text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
 
Astronomical Sciences (AST)
design element
AST Home
About AST
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
AST Proposal Deadlines
Astronomy & Astrophysics Advisory Committee (AAAC)
AST Senior Review
View AST Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 08-049
New Star Systems First of Their Kind

Two binary star systems could explode as yellow supergiants

Photo of a  peanut-shaped star system with two nearly identical stars closely orbiting each other.

A nearly identical pair of stars is one of two known yellow binary systems.
Credit and Larger Version

April 1, 2008

Researchers funded by the National Science Foundation (NSF) announced today in Astrophysical Journal Letters that they have discovered a faraway binary star system that could be the progenitor of a rare type of supernova.

The two yellow stars, which orbit each other and even share a large amount of stellar material, resemble a peanut. The Ohio State University astronomers and their colleagues believe the two stars in the system, 13 million light years away and tucked inside a small galaxy known as Holmberg IX, appear to be nearly identical, each 15 to 20 times the mass of our Sun.

This work was funded through an NSF continuing grant to support a systematic study of the most massive stars in the local universe. The study is expected to yield masses and radii for dozens of massive stars discovered in a variety of environments. The data produced can be used to test models of massive star atmospheres, winds, and how they evolve both as single stars and in binaries.

"To have discovered a pair of massive interacting stars in this configuration is truly exceptional--sort of like rare squared," said NSF Program Manager Michael Briley. "There is a lot these stars can tell us about how they work and how they influence their environment. But the really exciting part is they may also hold the key to finally understanding why some massive yellow stars explode."

Lead author Jose Prieto, an Ohio State graduate student who analyzed the new system as part of his doctoral dissertation, searched the historical record to see whether his group had found the first such binary. In a surprising twist, his search uncovered another similar system less than 230,000 light years away in the Small Magellanic Cloud, a small galaxy that orbits the Milky Way. The second binary star system was discovered in the 1980s but misidentified at the time. Prieto reassessed the data and realized the system was another yellow super-giant eclipsing binary. Prieto and his colleague suspect the yellow binary systems could be the progenitors of rare supernova linked to yellow supergiants.

Most stars end their life in a supernova at the cooler red end of the temperature scale and a few end in the hotter blue end, Pietro said. Astronomers didn't believe stars would end during the short transitional phase in between--until now.

"When two stars orbit each other very closely, they share material, and the evolution of one affects the other," Prieto said. "It's possible two supergiants in such a system would evolve more slowly and spend more time in the yellow phase--long enough that one of them could explode as a yellow supergiant."

-NSF-

Media Contacts
Diane Banegas, National Science Foundation (703) 292-4489 dbanegas@nsf.gov
Pam Frost Gorder, Ohio State University (614) 292-9475 Gorder.1@osu.edu

Program Contacts
Michael Briley, National Science Foundation (703) 292-4901 mbriley@nsf.gov

Principal Investigators
Jose Prieto, Ohio State University (614) 292-7881 prieto.12@osu.edu

Related Websites
Ohio State University news release: http://researchnews.osu.edu/archive/superyellow.htm
Technical paper: http://arxiv.org/abs/0709.2376

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Mathematical & Physical Sciences (MPS)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
April 1, 2008
Text Only


Last Updated: April 1, 2008