${ }^{4}$ Ibid., p. 3.
 ${ }^{5}$ Ibid., p. 4.
 ${ }^{6}$ Ibid., pp. 2 and 7.
 ${ }^{7}$ Ibid., p. 3.
 ${ }^{8}$ Ibid., p. 6.

[^22]: ${ }^{9}$ Ibid., p. 5.
 ${ }^{10} \mathrm{Ibid} .$, p. 6.
 ${ }^{11}$ Ibid., p. 7.
 ${ }^{12} \mathrm{lbid}$.
 ${ }^{13}$ Ibid., p. 2.
 ${ }^{14} \mathrm{Ibid} .$, p. 6.
 ${ }^{15}$ Ibid.
 ${ }^{16}$ lbid. , p. 5.
 ${ }^{17}$ Ibid., p. 7.
 ${ }^{18}$ Ibid., p. 3.
 ${ }^{19}$ lbid., p. 7.

[^23]: ${ }^{20}$ Ibid., p. 5.
 ${ }^{21}$ Ibid., p. 7.
 ${ }^{22}$ lbid., p. 5.
 ${ }^{23}$ Ibid., p. 2.
 ${ }^{24}$ lbid., p. 5.
 ${ }^{25}$ Ibid., p. 2.
 ${ }^{26}$ Ibid., p. 5.
 ${ }^{27}$ Ibid., p. 2.

[^24]: ${ }^{1}$ Biennial Report to Congress of the Committee on Equal Opportunities in Science and Engineering, June 1995, p. 9.
 ${ }^{2}$ Ibid., pp. 9-10.
 ${ }^{3}$ lbid., p. 9 .
 ${ }^{4}$ Ibid.

[^25]: ${ }^{1}$ CEOSE, 1996 Biennial Report to Congress, p. 1.
 ${ }^{2}$ Ibid.
 ${ }^{3}$ Ibid., p. 4, Figure 1.
 ${ }^{4}$ Goals for The Coming Years. CEOSE, December 1992, p. 6.
 ${ }^{5}$ CEOSE, 1996 Biennial Report to Congress, p. 13.
 ${ }^{6}$ Ibid.
 ${ }^{7}$ Ibid., p. 1.
 ${ }^{8}$ Ibid., p. 2.

[^26]: ${ }^{9}$ CEOSE, 1996 Biennial Report to Congress, p. 5, Figure 2.
 ${ }^{10}$ Goals for The Coming Years. CEOSE, December 1992, p. 6.
 ${ }^{11}$ CEOSE, 1996 Biennial Report to Congress, p. 7.
 ${ }^{12}$ Goals for The Coming Years. CEOSE, December 1992, p. 2.
 ${ }^{13}$ Ibid., p. 9 .
 ${ }^{14}$ Ibid., p. 6.
 ${ }^{15}$ CEOSE, 1996 Biennial Report to Congress, p. 8, Figure 4.
 ${ }^{16}$ Goals for The Coming Years. CEOSE, December 1992, pp. 2 and 7.

[^27]: ${ }^{17}$ CEOSE, 1996 Biennial Report to Congress, p. 3.
 ${ }^{18}$ Ibid., p. 14.
 ${ }^{19}$ lbid., p. 6.
 ${ }^{20}$ Ibid., p. 13.
 ${ }^{21}$ Ibid., p. 7.
 ${ }^{22}$ Goals for The Coming Years. CEOSE, December 1992, p. 2.
 ${ }^{23}$ CEOSE, 1996 Biennial Report to Congress, p. 9.
 ${ }^{24} \mathrm{lbid}$.
 ${ }^{25}$ Goals for The Coming Years. CEOSE, December 1992, pp. 2 and 7.
 ${ }^{26}$ CEOSE Meeting Minutes, October 25-27, 1995, p. 20.
 ${ }^{27}$ CEOSE, 1996 Biennial Report to Congress , p. 1.

[^28]: ${ }^{28}$ Ibid., p. 3.
 Ibid., p. 13.
 lbid., pp. 1 and 13.
 lbid., p. 5.
 Ibid., p. 13.
 Ibid., p. 14.
 lbid.
 Ibid., p. 12.
 lbid.
 Ibid., p. 14.
 ${ }^{38} \mathrm{lbid}$.

[^29]: ${ }^{1}$ CEOSE, 1998 Biennial Report to Congress, p. 4.
 ${ }^{2}$ Ibid., pp. 1 and 16.
 ${ }^{3}$ Ibid., p. 13.
 ${ }^{4}$ Ibid.
 ${ }^{5}$ Ibid., p. 15.
 ${ }^{6}$ Ibid.
 ${ }^{7}$ Ibid., p. 1.
 ${ }^{8}$ Ibid., p. 16.
 ${ }^{9}$ Ibid., pp. 15-16.
 ${ }^{10}$ Ibid., p. 16.

[^30]: ${ }^{11}$ Ibid., p. 5, Figure 2.
 ${ }^{12}$ Ibid., p. 6.
 ${ }^{13}$ lbid., p. 16.
 ${ }^{14} \mathrm{Ibid} .$, p. 8, Figure 7.
 ${ }^{15}$ Ibid., p. 16.
 ${ }^{16}$ Ibid., p. 10, Figures 10 and 11.
 ${ }^{17}$ lbid., p. 14.
 ${ }^{18}$ Ibid., p. 9, Figure 9.
 ${ }^{19}$ lbid., p. 11.
 ${ }^{20}$ Ibid., p. 13.
 ${ }^{21}$ Ibid.

[^31]: ${ }^{22}$ Ibid., p. 14.
 ${ }^{23}$ Ibid., pp. 2 and 14.
 ${ }^{24}$ lbid., p. 14.
 ${ }^{25}$ Ibid., p. 16.
 ${ }^{26}$ Ibid., p. 14.
 ${ }^{27}$ lbid., p. 1.
 ${ }^{28}$ Ibid., p. 16.

[^32]: ${ }^{29}$ CEOSE Meeting Minutes, June 9-11, 1998, p. 10.
 ${ }^{30}$ CEOSE, 1998 Biennial Report to Congress, p. 16.
 ${ }^{31}$ CEOSE Meeting Minutes, February 1997, p. 4.
 ${ }^{32}$ CEOSE, 1998 Biennial Report to Congress, p. 17.
 ${ }^{33}$ Ibid., p. 2.
 ${ }^{34}$ Ibid., p. 17.
 ${ }^{35}$ Ibid., p. 3.
 ${ }^{36}$ lbid., p. 12.
 ${ }^{37}$ Ibid., p. 5.
 ${ }^{38}$ lbid., p. 16.

[^33]: ${ }^{39}$ lbid., p. 5.
 ${ }^{40}$ Ibid., p. 8.
 ${ }^{41}$ Ibid., p. 16.
 ${ }^{42}$ Ibid., p. 11.
 ${ }^{43} \mathrm{lbid}$.
 ${ }^{44}$ Ibid., p. 13.

[^34]: ${ }^{45}$ Ibid., p. 6.
 ${ }^{46}$ Ibid., p. 16.
 ${ }^{47}$ Ibid., p. 8.
 ${ }^{48}$ Ibid., p. 16.
 ${ }^{49}$ lbid., p. 11.
 ${ }^{50}$ Ibid., p. 16.
 ${ }^{51}$ Ibid., p. 15.
 ${ }^{52}$ Ibid., p. 17.
 ${ }^{53}$ Ibid., pp. 15-16.
 ${ }^{54}$ Ibid., p. 1.
 ${ }^{55}$ CEOSE Meeting Minutes, October 14-15, 1997, p. 4.
 ${ }^{56}$ CEOSE, 1998 Biennial Report to Congress, p. 16.

[^35]: ${ }^{1}$ CEOSE 2000 Biennial Report to the United States Congress, p. 5.
 ${ }^{2}$ Ibid., p. 41.
 ${ }^{3}$ Ibid.
 ${ }^{4}$ CEOSE Meeting Minutes, June 1-2, 2000, p. 7 and October 12-13, 2000, p. 5.
 ${ }^{5}$ CEOSE 2000 Biennial Report to the United States Congress, p. 42.
 ${ }^{6}$ Ibid., p. 3.
 ${ }^{7}$ Ibid., p. 42.
 ${ }^{8}$ Ibid., p. 26.
 ${ }^{9}$ Ibid., p. 42.
 ${ }^{10}$ Ibid., p. 37.
 ${ }^{11}$ Ibid., p. 42.

[^36]: ${ }^{12}$ Ibid., p. 37.
 ${ }^{13}$ CEOSE Meeting Minutes, February 17-18, 2000, p. 8.
 ${ }^{14}$ Ibid. and CEOSE Meeting Minutes, June 10-11, 1999, p. 4.
 ${ }^{15}$ CEOSE 2000 Biennial Report to the United States Congress, p. 42.
 ${ }^{16}$ Ibid., p. 37.
 ${ }^{17}$ lbid., pp. 35 and 42.
 ${ }^{18}$ Ibid., p. 2.
 ${ }^{19}$ lbid., p. 44.
 ${ }^{20}$ Ibid., p. 22.
 ${ }^{21}$ Ibid., p. 41.
 ${ }^{22}$ Ibid., p. 1.
 ${ }^{23}$ lbid., p. 42.

[^37]: ${ }^{24}$ Ibid., p. 3.
 ${ }^{25}$ Ibid.
 ${ }^{26}$ Ibid., p. 3, Figure 1-2.
 ${ }^{27}$ Ibid., p. 42.
 ${ }^{28}$ Ibid., pp. 6-7.
 ${ }^{29}$ lbid., pp. 7 and 15 sidebar.
 ${ }^{30}$ Ibid., p. 39.
 ${ }^{31}$ Ibid., p. 20.
 ${ }^{32}$ Ibid., p. 42.
 ${ }^{33}$ Ibid., p. 14.
 ${ }^{34}$ Ibid., p. 41.

[^38]: ${ }^{35}$ lbid., p. 20.
 ${ }^{36}$ Ibid., p. 41.
 ${ }^{37}$ Ibid., p. 29.
 ${ }^{38}$ Ibid., p. 42.
 ${ }^{39}$ lbid., p. 28.
 ${ }^{40}$ lbid., p. 42.
 ${ }^{41}$ Ibid., p. 36.
 ${ }^{42}$ lbid., p. 42.
 ${ }^{43}$ CEOSE Meeting Minutes, February 17-18, 2000, p. 5.
 ${ }^{44}$ CEOSE 2000 Biennial Report to the United States Congress, p. 6.

[^39]: ${ }^{45}$ Ibid., pp. 20-21.
 ${ }^{46}$ Ibid., p. 42.
 ${ }^{47}$ Ibid., pp. 29-30.
 ${ }^{48}$ Ibid., p. 42.
 ${ }^{49}$ Ibid., p. 19.
 ${ }^{50}$ Ibid., p. 41.
 ${ }^{51}$ Ibid., p. 10, Table 2.2.
 ${ }^{52}$ Ibid., p. 41.

[^40]: ${ }^{53}$ Ibid., p. 19.
 ${ }^{54}$ Ibid., p. 41.
 ${ }^{55}$ Ibid., p. 8.
 ${ }_{55}^{56}$ bid., p. 41.
 ${ }^{57}$ Ibid., p. 39
 ${ }^{58}$ Ibid., p. 42.

[^41]: ${ }^{59}$ CEOSE 2000 Biennial Report to the United States Congress, p. 11.
 ${ }^{60}$ CEOSE Meeting Minutes, June 1-2, 2000, pp. 10-11.
 ${ }^{61}$ CEOSE 2000 Biennial Report to the United States Congress, p. 2.
 ${ }^{62}$ lbid., p. 5.
 ${ }^{63}$ CEOSE Meeting Minutes, February 25-26, 1999, p. 10.
 ${ }^{64}$ CEOSE 2000 Biennial Report to the United States Congress, p. 41.
 ${ }^{65}$ Ibid., p. 12.
 ${ }^{66}$ Ibid., p. 41.

[^42]: ${ }^{67}$ Ibid., p. 16.
 ${ }^{68}$ Ibid., p. 41.
 ${ }^{69}$ Ibid., p. 32.
 ${ }^{70}$ Ibid., p. 17.
 ${ }^{71}$ Ibid., p. 36.
 ${ }^{72}$ Ibid.
 ${ }^{73}$ Ibid., p. 39.
 ${ }^{74}$ Ibid., p. 42.
 ${ }^{75}$ Ibid., p. 12.
 ${ }^{76}$ Ibid., p. 41.

[^43]: ${ }^{13}$ CEOSE Meeting Minutes, October 16-17, 2001, pp. 8-9.
 ${ }^{14}$ CEOSE, Biennial Report to Congress 2002, p. 7.

[^44]: ${ }^{15}$ CEOSE, Biennial Report to Congress 2002, p. 4, Figures 1 and 2.
 ${ }^{16}$ Ibid., p. 7.
 ${ }^{17}$ Ibid., p. 4, Figure 3.
 ${ }^{18}$ lbid. p. 7.
 ${ }^{19}$ Ibid., p. 1.
 ${ }^{20} \mathrm{Ibid}$.

[^45]: ${ }^{21}$ CEOSE Biennial Report to Congress 2002, p. 5.
 lbid., p. 7.
 ${ }^{23} \mathrm{lbid}$.
 ${ }^{24}$ CEOSE Meeting Minutes, February 7-8, 2002, p. 13.
 ${ }^{25}$ CEOSE Biennial Report to Congress 2002, p. 5.
 ${ }^{26}$ Ibid., p. 7.
 ${ }^{27}$ CEOSE Meeting Minutes, October 16-17, 2001, p. 4-5.
 ${ }^{28}$ CEOSE Biennial Report to Congress 2002, p. 7.
 ${ }^{29}$ CEOSE Meeting Minutes, October 16-17, 2001, p. 6.
 ${ }^{30} \mathrm{Ibid}$.
 ${ }^{31}$ CEOSE Meeting Minutes, February 7-8, 2002, p. 10.
 ${ }^{32}$ CEOSE Biennial Report to Congress 2002, p. 7.

[^46]: ${ }^{33}$ CEOSE Biennial Report to Congress 2002, p. 6.
 ${ }^{34}$ Ibid., p. 7.
 ${ }^{35}$ Ibid., p. 6.
 ${ }^{36}$ Ibid., p. 7.
 ${ }^{37}$ Ibid., p. 6.
 ${ }^{38} \mathrm{Ibid}$.
 ${ }^{39}$ Ibid., p. 10.
 ${ }^{40}$ CEOSE Meeting Minutes, October 16-17, 2001, p. 22.
 ${ }^{41}$ CEOSE Biennial Report to Congress 2002, p. 10.
 ${ }^{42}$ lbid.
 ${ }^{43}$ Ibid., p. 11.
 ${ }^{44} \mathrm{lbid}$.

