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Abstract

In the field of spatially explicit modeling, well-developed accuracy assessment methodologies are often
poorly applied. Deriving model accuracy metrics have been possible for decades, but these calculations
were made by hand or with the use of a spreadsheet application. Accuracy assessments may be useful
for: (1) ascertaining the quality of a model; (2) improving model quality by identifying and correcting
sources of error; (3) facilitating a comparison of various algorithms, techniques, model developers and
interpreters; and, (4) determining the utility of the data product in a decision-making context. When
decisions are made with models of unknown or poorly-assessed accuracy, resource managers run the
risk of making wrong decisions or drawing erroneous conclusions. Untested predictive surface maps
should be viewed as untested hypotheses and, by extension, poorly tested predictive models are poorly
tested hypotheses. Often, if any accuracy measure is provided at all, only the overall model accuracy is
reported. However, numerous accuracy metrics are available which can describe model accuracy and
performance. Because issues concerning data quality and model accuracy in landscape analyses have
received little attention in the management literature, we found it useful to develop a systematic and
robust procedure for assessing the accuracy of spatially explicit models. We created an ArcView 3.x
extension that provides end users with a packaged approach for accuracy assessment, using Cohen’s
Kappa statistic as well as several other metrics including overall accuracy, overall misclassification rate,
model specificity and sensitivity, omission and commission errors, and positive and negative predictive
power. Collectively, these metrics may be used for gauging model performance. When multiple models
are available, these metrics offer end users the ability to quantitatively compare and identify the “best”
model within a multi-criteria model selection process.

Researchers have already cast much darkness on the subject, and if they continue their investigations, we shall soon

know nothing at all about it.
Mark Twain

May we, through our research and toils, aspire to prove Sam's mark less than true and one day walk away knowing a
little something about spatial model accuracy.
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DESCRIPTION:

Kappa Analysis: The Kappa statistic is used to measure the agreement between predicted and
observed categorizations of a dataset while correcting for agreement that occurs by chance. This statistic
is especially useful in landscape ecology and wildlife habitat relationship (WHR) modeling for measuring
the predictive accuracy of classification grids.

@ Compare Kappa Analyses: This tool allows you to compare the kappa statistics between different
analyses, perhaps comparing different observers, predictive algorithms or dates of remote sensing
imagery.

Sample Size: This tool provides a means to estimate the sample size required to achieve a
confidence level and precision for statistical analysis.

Summary Statistics: From any numeric field in a table, this function will calculate the Mean,
Standard Error of the Mean, Confidence Intervals, Minimum, 1st Quartile, Median, 3rd Quartile,
Maximum, Variance, Standard Deviation, Average Absolute Deviation, Skewness (normal and Fisher’s
G1), Kurtosis (normal and Fisher's G2), Number of Records, Number of Null Values, and Total Sum.

Probability Calculators: This function will allow you to calculate the probability, cumulative
probability and inverse probability (i.e. given a cumulative probability, calculate the corresponding critical
value) of a wide range of statistical distributions, including the Beta, Binomial, Cauchy, Chi-Square,
Exponential, F, Logistic, LogNormal, Normal, Poisson, Student’s T and Weibull distributions. This
function is available as a general calculator that remains open until you are finished with it, or as a Table
tool that performs the calculations on all selected records in a table.
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described in “Assessing the Accuracy of Remotely Sensed Data: Principles and Practices” by Russell G.
Congalton and Kass Green (Congalton and Green 1999). The authors recommend this source for a
detailed discussion of the use of the Kappa statistic in landscape analysis.
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REQUIRES: ArcView 3.x, Spatial Analyst

This extension also requires the file "avdlog.dll" be present in the ArcView/BIN32 directory (or
$AVBIN/avdlog.dll) and the Dialog Designer extension be located in your ArcView/ext32 directory, which
they usually are if you're running AV 3.1 or better. The Dialog Designer doesn't have to be loaded; it just
has to be available. If you are running AV 3.0a, you can download the appropriate files for free from
ESRI at:

http://www.esri.com/software/arcview/extensions/dialog/index.html

REVISIONS: Version 2.0, September 23, 2005: Incorporated new functions to adjust for locational
uncertainty of sample points, generating statistics on multiple subsets of data, and extensive revisions to
manual.

Recommended Citation Format: For those who wish to cite this extension, the authors recommend
something similar to:

Jenness, J. and J. J. Wynne. 2005. Kappa analysis (kappa_stats.avx) extension for ArcView 3.x.
Jenness Enterprises. Available at: http://www.jennessent.com/arcview/kappa_stats.htm.

Please let us know if you cite this extension in a publication (jeffi@jennessent.com), so we may update
the citation list accordingly.
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General Instructions:

1) Begin by placing the "kappa_stats.avx" file into the ArcView extensions directory
(../../Av_qis30/Arcview/ext32/).

2) After starting ArcView, load the extension by clicking on File --> Extensions... , scroll down through
the list of available extensions, and then click on the checkbox next to "Kappa Analysis."

3) When active, this extension will add a new menu to your View menu bar:

K.appa Tools

Calculate Cohen's K.appa...
Compare K.appa Analyses. ..
Calculate Sample Size...

Prabahility Distribution Calculator...

Field Summary Statistics. ..

Add Unique Becord Mumber Field

Clazz Walues from Circle: Gnd Source...
Clazz Waluesz from Circle: Polygon Source. ..
Clazz Walues from Paint: Grid Source. .

Clazs Yalues from Point: Folygon Source...

4) This extension will also add five buttons to your View button bar: @

I -—
5) This extension will also add two buttons to your Table button bar:




All models are wrong but some are useful.
George E.P. Box

Kappa Analysis:

Introduction

Spatially explicit models have various applications in resource management, including the development of
vegetation and wildlife habitat relationship (WHR) predictive surface maps. Appropriate applications of
these models are impossible without informed approaches to model development and accuracy
assessment of resultant data products. In the absence of incisive model development and error analysis,
spatially explicit models may be applied in ways which confound, rather than illuminate, our
understanding of vegetation land cover and wildlife habitat.

Accuracy assessment provides a means of gauging model performance and thus may serve to elucidate
our understanding of predictive models. End users who conduct accuracy assessment are also provided
with important information regarding model reliability and suitability of the modeling process (Csuti and
Crist 1998; Drost et al. 1999). Accuracy assessments are useful for: (1) ascertaining the quality of a
predictive surface; (2) improving map quality by identifying and correcting sources of error; (3) facilitating
a comparison of various algorithms, techniques, model developers and interpreters; and, (4) determining
the relevance of the data product in the decision making process (Congalton and Green 1999).

Well-developed accuracy assessment methodologies are lagging far behind predictive modeling. In the
wildlife habitat-modeling field, methods used for modeling species occurrence and abundance are more
developed than methods used for assessing model predictions (Boone and Krohn 2002). Perhaps more
perplexing, issues concerning data quality and model accuracy in landscape analyses have received little
attention in the management literature (Hess 1994; Hess and Bay 1997; Luck and Wu 2002). When
accuracy assessments are conducted, generally only the overall accuracy metric is provided (Congalton
and Green 1999). However, there are numerous accuracy metrics available which are highly useful in
determining overall model performance.

The Kappa Analysis extension will provide end users with a packaged approach for accuracy
assessment, using the Kappa statistic as well as several additional model performance metrics.
Additional metrics include overall accuracy, overall misclassification rate, model specificity and sensitivity,
omission and commission errors, and positive and negative predictive power. When multiple competing
models are available, these metrics can be used to quantitatively compare and identify the “better” model
within a multi-criteria model selection process.

Kappa Analysis strives to raise the bar for accuracy assessment and provide a quantitative approach to
making model comparisons. We hope end users will agree.

The Kappa Statistic

The Kappa statistic is used to measure the agreement between two sets of categorizations of a dataset
while correcting for chance agreements between the categories. In terms of landscape ecology and
wildlife habitat analysis, this statistic is especially useful for estimating the accuracy of predictive models
by measuring the agreement between the predictive model and a set of field-surveyed sample points.
The Kappa statistic makes use of both the overall accuracy of the model and the accuracies within each
category, both in terms of the predictive model and the field-surveyed sample points, to correct for chance
agreement between categories.

This concept can best be understood by viewing the predictive model values and the field-surveyed
values in an error matrix:
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(Adapted from Congalton and Green 1999, p. 47)

In this matrix, the rows represent the predicted values while the columns represent the observed values.
Each cell represents the number of sample points that were classified as i and observed to be j. The
diagonal (where i = j) represents cases where the predicted value agreed with the observed value. The
off-diagonal cells contain misclassified values, and the row and column describe exactly how those
values were misclassified.

The row totals are the number of sample points classified into category i by the producer’s classification
model, and are calculated as:
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The column totals are the number of sample points classified into category j by the user’s field tests, and
are calculated as:

k
n, :;nij

The Kappa statistic provides a measure of agreement between the predicted values and the observed
values, and is calculated as (sensu Congalton and Green 1999:50):
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The advantage of the Kappa statistic is that it corrects for chance agreements between the observed and
predicted values. The logic behind this can be summarized as follows (from Agresti, 1990:366-367):

1) If z; denotes the probability that a point on the landscape will be predicted to be i and observed to
be j (i.e. the probability of being in cell jj in the error matrix), then

k
Im, = Z”ﬁ
i=1
is the overall probability of correctly classifying a point, and is equal to the overall accuracy

described below.

2) If the predicted and observed classifications are statistically independent (which they probably are
not; hence this correction factor), then any agreement would occur purely by chance. In this case

and the overall probability of correctly classifying a point purely by chance is
k
II, = Zﬂ,ﬁ_,
i=1

3) Therefore, I1, —II, equals the excess classification accuracy occurring beyond the accuracy
expected purely by chance.

4) Kappa adjusts for chance accuracy by dividing this excess accuracy (1'[0 —He) by the excess
accuracy that would have occurred if the observed accuracy was perfect (1—He). Note that the

“1” in the denominator replaces IT, with a “perfect” observed accuracy value. Therefore (when
expressed in terms of probabilities rather than cell counts), Kappa can be stated as

k k
/Zﬂ-” ;ﬂ}.ﬂ: 1-Io _He
Estimated Kappa K= P =
1-T1
1—Z7r,,7r, €
i=1



5) The K statistic typically ranges between 0 and 1, with values closest to 1 reflecting highest
agreement. Negative values are possible but rare.

A CAUTION: Congalton and Green (1999:58-59) point out that some researchers object to Kappa when
used to assess remote sensing accuracy because it underestimates the actual classification accuracy, in

k
that the chance agreement term II, = Z;z,,;z,, includes some agreement that is not purely due to chance.
i=1
This is especially the case when the marginals (row and column totals) are not fixed a priori, which is
normally the case in remote sensing. We suspect that it is rare that a researcher would decide a priori
that X% of their landscape will be classified as Y.

However, Congalton and Greene also point out that, even given this potential problem, Kappa comes with
some powerful statistical properties that make it extremely useful for assessing accuracy.

For example, because Kis asymptotically normally distributed, a basic Z-score can be used for
significance testing:

z-_K
vér(Kl)

Thereafter, the significance of the Z-score may be evaluated based on the associated P-value. If

hypothesis testing is employed, the null hypothesis H,: K; = 0, means the classification accuracy is no

different than a purely random classification. The alternative hypothesis H;: K; # 0, means the accuracy

is significantly different (hopefully better) than a random classification, and H, would be rejected at some

critical Z-score.

Also, the Kappa statistic and variance can be used to calculate a confidence interval around Kappa,
where:

Cl=K +Z,V(K)

Furthermore, because the variance can be estimated, 2 K values may be compared to see if they are
significantly different. This is useful when you are interested in whether different models, methodologies
or interpreters produce significantly different results, or if a landscape has changed over time (Congalton
and Mead 1983). In this case the Z-score is calculated as

Rl _Rz
\/Vér<Kl)+ vér(&)

This comparison can be extended to a general test for multiple equal K values by estimating the
supposed ‘common’ K value (as described by Fleiss [1981:222]):

Z:

g Rm
;Var(l%m)
S 1
2,

'‘Common' K =

This ‘common’ K value can then be used to test for equal K values on the Chi-Square distribution with
g - 1 degrees of freedom:

) g
lequal K = Z >
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Model Accuracy

The overall accuracy of the model is simply defined as the total number of correct classifications divided
by the total number of sample points, and is calculated as:

n.

k
i
=1

Overall Accuracy = =—
n

The overall accuracy is often the only accuracy statistic reported with predictive landscape models
(Congalton and Green 1999:46), but the error matrix provides a means to calculate numerous additional
metrics describing model performance. In particular, accuracies of each category from both the model’s
(or producer’s) perspective and the observer’s (or user’s) perspective may be useful in determining model
performance. The producer’s accuracy reflects the proportion of sample points correctly classified as X
over the number of points observed to be X, and is calculated as:

n.

Producer's Accuracy = —£
n .

*J

The user’s accuracy reflects the proportion of sample points correctly classified as X over the number of
points predicted to be X, and is calculated as:

n.
User's Accuracy = -
n

is

The difference between producer’s and user’s accuracy is the difference between defining accuracy in
terms of how well the landscape can be mapped (producer’s accuracy) versus how reliable the
classification map is to the user (user’s accuracy; Story & Congalton 1986). For example, please review
the sample error matrix below.

Reference Data

Deciduous Coniferous

3 Forest Forest Grassland Total
8 Deciduous 60 29 4 86
c Forest
o .
= Coniferous 2 30 3 35
o Forest
@  Grassland 1 4 10 15
O
Total 63 56 17 136
Overall Accuracy: 100 =73.5%
136
Category Producer’s Accuracy User’s Accuracy
. 60 60
Decid F t — =95.2% — =69.8%
eciduous Fores 63 o 36 o
Coniferous Forest 30 =53.6% 30 =85.7%
56 35
Grassland g =58.8% % =66.7%

Suppose we are interested in the accuracy of deciduous forest classification. The overall accuracy of this
example is 73.5%, but the overall accuracy explains little regarding how well the classification process

-11-



captures deciduous forest. Fortunately, the error matrix provides us with the means to calculate
deciduous forest classification in two different ways.

Notice that the reference data (in columns) includes 63 cases identified as deciduous forest. Of these 63
cases, 60 were correctly classified as deciduous forest, suggesting that deciduous forest was accurately
classified 95.2% of the time. However, notice also that 86 cases were actually classified as deciduous
forest, and therefore a classification of deciduous forest is only correct 69.8% of the time. Although
deciduous forest may be classified with a particular accuracy (producer’s accuracy = 95.2%), the actual
reliability of the classification to the user may be much different (user’s accuracy = 69.8%).

Classification Considerations

This extension calculates the accuracy of a predictive model developed using a particular classification
system and a set of reference sample points. Not surprisingly, the choice of classification system can
greatly influence the classification accuracy. Congalton (1991) discusses several guidelines that should
be followed when developing an effective classification system.

1) All areas to be classified should fall into one and only one category.
2) All areas should be classified. No areas should be left unclassified.

3) If possible, use a hierarchical classification system. If necessary, two or more categories may be
collapsed into a single, more general category. This may be necessary if you are unable to
achieve your minimum accuracy requirement using the original set of categories.

4) Recognize that some standard classifications may be fairly arbitrary and you may do better to use
natural breaks in the data. For example, continuous values like canopy closure, tree density or
basal area are often separated into categories based on artificial breakpoints (e.g., Class
A =25% - 50% Canopy Closure, while Class B = 51% - 75% Canopy Closure, etc.). If your data
cluster around a breakpoint, then your classification system will not capture a possibly important
phenomenon.

Slocum et al. (2005) provides some insights regarding how to implement the Fisher-denks
algorithm for determining natural breakpoints within a dataset. As a shortcut, both ArcView and
ArcGIS implement a version of the Fisher-Jenks algorithm in their legend-generation tools and
therefore you can easily identify breakpoints using the legend editor.

-12 -
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Sample Point Considerations

Congalton and Green (1999:11-25) review sample size and sample design, and this extension includes
tools to calculate sample size necessary to meet a desired accuracy level according to their guidelines
(see p. 35 of this manual). As a general rule of thumb, Congalton and Green recommend a minimum of
50 sample points per category, increasing to 75-100 sample points per category if you have large
numbers of categories (> 12). This may be an obvious point, but under no circumstances should you
completely fail to sample any of the classification categories. It is difficult to estimate the classification
accuracy of a particular category if you don’t ever check whether that category was correctly classified.

Adjusting for Locational Uncertainty

Locational uncertainty is a commonly unacknowledged source of error. A GIS assumes locations are
perfectly precise and accurate, and the classification value at a particular sample point may be extracted
simply by checking the cell value of the classification grid or polygon intersected by the sample point. In
the example below, the sample point is located on a Grassland cell and, by default, the classification
value of this point will be Grassland.

-13 -
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However, the coordinates of that sample point are probably not known exactly. For example, if you use a
GPS receiver to determine the point location, then you should have some idea of the general accuracy
possible with that receiver. Some of the higher-end receivers also allow you to collect positional accuracy
metadata along with the actual locations, providing a much better sense of locational accuracy during a
particular survey session.

As an aside, GPS has become an indispensable tool for collecting geospatial data. In general, however,
we strongly recommend that you read past the “X-meter Accuracy” blurb on the box that your GPS came
in and attempt to understand exactly how that accuracy is defined. Most receivers define accuracy in
terms of a distance from the true location within which some percentage of points actually occurs.
Common values include 50% (referred to as Circular Error Probable, or CEP) or 95%. Notice there may
be a very large difference between saying that 50% vs. 95% of points lie within X meters of the true
location. Furthermore, the stated accuracy often depends on differential correction, the codes and
frequencies used (P-code and/or C/A-code, or extremely high-accuracy carrier-wave receivers), good
satellite coverage and spatial arrangement, and low levels of common GPS error (ephemeris,
atmospheric delays, multipath errors and receiver problems). For a thorough discussion on how GPS
systems work, we recommend Tom Logsdon’s “The Navstar Global Position System” (Logsdon 1992).

If you suspect that significant locational uncertainty exists in your sample points, it may be reasonable to
take a more conservative approach to determine the predicted classification value at each point. The
illustration above takes the simple approach of using the cell value at a point. An alternative would be to
use the majority value in a circular area surrounding the point (illustrated below). Note the same point
would be classified differently using the circular area instead of the cell value of where the point resides.
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Cell Areas within Circle

Cell A: Class = Oak Area = 0,060 hectares
Cell B: Class = Pine Avrea = 0.838 hectares
A -\ Cell C: Class = Pine Area = 0911 hectares
B C Cell D: Class = Mixed Conifer Area = 0.133 hectares
/ Cell E: Class = Pine Area = 0,706 hectares
Cell B: Class = Pine Avrea = 1,517 hectares
Cell G: Class = Grassland Area = 1.517 hectares
Cell H: Class = Grassland Area = 0,917 hectares
E F G Cell 1: Class = Pine Area = 0,639 hectares
Cell J: = Pine Area = 1.517 hectares
Cell K: Grassland Area = 1,517 hectares
- Cell L: Grassland Area = 0,850 hectares
Cell M: Pine Area = 0.020 hectares
Cell N: Pine Area = 0,644 hectares
J K Cell O: Grassland Area = 0,716 hectares
Cell P: Class = Mixed Conifer  Area = 0,065 hectares
AN / Cell Areas per Class
Pine: 6,791 hectares
M _/ P Grassland: 5.517 hectares
Mixed Conifer: 0.198 hectares
N O Oalc: 0,060 hectares

Final Classification will be Pine

Our extension offers the option to use circular neighborhoods in the Kappa analysis (see p. 30 in this
manual), as well as a function to calculate circular neighborhood values in a separate table (under the
“Kappa Tools” menu in your View; see the discussion on Additional Menu Functions on p. 73 in this
manual).

Additional Metrics

Several other metrics may be derived from the error matrix, which may be used to further describe model
performance. These include model sensitivity and specificity, commission and omission error, and
positive and negative predictive power. For a detailed description of these concepts, please refer to
Fielding and Bell (1997) and Lurz et al (2001).

Computations are based on a “Confusion Matrix”, reflecting the four possible ways a sample point may be
classified and observed:

(a) = number of times a classification agreed with
the observed value

Confusion Matrix

Actual Values

S (b) = number of times a point was classified as X
e + ; when it was observed to not be X.

8 § * a b (c) = number of times a point was not classified as
o - c X when it was observed to be X.

(d) = number of times a point was not classified as
X when it was not observed to be X.

Given this confusion matrix:

-15-



Sensitivity = a
a+c

I d
Specificity =

P y b+d
False Positive Rate (Commission Error) = b
b+d

False Negative Rate (Omission Error) = ¢
a+c

Positive Predictive Power = a
a+b

Negative Predictive Power = d
c+d

(Equivalent to Producer's Accuracy)

(Equivalent to User's Accuracy)

= (1 Specificity)

= (1-Sensitivity)

Therefore, given a five -category error matrix, with classified values in rows and observed values in

columns:
ID |1 | 2 | 3 | 4 | 5
----- Rl el e et |
1| 14 | 4 | 11 | 3|
e bt |--==---- |-==---- |-===--- |
2| 4 | 120 | 13 | 15 |
- === |--=---- |-=----- |-==---- |
3| 24 | 4 | 80 | 3
- === [------- |-=----- |-==---- |
4 | 0| 0 | 0 | 0|
= === [--=---- |-==---- |- |
5 | 1| 7 | 19 | 1
i Rt [--=---- [-==---- |-==---- |
SUM | 43 : 135 : 123 : 22 :

individual sensitivity, specificity, positive and negative predictive power, user/producer error, and
omission/commission error for each category may be derived:

:] — Predicted +
~ Actual +
[:] — Predicted -
Actual +
[:] — Predicted +
Actual -
:] — Predicted -
Actual -
Confusion Matrix for Class 1 1D I 1 I 2 I 3 I 4 I 5 I SUM
Actual Values 1] 14 | 4 | 11 | 3 2| 34
- - [——— [ovosee [ovoevn R R | - - - - -
32w + . 2| 4] 120 | 13 | 15 | 22 | 174
8¢ " - - —— — e e e B
53 14 20 3| 24 | 4 | 80 | 3| 8 | 119
o2 o | [eoee |ze=m=s |semms B
@ - 29 299 4 | 0| 0| 0| 0| 0| 0
Sensitivity = 14 / (14 + 29) = 0.3256 5I1} """ 7}19}1} """ ;'} T T
Specificity = 299 / (20 + 299) = 0.9373 = feem— [rem— ——— o [— BT
SUM | 43 : 135 : 123 : 22 : 39 : 362

- Pred. Power = 299/ (29 + 299) = 0.9116
Omission Error =29/ (14 + 29) = 0.6744
Commission Error =20 / (20 + 299) = 0.0627

Producer Accuracy =14 /(14 +4 +24 + 0 + 1) = 0.3256
User Accuracy =14 /(14 +4 + 11 +3 +2) =0.4118
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Confusion Matrix for Class 2 D : 1 : 2 ! 3 I 4 I 5 I SUM
Actual Values 1] 14 | 4 | 11 | 3| 2| 34
- - - |oassse eaessee e rerres e [
o + - 2| 4| 120 | 13 | 15 | 22 | 174
33 " - - [m—— ree— Jre— [rmmm— il =
S 120 54 3| 24 | 4 | 80 | 3| 8 | 119
e = - - (— s e [ [ jleiais s
o } 15 173 4| 0| 0| 0| 0| 0| 0
Sensitivity = 120 / (120 + 15) = 0.8889 N e > (S R I
Specificity = 173 / (54 + 173) = 0.7621 i s —— S—— S— S—— == ==
-Pred. Power=173/(15+173)=09202 ™M1 43 135 123 : 2z 39: = 362
Omission Error = 15/ (120 + 15) = 0.1111 Producer Accuracy =120/ (4 + 120 +4 + 0 + 7) = 0.8889
Commission Error = 54 / (54 + 173) = 0.2379 User Accuracy = 120/ (4 + 120 + 13 + 15 + 22) = 0.6897
Confusion Matrix for Class 3 Ib |1 | 2 | 3 | 4 | 5 | SUM
————— R I
Actual Values 1| 14 | 4 | 11 | 3| 2| 34
- - R - e [ Bt
B w + - 2| 4| 120 | 13 | 15 | 22 | 174
59 n - - |oasssss |nsarans jsasmsan Insarsss |ssarsas B
53 80 39 3 24 | 4 | 80 | 3| 8 | 119
&> - - [ [e— [ss— [r—— [m—— == =i c
o } 43 200 4 | 0| 0| 0| 0| 0| 0
Sensitivity = 80/ (80 + 43) = 0.6504 _5_{_““1_I _____ ;_I""E-I_““Z_: _____ ;_i o _3; )
Specificity = 200 / (39 + 200) = 0.8368 il B | --momm- | --momm- |--mmom- | --mmoe- | -----
- Pred. Power = 200/ (43 + 200) = 0.8230 =~ | 43 : 135 123 22 39 d62
Omission Error = 43 / (80 + 43) = 0.3496 Producer Accuracy =80/ (11 + 13 + 80 + 0 + 19) = 0.6504
Commission Error = 39 /(39 + 200) = 0.1632 User Accuracy =80/ (24 +4 + 80 + 3 + 8) = 0.6723
Confusion Matrix for Class 4 D : 1 ! 2 l 3 ! 4 I 5 I SUM
Actual Values 1] 14 | 4 | 11 | 3| 2 | 34
- -[E— [Rsee e e [Reseeee EEER
3 o - 2 | 4| 120 | 13 | 15 | 22 | 174
58 " - -[E—— Esn B B [Eeses =
S 3 0 0 3| 24 | 4 | 80 | 3| 8 | 119
e = - - ioasases jpaness jpaneans jmasanas lzemazas =i e s
o } 22 340 4 | 0| 0| 0| 0| 0| 0
Sensitivity =0/ (0 + 22) = 0.0000 _5_{_““1_’ _____ ;_}““1;_{_““1_l _____ ;_I o _3; )
Specificity = 340 / (0 + 340) = 1.0000 il B |---mom- |--mmom- |----oo- |----om- | --=---
-Pred. Power = 340/ (22 + 340) = 0.9392 ™M | 43 : 135: 123: 22: 39 262
Omission Error = 22 / (0 + 22) = 1.0000 Producer Accuracy =0/(3+15+ 3+ 0+ 1) =0.0000
Commission Error = 0/ (0 + 340) = 0.0000 User Accuracy =0/(0+0+0+0+0)=null
Confusion Matrix for Class 5 1D : 1 ! 2 ! 3 : 4 : 5 : SUM
Actual Values 1] 14 | 4 | 11 | 3 2 34
- - e e [eemenee e b
e + - 2| 4| 120 | 13 | 15 | 22 | 174
33 n - - (R = = == = EErrE
5 2 7 28 3 | 24 | 4 | 80 | 3 | 8 | 119
e = - - === === e == === e
e ‘ 32 295 4 | 0 | 0| 0| 0| 0| 0
Sensitivity =7 /(7 + 32) = 0.1795 _5_=_____1_= _____ ;_:""1;_:_""1_= _____ ;_I o _3§ )
Specificity = 295 / (28 + 295) = 0.9133 i e R R [-=--o=- |----o=- | --=---
-Pred. Power =295/ (32 +295)=0.9021 =M1 43¢ 135 123 2z 39 382
Omission Error = 32/ (7 + 32) = 0.8205 Producer Accuracy =7/(2+22+8+0+7)=0.1795
Commission Error = 28 / (28 + 295) = 0.0867 User Accuracy =7 /(1+7 +19+1+7)=0.2000

Each of these additional metrics describes model performance in terms of that particular class or
category. Now, weighted average model statistics may be generated by combining these metrics over all
classes, weighting them according to the relative proportion of values in a given class.

Computationally, this may be calculated by collapsing these five per-category confusion matrices into a
single confusion matrix by adding up the respective components, thereby producing an overall confusion
matrix.

-17-



k . .
a: Y.n, = Sum of diagonal elements Overall Confusion Matrix
= Actual Values
k  k
b: >’ > n, = Sum of non-diagonal elements 5 * -
i=1 j#i K k Kk
8 § + 2 220
k k °© © i=1 i=1 j#i
c¢: Y>> n, =Sum of non-diagonal elements 3 > P PER—
=1 iz . Zzn” ZZZ”U
k k k j=1 i#j i=1 i=j jZi
d: >.>'>"n; = Sum of non-row/column elements
i=1i#j j=#i (Note b = C)
Therefore,
Overall Weighted Average Sensitivity is calculated as:
k
a 2" B (14+120+80+0+7) 06105
a+c < L& (14+120+80+0+7)+(29+15+43+22+32)
PAUEDII
i=1 Jj=1i#j
Overall Weighted Average Specificity
k Kk k
n.
d zlz”z v (299 +173 + 200 + 340 + 295) - 0.0026
btd & L& (20454 +39+0+28)+ (299 +173+ 200 + 340+ 295)
DWW I
i=1 j#i i=1 Q=) j#i
Overall Weighted Average Omission Error
k  k
n.
c ;; v (29+15+43+22+32) _ 0.3896
atc < £ (14+120+480+0+7)+(29+15+43+22+32)
PRSI
i=1 j=1 iz
Overall Weighted Average Commission Error
k k
b 2.2 ) (20+54+39+0-+28) 00071

b+d ii”o*i u Zk:” _(20+54+39+0+28)+(299+173+200+340+295)
J

2 x 2 Presence/Absence Models

IMPORTANT: Many researchers design a study to generate a simple two-category presence/absence
predictive habitat model. In this case, the full error matrix is identical to the basic confusion matrix, and
the “overall” weighted average statistics may not be suitable to the researcher. More often, the
researcher will be interested in the statistics describing either the “presence” or the “absence” category.

For example, the researcher may be interested in the sensitivity and specificity of the two-category model.
With only 2 categories, the sensitivity of the “presence” category is equivalent to the specificity of the
“absence”, and vice versa. Thus, “overall” weighted average sensitivity and specificity will be the same
value.

If one is interested in how well the model successfully predicts a species’ habitat (or any
“presence/absence” type of analysis), this information will be provided in the statistics for the “presence”.
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Conversely, if one is interested in how well the model successfully predicts where a species will not be,
the user should refer to the statistics for the “absence” category.

Using This Extension to Generate the Kappa Statistic
Given a view with reference and classification data:

& Kappa Analysis

ﬂ Obzerver 1
L]

ﬂ Obzerver 2
L

] Supcks_os01

[ baregrounds gras
I mixed coniferous

[ oak juniper
|:| pine oak

_ | Supcks_palys.shp

In this case the grid named “Supclss_0601” has been derived from the predictive model and represents
vegetation land cover classifications based on satellite imagery. The point theme “Observer 1”
represents a set of points surveyed by an observer in the field, and the point theme “Observer 2”
represents the same set of points surveyed by another observer in the field. The Kappa analysis in this
example will measure the agreement between field observer 1 and the classification grid.

NOTE: The sample points used in this example are not randomly distributed. ldeally, sample points used
in the Kappa Analysis should be as random as possible to minimize spatial autocorrelation, and usually
selected using some type of systematic or random sampling design (see Choosing Sample Locations on
p. 37) to ensure that all classifications are adequately sampled. In this example, the terrain was too
extreme to allow us to sample random points either economically or safely, so we instead chose a semi-
systematic sampling design. We collected data at 2 km intervals along all traversable roads and hiking
trails spanning the elevational gradient of the mountain range. This dataset therefore represents a
reasonable compromise between the ideal data for accuracy assessments (G.L. Berlin, Northern Arizona
University, personal communication) and the practical reality of limited time and budgets faced by
managers.

Click the button to start analysis:
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X|

#} Input Data for Kappa Analysis:
Sample Poirt Thi

REFEREMCE Data Source [Measured or Obzerved Values):

| ; - Paint Theme Fieldz - - Other Gridz / Polygon Themes - - Data Field -
Obzerver 2 Id o Supclzz_ 0607 [Int Grid] 2| | - Mot Hecessamy - =
Tik_cde Supclzz_polys.shp [Palygo
0ld_cde
Georef PR T= T
= Ref_twpe
Weight analysiz bazed Ref_class
[~ on classification salue — —
landzcape proportion? (= [
[T Corfidence lrtervals? CLASSIFICATION Data Source [Predicted Y alues):
Conf. Level: I - Paint Theme Fields - - Other Grids / Polygon Themes - - Drata Field -
T i e Id - 06071 [Int Grid] Yalue [
a3z VWalue from Circle?
Circle Fadius: I— Trk_cde Supclzz_polpz.zhp [Polygo
0ld_cde
ok Geonef e OR -
Add Anather Analysiz Fef_type
Cancel | Ref_class
Coars_we - = =
e | oK | =0 = =
B

Choose the point theme containing your reference sampling locations (in this case, “Observer 1”) and the
source containing the reference values (in this case, the field [Coars_veqg] in “Observer 1”). In most cases
the reference data will be saved in a field in the point theme. However, if necessary you have the option
to extract the reference data from either grid or polygon themes.

Next, choose the source for your classification data, derived from your predictive model (in this case, the
field [S_value] in the grid “Supclss_0601"). These values may be selected from either another field in the
point theme or from a grid or polygon theme in the view. Click “OK” when you have made your
selections.

A Note regarding Reference and Classification Data Formats:

This extension compares a set of classification values to a set of reference values, and both sets of
values can come from multiple potential sources. The example above is probably the most
straightforward. The reference values are incorporated into the sample point theme attribute table and the
classification values are extracted directly from the classification grid. However, this extension may also
use reference data extracted from grids or polygon themes, as well as classification data incorporated in
the point theme attribute table.

Our extension actually runs fastest if both classification and reference values are available in the point
theme attribute table because it does not have to run time-consuming grid or polygon intersection
operations. Large numbers of grid operations can also cause Spatial Analyst to crash (see
Troubleshooting on p. 79 of this manual), so you may occasionally find it advantageous to add both
classification and reference values to your sample point attribute table. For help with this operation,
please refer to the discussions on Generating Class Values beginning on p. 73, and the section on linking
tables on p. 77 of this manual.

Next, specify the location to save the text report. This report will also open automatically after the
analysis, but you have the option here to specify the name and location of the output file:
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i Where would you like ko save your repork? ]|

File Marmne: Directones: oK. |
: CAESRINAY_GIS 30WARCYIEMW™T e
- = ESFI Cancel |

[= AV_GIS30
= ARCVIEW
= 1_JefiScrpts
=l

[=r Statistics
(= kappa

LI £ info

Dirives:

=

Once the calculations are complete, the analysis report will open:
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o [l F4
Summary Statistics of Kappa Analysis: =
Report saved to: c:vesrivav_gis30harcviewsl jeffscriptsistatistics kappadata_3 reportl4.txzt
Report Gensrated Monday, September 12, 2005 19:50:51
LR R R R o 2 o o o o o o o 2o 0 20 2 2 0 2 0 2 2 2 2 2 2 0 2 2 0 20 20 020 0 22200 %
KAPPA BHMALYSIS #1: [ID=1] - Observer 1(Coars_wveg) = Supclss_0601(5_wvalue) -- -- --
Sample Point Theme = Qbserver 1
Reference Source = Observer 1, [Point Theme, Field = Coars_wveq]
Classification Source = Supclss_0601, [Grid Theme, Field = S_value]
Reference Values extracted from Sample Point attribute table
Classification Values extracted from Classification Grid Cell Values at Sample Points
LEGEHND:
ID | CLASSIFICATION
,,,,,, [
1 | bareground< gras
2 | mixed coniferous
3 | oak juniper
4 | pine oak
ERROR MATRIX: Reference Data in Columns, Classification Data in Rows
m |1 |2 | | |
————— e e | et R
1 16 | 3 12 | 3| 34
o s a==s a==a IR
2 g | 115 | 25 | 26 | 174
= i— — [—— — =====
3] 22 | 7 79 | 11 | 119
S s s e IR
4 1] S 17 | 12 | 35
= i— [=—— =—— [—— [=====
S| 47 130 : 133 C2: 362
PROPORTION ERROR MATRIX: Reference Data in Columns, Classification Data in Rows
. | — |
1] 0.0442 | 0.0083 | 0.0331 | 0.0083 | 0.0939
o e s [ IR
2 | 0.0221 | D0.3177 | D0.0691 | 0.0716 | 0.4607
= e — — ===
3| 0.0608 | 0.0193 | 0.2182 | 0.0304 | 0.3287
o e [ s (e IR
4 | 0.0028 | 0.0138 | 0.0470 | 0.0331 | 0.0967
e [ [ [ [Secas
SM | 0.1298 0.3591 : 0.3674 0.1436 : 1.0000
ACCURACY REPORT:
D | PRODUCER * | USER ## | SPECIFICITY | - PRED. POWER | ID MAME
—————— e ] e
1| 0.340425532 | 0.470586235 | 0.942857143 | 0.905487805 | bhareground- gras
2 | 0.8B4615385 | 0.660919540 | D0.745689655 | 0.920212766 | mixed coniferous
3| D0D.593984962 | 0.663865546 | 0.825327511 | 0.777777778 | oak juniper
4 | D.230769231 | 0.342857143 | 0.925806452 | 0.877675841 | pine ocak
ID | OMISSION ERR | COMMISSION ERR| ID NAME
—————— e s
1| 0.659574468 | 0.057142857 | baregrounds gras
2 | 0.115384615 | 0.254310345 | mized coniferocus
3| 0.406015038 | 0.174672489 | oak juniper
4 | 0.789230769 | 0.0741935468 | pine oak
# The Class Producer's Accuracy is equivalent to the Class Sensitivity, as
defined by Fielding & Bell (1997)
*x The Class User's Accuracy is equivalent to the Class Positive Predictive
Power, as defined by Fielding & Bell ([1997)
Fielding, Alan H. & John F. Bell. 1937. A review of methods for the assessment
of predictive errors in conservation presencesabsence models. Environmental
Conservation 24(1):38-49
Overall Statistics:
Overall Accuracy: (222 ~ 362) = 0.613259669
Overall Misclassification Rate: (140 ~ 362) = 0.386740331
Owerall Sensitivity: 0.613259669
Overall Specificity: 0.871086556
Overall Omission Error: 0.386740331
Overall Commission Error: 0.128913444
KAPPAE STATISTICS:
KHAT | VARIANCE | z | P
___________________________________ [
0.431705 | 0.00123219 | 12.298 | < 0.00001
LR R R R o 2 o o o o o o o 2o 0 20 2 2 0 2 0 2 2 2 2 2 2 0 2 2 0 20 20 020 0 22200 %
Analysis Began: September 12, 7:50:51 PM
Analysis Complete: September 12, 7:50:57 PM
Time Elapsed: 6 seconds...
4 [r[




The report is broken down into the following sections:

Header: Provides the time and date of the analysis, the hard-drive location of the text file, and a brief
description of the data sources.

#! Summary Report: = |EI|5|
Summary Statistics of Kappa Analysis: -
Report saved to: ciesritav_gisilarcviewsl jeffscriptststatisticsskappa~data_d~reportld.t=zt

Report Generated Monday, September 12, 2005 19:50:51

S A S S A S A C L S E L LA C R LA E LA A EEEEHD TP DI DT IDIIDEPI DI I PP I VISP ]

EAPPAE ANALYZIZ #1: [ID=1] - Observer 1(Coars_wveg) ® Supclss_0601(3_walue) -- -- --
Sample Point Thems = Ohserver 1
Reference Source = Ohserver 1, [Point Theme, Field = Coars_wery]
Classification Source = Supclss_0601, [Grid Theme, Field = 3_wvalue]
Reference Values extracted from Zample Point attribute table
Classification Values extracted from Classification Grid Cell Values at Sample Points

-
1| | »

Legend: To simplify the report format, most of the report identifies the classification values by an index
number. The legend specifies the classification type its corresponding index number.

# Summary Repork: = | Ellﬂ

2l
LEGEND :
ID | CLASSIFICATION _J
______ | e e e e e e e e
1 | bareground.s gras
2 | mixed coniferous
3 | oak juniper
4 | plne oak
| I>lJ

Error matrix: This matrix shows the classification successes along the diagonal and the
misclassifications in the upper and lower triangles. The reference values are in the columns and the
classification values are in the rows. For example, the value “22” in the 1% column of the 3" row should
be interpreted to mean there were 22 cases where the model predicted those points to be class 3 (or “oak
juniper” from the legend), but field observations identified them as class 1 (or “bareground/ gras”).
Looking at the 3" column of the 1% row, there were only 12 cases where this mistake occurred in the
opposite direction.

! Summary Report: = |EI|5|
=l
ERROR MATRIX: EReference Data in Columns, Classification Data in Rows
ID | 1 | 2 | 3 | 4 | ST
————— e e el Il IS
L] 16 | 3] 12| 3 | 34 J
R R | ---oo-- |----oo- | ----oe- | - - - - -
2 g | 115 | 25 | 26 | 174
S Rk R R R | - - - - -
3 22 7 79 11 | 119
SRl R | -----o- R R | - - - - -
4 | 1] 5 17 | 12 ] 35
el R | ---moo- |---o==- | ----oo- |- - - - -
2101 47 130 : 133 52 362
1 I>l'I
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Proportion Error Matrix: This is simply the error matrix rescaled into proportional values by dividing the
value in each cell by the total sample size. This form of the error matrix is more useful for some purposes
so the report includes both versions.

! Summary Report: = |EI|5|
2l
PEOFORETION EREORE MATRIX: Reference Data in Columns, Classification Data in Rows
In | 1 | 2 | 3 | 4 | SUM
————— ] e ] [ e IS
1| 0.0442 | 0.0083 | 0.0331 | 0.0083 | 0.09349
T R R R | - - - -
2| ©0.0221 | 0.3177 | 0.06%1 | 0.0718 | 0.4807
T | -=-mmmoe- R R | == - - -
3] 0.0808 | 0.0193 | 0.2182 | 0.0304 | 0.3287
S e | -mmmm s e | - - - - -
4 | ©0.0028 | 0.0138 | 0.0470 | 0.0331 | 0.0967
i R | --mmmooe- | -mommmes | == - -
SUM | 001293 @ 0.3591 @ 0.3674 @ 0.1436 : 1.0000
4 I3 I_I

Accuracy Report: The accuracy report summarizes the producer’s accuracy, user’s accuracy, sensitivity
and the specificity of each class, as well as the overall accuracy, sensitivity, specificity, commission and
omission error of the model (see pages 15 — 18).

-lolx]
=l
ACCURACY REPOERT:
ID | FPRODUCER = | USER == | SPECIFICITY | - PRED. POWER | 1ID HAME
—————— e ] e R
1 | 0.340425532 | 0.470588235 | 0.942857143 | 0.905487805 | hareground. gras
2 | 0.884615385 | O0.660919540 | 0.745689655 | 0.920212766 | mixed coniferous
3| 0.593984962 | 0.663865546 | 0.825327511 | 0.777777778 | oak juniper
4 | 0.230769231 | 0.342857143 | 0.925806452 | 0.877675841 | pine oak
ID | OMISSIOW ERR | COMMISSION ERR| ID MWAME
—————— e e S
1 | 0.659574468 | 0.057142857 | bareground.s gras
2| 0.115384615 | 0.254310345 | mixed coniferous
3 | 0.406015038 | 0.174672489 | oak juniper
4 | 0.769230769 | 0.074193548 | pine oak

#* The Class Producer's Accuracy 1s eguivalent to the Class Zensitivity, as
defined by Fielding & Bell (1997)

*% The (Class User's Accuracy 1s eguivalent to the Class Positive Predictive
Fower, as defined by Fielding & Bell (1997)

Fielding, Alan H. & John F. Bell. 1997. A review of methods for the assessment
of predictive errors in conservation presencesahsence models. Environmental
Conservation 24(1):38-49

Overall Statistics:
Overall Accuracy: (222 7 362)
Overall Misclassification Rate: (140 ~ 362)
verall Sensitivity: 0.6813259669
mrerall Specificity:  0.871086556
Overall Omission Error: 0.386740331
Overall Commission Error: 0.1258913444

=
4| | »

Category Statistics:

0.613259669 G
0.386740331

e Producer’s Accuracy: The proportion of sample points correctly classified into class X divided by
the number of points observed to be class X, and reflects the accuracy of the model from the
perspective of the model (see Congalton and Green 1999:46 for an in-depth discussion). This
value is equivalent to model Sensitivity.
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User’s Accuracy: The proportion of sample points correctly classified into class X divided by the
total number of points predicted to be class X, and reflects the accuracy of the model from the
perspective of the model user (Congalton and Green 1999:46).

Sensitivity: The probability that a sample point will be classified as X if it actually is X. This is
conceptually similar and computationally identical to the concept of “Producer’s Accuracy” (see
Fielding and Bell 1997; Lurz et al 2001).

Specificity: The probability that a sample point will not be classified as Xif it is not X (Fielding
and Bell 1997; Lurz et al 2001).

Positive Predictive Power: The probability that a sample point is X if it has been classified as X
(Fielding and Bell 1997; Lurz et al 2001). This is conceptually similar and computationally
identical to the concept of user’s accuracy.

Negative Predictive Power: The probability a sample point is not X if it is not classified as X
(Fielding and Bell 1997; Lurz et al 2001).

Omission Error: The proportion of points incorrectly classified as not X when actually observed to
be X. This is similar in concept to Type Il statistical error, and may also be represented as:

Omission Error = 1 — Sensitivity

Commission Error: The proportion of points incorrectly classified as X when actually observed to
not be X. This is similar in concept to Type | statistical error, and may also be represented as:

Commission Error = 1 — Specificity

Overall Statistics:

Overall Accuracy: This is simply the number of correctly-classified sample points divided by the
total number of sample points.

Overall Misclassification Rate: The number of incorrectly-classified sample points divided by the
total number of sample points. This is the complement to overall accuracy, and may be
represented as:

Overall Misclassification Rate = 1 — Overall Accuracy

Overall Sensitivity: The general ability of the model to classify sample points as X if they are
actually X, identical to the Overall Accuracy.

Overall Specificity: The general ability of the model to avoid misclassifying sample points as X if
they are not X..

Overall Omission Error: The general rate at which points failed to be classified into the correct
category, combined over all categories, and the complement to sensitivity (see page 18).

Overall Commission Error: The general rate at which points were misclassified, combined over
all categories, and the complement to general specificity (see page 18).

Kappa Statistic: Kuyat (or K) is the chance-corrected measure of model accuracy, based on the actual
agreement between predicted and observed values and the chance agreement between the row and
column totals for each classification (see Congalton and Green 1999:49 and Agresti 1990:366-367). The
Z-score and associated P-value reflect the probability that this model performs better than random
chance at predicting the distribution of vegetation classes on the landscape.
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#! Summary Report: = |EI|5|

[

FAPPA STATISTICS:

| |
0.431705 | 0.00123219 | 12.2958 | < 0.00001

[
1 |_'!j

In this case, the P-value < 0.00001 suggests the model almost certainly predicts vegetation distribution
better than random chance.

Calculating Confidence Intervals for K

Using K and the associated variance, the confidence interval is calculated as:
Cl=K+Z,, V(K
where « =1- confidence level

The K statistic for large samples is asymptotically normally distributed and therefore this confidence
interval should be accurate. However, if the distribution is not normal, then Chebyshev’s Inequality is
used to determine the worst-case confidence level (see p. 34).

To calculate a confidence interval for K , click the “Generate Confidence Intervals” option in the Kappa
dialog:

#2 Input Data for Kappa Analysis: |
- S.ample Point Theme - REFEREMCE D'ata Source [Measured or Observed Walues):
- Paint Theme Fields - - Other Gridz £ Polpgon Themes - - Dlata Field -
Observer 2 Id 1= Supclzs_0B01 [Int Grid] =] | - Mot Mecesszam - =
Trk_cde Supclzs_palys. shp [Polygo
Old_cde
Georef 2 TR -5
= Ref_tupe
Wieight analysiz based Ref_class
I~ on classification value — —
landzcape proportion? I (=
[# Confidence Intervals? CLASSIFICATION Data Source [Predicted Valuss]:
Caonf. Level: Iw - Pairt Theme Fields - - Other Grids / Palpgon Themes - - Data Figld -
Id - Walue 1B
Circle Fadius: I— Trk_cde Supclzz_palyz.zhp [Polvgo
Qld_cde
ok Georef o OF -
Add Anather Analyzis Ref_tupe
Cancel | Ref_class
Coars_we - = =
e | oK | = = =
B

The report will now include the confidence interval in the Kappa Statistic section, with a note regarding
the Chebyshev adjustment:
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#! Summary Repork: = I jm] | ﬂ

[
EAPPRE STATISTICS:
| | | | 95% CI === |
FHAT | VARIANCE | zZ | P | Upper | Lower
—————————— el el R el el
0.431705 | 0.00123219 | 12,298 | < 0.00001 | 0.3629051 | 0.5005045 | —J

*%% This agassumes that EHAT is normally distributed. If it is not, then by Chebyshev's
ineguality this is at least a 74% confidence interval (see manuall.

=
1| | »

Calculating Variance and Confidence Intervals for Each Class

According to Congalton and Green (1999:59-63), it is possible to estimate variance and confidence
intervals for overall accuracy, and user’s and producer’s accuracies within each category, and Card
(1982) describes equations suitable for simple and stratified random sampling designs. Each method
requires specification of the exact proportions 7 of the map which fall into each classification category,

and the error matrix is then weighted by the relative proportions 7;:

J = Columns

Reference Data: Actual or Field-checked Map Marginal Proportions
% J1 J2 Jk ni. (Row Totals) .
=
E .
g L Ny Ny, Ny n,. T
o)
L
L
kS
e
Q.
0 LI N2 Ny ok n,. T,
S G
@) Q
X s .
TR L N2 Ny Ny, Tk
-\ '(7)
(7]
Ky
O
'j n‘1 n02 nok nu - n 1
(Column Totals)

In this case, the map-proportion-adjusted cell probabilities are estimated as follows:

Where z; = map proportion of classification i :

. n.
Individual Cell Probability = p; = il
n

ie

R romw.n.
Marginal proportions (column totals) = p; = #
i=1 .j
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Statistics describing overall accuracy are estimated as:

Overall Accuracy = P, = Z_”i”ﬁ

5 ):Zr:pii(”i_pii)

Variance (Simple Random Sampling): V( a ()
i-1 7n

Variance (Stratified Random Sampling): V(If’c)

Confidence Interval: Cl=P, +Z,), V(I5c)

Statistics describing producer’s accuracy for category j are estimated as:

n (N, 0.
Producer’s Accuracy: 6, = Q 2L | = p_f/

ixj n 7Tn

Variance (Simple Random Sampling):v(éjj) =p;P. j“‘ [ p;

Variance (Stratified Random Sampling): V(éﬂ.) =p;p.;" [ p

Confidence Interval: C/=¢,+Z , V(H..)

Statistics describing user’s accuracy for category i are estimated as:

J n
User’s Accuracy: 8, =—
n

n
ie

) , . 5 Pi (”i - pii)
Variance (Simple Random Sampling): V(&,,) =
z’n
, . L A P; (7[:' _pn)
Variance (Stratified Random Sampling): V(B,,) =
7n;,

Confidence Interval: Cl=3,+Z,,.V(5)

IMPORTANT: Congalton and Green (1999:63) discuss the confidence level of these intervals, pointing out
these are accurate only if the statistics are normally distributed. Otherwise, by Chebyshev’s Inequality

(see p. 34) they are at least 1—ﬁ confidence intervals.
V4
a2

These formulas are adapted from Congalton and Green (1999:63) and Card (1982).

Using This Extension to Calculate Variances and Confidence Intervals

Variances and confidence intervals for each category require the marginal map proportions of each
category, and this extension offers a means to specify map proportions for each classification value.
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Simply check the option “Weight analysis based on classification value landscape proportion?” before
clicking the “OK” button:

# Input Data for Kappa Analysis: x|
- Sample Point Theme - REFEREMNCE Data Source [Measured or Observed Yalues):
i 3 - Paint Theme Fields - - Other Gridzs / Polygon Themes - - Data Field -
I:Il:userver 2 Id - Supclzz 0607 [Int Grid] =] | - Mot Meceszam - & |
Trk_cde Supclzz_polpz.shp [Palygo
0ld_cde
Georef e [F -
Ref_type
wieight analysis based Ref_class
¥ on classification walue Coars v — —
landzcape proportion? - I I
¥ Confidence |ntervals? CLASSIFICATION Data Source [Predicted Y alues):
Conf. Level: I 095 - Point Theme Fields - - Other Grids / F'u:ulygnn Themes - - Data Field -
[~ Class Value from Circle? i - . Valie —
azz Walue from Circle?
Circle Badius: I— Trk_cde Supcls&_pul}l&.ahp [F'u:uI_I.JgD
0ld_cde
Georef < OF -
Add .-“-‘-.nu:uther Analyzis | Fef_type
—— | Ref_class
Coars_ve = =
Hep | ok | i = = 2
N

Notice that confidence intervals are optional. If you want confidence intervals for the overall and category
accuracies, select the “Generate Confidence Intervals” option and specify your desired confidence level.
After clicking “OK,” you will be prompted to specify the map proportions:

e

%2 Map Proportions: x|

Fleaze enter in the map propartions of each clazs:
bareground/ gras | 0129871043

mixed coniferous | 0.352632807 Cancel
aak. juniper | 0.424435152

pine oak | 0.080290345

]9

This extension will analyze your classification data and calculate the map proportions for you if your
classification data source is either a polygon theme or a grid, and those values are entered into the dialog
box automatically. You may either modify these values or simply click the “OK” button to accept. If your
classification data source is a field in the point theme, this extension will estimate the relative map
proportions based on the relative proportions of the classification data values.

You will next be asked which sampling method is closest to the method you used. The variance
equations are slightly different depending on whether your sample points follow a simple or stratified
random distribution (see equations above). The equations for stratified random sampling assume that
you sampled rarely-occuring categories more often than you would have if you had followed a simple
random sampling design, and therefore the variances will tend to be lower than with simple random
sampling. Variances for commonly-occuring landscape types tend to be larger than with simple random
sampling, though.
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#2 sampling Method: x|

Fleaze specify which zampling method best descrbes
wour zample paoint digtribution. .

Simple Random Sampling Cancel |

Stratified Random Sampling

After the analysis is complete, the variances and confidence intervals will be added to the report:

’;' Summary Repork: = | Ellil

MAP PROPORTION-ADJUSTED EAPPA STATISTICS:

Upper | Lower |

*%% This assumes that FHAT is normally distributed. If it is not., then by Chebvyshev's
ineguality this is at least a 74% confidence interval (see manual).

VARIANCES AWND COWNFIDENCE LIMITS FOR OVERALL AND CATEGORY ACCURACIES (see note):

|
P e e e e e e e et e e e e e e e e e e eSS e e e |
| | Accuracy | Variance | Lower CL | Upper CL | Accuracy | Warlance | Lower CL | Upper CL |
[ o o o B ettt o - o o - |
| 1 | 0.386583 | 0.0026%4 | 0.254845 | 0.488322 | 0.470588 | 0.005299 | 0.327911 | 0.613266
| 2 | 0.829546 | 0.001134 | 0.763534 | 0.895557 | 0.660920 | 0.001755 | 0.578804 | 0.743035
| 3 | D.675255 | 0.000832 | 0.618%721 | 0.731790 | 0.663866 | 0.001452 | 0.589172 | 0.738559
| 4 | 0.210267 | 0.002466 | 0.112939 | 0.307595 | 0.342857 | 0.007752 | 0.170294 | 0.515420

| Mote: As described by Congalton & Green (1999:63), if normality assumption is met then |
| these are 95% confidence intervals. Otherwise, by Chebyshev's inequality

| these are at least 74% confidence intervals (see manual].

| Wariances estimated assuming a Simple Random Sampling design. |

Adding Class Values from a Circular Area

If you feel that there is some uncertainty about the location accuracy of your sample points, and would
therefore rather derive your classification values from the majority class value in a circular area around
your sample point rather than from the exact class value at that point (as described in Adjusting for
Locational Uncertainty on p. 13) , then click the “Class Value in Circle” option and enter a radius in the
map units of your data.

Please note that this function can only apply if either your reference or class values are extracted from a
grid or polygon theme. This function will have no effect if all values are extracted from fields in the point
attribute table.
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This extension runs much faster if both classification and reference values are extracted from fields in the
attribute table. If you would like to add fields to your attribute table containing values extracted from
circular areas, please refer to the discussions on Generating Class Values beginning on p. 73.

nput Data for Kappa Analysis: ﬂ
- S ample Point Theme - REFERENCE Data Source [Measured or Observed ¥ alues):
- Paint Theme Fields - - Other Grids / Polpgon Themes - - Data Field -
Obszerver 2 Id - Supcles_0B0N [Int Grid] =] | - Mot Necessary - &
Trk_cde Supclsz_palyzs. shp [Palvga
QOld_cde
Gearef TR -
= Ref_type
Wwieight analyziz based Ref_class
¥ on classification value Coars e = —
landzcape proportion? — I I

¥ Confidence Intervals? CLASSIFICATION Data Source [Predicted Y alues]:

Conf. Lewvel: - Point Theme Fields - - Other Grids # Polpgon Themes - - Data Field -
o Id = = 0BT [Ink Grid] Walue =
IT:. I:Ilasé "»-";Iue L2 Enc;eu. Trk_cde Supclzz_paolps. shp [Polygo Count
ircle B adius: I
) Old_cde
ok Gearef (o OR
Add Another Analysis Fef_tupe
—— | Ref_class
Coars_ve = = =
ep | ok | —-Ved d [ =

N

Comparing Different Analyses

Kappa statistics and associated variance values may be used to compare the predictive ability of different
models, possibly derived from different predictive algorithms or datasets or even between different dates
of imagery (Congalton and Mead 1983). Assuming Kappa statistics follow the standard normal
distribution, the Z-score for each statistic is calculated as:

In this case, Hp: Ky =0
H1: K1 #0

The Z-score reflecting the difference between two separate analyses is calculated as:

Rl_RZ‘

i \/vér<Rl)+ vér(KZ)

In this case, Ho: (K1 —Ky) =0
H1: (K1 - Kz) #0

Assuming a 2-sided test (i.e., Ky is different than K;), then H, would be rejected if Z>2Z_, .
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Multiple K values by can be tested for equal values by first estimating the supposed ‘common’ K value (as
described by Fleiss [1981:222]):
K

m

'‘Common' K =

This ‘common’ K value can then be used to test for equal K values on the Chi-Square distribution with
g - 1 degrees of freedom:

2 g (Km - K‘Common')2

Ze val K = (> 1\
aual ,;1 Var (Km)
This extension provides two methods to compare different analyses. If you already have yourR and

Variance statistics worked out, you can use the @I tool to calculate the comparisons directly. Click this
button and you will first be asked for the number of Kappa analyses to compare:

#! Enter Number: 1
Fleaze enter the number of K.appa analyzes you would like to ok
COMpare:

| 4 Cancel

You will then be asked to describe each analysis separately. For each analysis, enter a brief description
(used for identification purposes in the output report), the K and the Variance values:

i Analysis #1: x|

Pleaze enter the K.appa Statistic and Yanance far Analvsiz $1:

0K

Drescription; |.-i'-.nal_l,lsis #1

RN AT & Analysis #2:

K.appaVarah  Please enter the Kappa Statiztic and % aniance for Analysiz $2:

Dezcription; |.-’-'-.na|_l,lsis R o

k.appa [EHAT GER T N 1 x|

K.appa'faran  Pleaze enter the Kappa Statistic and Yariance for Snalysis #3:
Dezcrnphion: Iﬁ.nalysis #3 o
EEN AP ) Analysis #4: . ﬂ
Kappa'aran  Please enter the ¥.appa Statigtic and ariance for Analyzsis $4: ”

Dezcription: |.-i'-.nal_l,lsis #4

K.appa [KHAT] Statiztic: |D.?3I]483 Cancel
¥.appa W ariance: | 0.0011997241

Your output report will be saved to the hard drive and displayed in a report window:
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’;‘ Summary Repork: = |EI|5|
Kappa &nalvysis Comparison Report:

Report saved to: citesri~av_gis3lharcviewsl jeffscriptshstatisticsskappacompard.txzt
Eeport Generated Thursday., September 15, 2003 20:07:25

-

L R r o r o o 2 o 2o 0 20 00 0 20 202000200020 2202002

P o o ol o P P 8 R e P P P 8 7 P 8 A P P 0 8 o P 0 8 e P P U8 8 i 8 8 P P P

LEGEND :
ID | AMALYSIS DESCRIPTION
______ +______________________________________________________________________________
1 | Analysis #1
2 | Analwsis #2
3 | Analwsis #3
4 | Analwsis #4

SUMMARY OF FAPPA STATISTICE:

ID | KHAT | VARIANCE | z | P

—————— B et e e e
1| 0.431705 | 0.0012321872 | 12.298 | <« 0.00001
2 | 0.413139 | 0.0011781527 | 12.036 | < 0.00001
3| 0.419680 | 0.0012477320 | 11.881 | <« 0.00001
4 | 0.730483 | 0.0011997241 | 21.090 | < 0.00001

'Common' Value of Kappa = 0.499572
Chi-3gquare Value = 39.637936
Chi-Sgquare Degrees of Freedom = 3
P < 0.00001

PAIE-WISE Z-3CORES AMD PROBABILITIES:
Z-scores on lower left, Prohabilities on upper right

ID |1 | 2 | 3 | 4 |
R SR [y sp=eesep iy npeeey [epspsas g
2 oetes | oom | Tn.aariza | < o.0001 |
PR R I T
B AT R
Sl R | -=mmmmmmm- | -==mmmmmme- | -=mmmmmme- |
4| | JJ-

Note that in this example, all methods produced results significantly better than chance, but analysis # 4
was very different than analyses # 1 — 3. The methods or personnel involved in analyses # 1 -3
apparently produced generally equivalent output, but whatever was involved in analysis # 4 is in a class
by itself.

Alternatively, you can select to compare Kappa analyses when you initially generate the Kappa statistics.
If you elect to run multiple Kappa analyses simultaneously, then the resulting Kappa statistics will
automatically be compared.

For example, if you were unsure whether Observer 1 and Observer 2 were equally competent to conduct
field surveys, you could have them survey the same points and compare their respective K values.

You can run multiple Kappa analyses by clicking the “OK — Add Another Analysis” button in the initial
Input Data window:
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# Input Data for Kappa Analysis: |
Sample Point Th REFEREMCE D ata Source [Measured or Observed Y alues);
| i - Paint Theme Fields - - Other Gridz £ Polpgon Themes - - Dlata Field -
Observer 2 Id = Supclzs_0B01 [Int Grid] =] | - Mot Mecesszam - =
Trk_cde Supclzs_palys. shp [Polygo
Old_cde
Georef 2 TR -5
= Ref_tupe
Weight analysis based Ref_class
I~ on classification value — —
landzcape proportion? I (=

[~ Confidence Intervals? CLASSIFICATION Data Source [Predicted Valuss]:

Carf. Leyel: I— - Point Theme Fields - - Other Grids / Palpgon Themes - - Data Figld -
[ Class Yalue fom Circle? Id o S 0601 [Int Grid] Walue =
az3 Yalue from Circle™
Circle Fradius: I— Trk_cde Supclzz_palyz.zhp [Polvgo
Qld_cde
k. Gearef o OF -
Add Anather Analyzis Ref_tupe
Ref_clazs
Coars_veq LI = =

Continue to click the “OK: Add Another Analysis” button until you have entered all analyses you wish to
compare. Then, click the “OK” button. The extension will automatically generate comparison Z-scores
and P-values for each pair-wise comparison and add these analyses to the output report.

Chebyshev’s Inequality:

Calculating accurate confidence intervals requires the population distribution be known, which is usually
not a problem in cases where the nature of the data leads it to follow a particular distribution (such as how
sample means from a particular population tend to be normally distributed because of the Central Limit
Theorem). A confidence interval will not be correct if the population does not exactly follow the expected
distribution.

Chebyshev’s Inequality is a probability theorem which can be used to determine the minimum probability
that a sample value will be within k standard deviations from the population mean, regardless of the
shape of the distribution:

P(|X—,u|2ko-)£k—12 or P(|X—,u|<ka)2(1—k—12j
where X = sample value

4 = population mean

o = population standard deviation

k = number of standard deviations from the mean
Therefore, if a confidence interval for a particular statistic is calculated, Chebyshev’s Inequality may be
used to determine the worst-case confidence level given the specified confidence level. For example, if a
95% confidence interval for Kappa is desired, and the sample produced K =0.43 and Var(R) =0.012,

then a 95% confidence interval would be calculated as:
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Cl=K+Z,, Var(K)
— 0.43+1.96(0.035)
— (0.361, 0.499)

IfK is normally distributed, we may state that if we repeated this analysis an infinite number of times, then

95% of the time our confidence intervals would capture the true Kappa value. However, if K is not at all
normally distributed, Chebyshev’s inequality implies that we would capture the true Kappa value at least
74% of the time:

1 :[1_;2}074
(za/z) (1.96)

See Spiegel et al (2000), Abramowitz and Stegun (1972) and Jeffrey (2000) for more in-depth
discussions of Chebyshev’s Inequality and its uses and implications.

Calculating Required Sample Size

Any good text on experimental design will stress the importance of sufficient sample size and of choosing
the correct sampling scheme. Congalton and Green (1999:11-25) discuss sample design with a
particular emphasis on classification accuracy assessment, and describe methods to estimate the
necessary sample size for several possible scenarios. This extension provides a tool to automate those
methods.

Click the @ button to open the sample size estimation tool:

#2 Calculate Necessary Sample Size: x|

Enter dezired Confidence Lewel: I 0.95 [0 <= Confidence Level <=1]

Three kethods for Calculating Sample Size:

f+ 1] Classification Propartions Unknowr: [#orst Caze Scenario)
# Clazzes |4 Frecizion: ||:|_|:|5

= 2] Maximurn Clazsification Propartion Enose;

H Clazzes I Frecizion I Froportiamn; I

" 3] Advanced [specify proportions and precisions for each classification):

Fedeer Phroeedupr s el Pliopngdls

R

[~ Uze aFinite Population Correction Factar?
Cancel Calculate

Fapulation Size; I

SOURCE: Congalton, Buszel G. and K.azs Green. 1939, Aszeszing the accuracy of
remately senzed data; principles and practices. CRC Press, Inc. p. 20-21

There are three options, each based on differing amounts of knowledge regarding the relative proportion
of classification values in your classification dataset. The worst-case scenario will produce the highest
sample size.

The confidence level reflects the probability the sample size will be sufficient to perform statistically valid
accuracy assessments on the model. The precision reflects the acceptable risk when mistaken
conclusions occur regarding the accuracy of a map based on the statistical analyses.
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All three options can be calculated with or without using a Finite Population Correction factor (FPC). If
the total number of possible sample points is infinite, then do not use the FPC option. However, if there
are only a finite number of possible sample points available, you can use the finite population factor to
properly estimate the necessary sample size.

Use Option 1 if you have no information regarding the relative map proportions of each classification.
The worst case occurs if one of your classification proportions is exactly equal to 50%, and Option 1 will
assume that case is true.

Use Option 2 if you know the proportion of the class with the highest proportion on the predicted
landscape. In all cases, this proportion will be the one closest to 50% (i.e., the worst-case scenario), and
this value will be used to adjust the estimated necessary sample size accordingly. If your classification
dataset is grid-based, you can manually calculate the proportion values by doing the following:

1) Make the classification grid active by clicking on the grid name in the View table of contents.

2) Open the grid attribute table by clicking the [ button:

&)

e

10037 ¢ mixed coniferous ﬂ

2265 pine oak
oak juniper
3696 | bareground/ gras

w
1| I

3) The Count field contains the number of cells in each category and can be used to calculate the
proportions of each class. You need to add these up to get the sum, then divide the values by
that sum to get the respective proportions.

1
2
3 12079
4

4) Click the Count field name to select this field (see above). Then click the “Statistics...” menu item
in the “Field” menu item:

Sort &zcending
Sort Descending

Create |ndex

Surmmarize...
Lalzulate, .

e
ot )

how Field Tnformation

5) The output window will display several statistics. You only need the sum for this:

! Statistics for Count field x|

Sum; 280397 -
Count: 4 \ —
kean: 7024

b awrirnurn: 12073
Mirirnum; 2285
Fange: 9734

Wariance: 22721633
Standard Deviation: 4767
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6) Next, divide each value by the sum (28,097 in this example) to get the relative proportions. Enter
the largest proportion into the “Sample Size” dialog box.

Use “Option 3” if you know all the proportions and would like to enter separate precision levels for each
class. For example, if you know all the proportions and if you were especially concerned about precision
for “mixed coniferous” (Class 1), but not concerned about precision for “oak juniper” (Class 2), then you
would select “Option 3” and click the “Enter Precisions and Proportions” button to specify these values:

#2 Enter Precisions and Proportions for All Class x|

Proportions and Frecisions

Enter Values for Class &

Proportion [0 345304 1: Proportion = 0367403, Precizion =0.05 &

s 2 Proportion = 0.151934, Precision = 0.1
15 3 Proportion = 0135359, Precision = 0.1

A To List 4: Propartion = 0.345304, Precizion =0.15

Finizhed

Cancel

ik

Click the “Finished” button to return to the “Sample Size” dialog. Then, click “Calculate” to generate the
estimated sample size:

#! sample 5ize Calculation: 5'

Meceszay Sample Size: n =580

|»

|Jzing Option 3, azsuming 4 classes:
1] Proportion = 0367403, Precizion = 0.05
2] Proportion = 0.151334, Precision = 0.1
3] Proportion = 0.135383, Precision = 0.1
4] Proportion = 0.345304, Precizion = 0,15

[4]

For comparison purposes, the following table summarizes the estimated necessary sample size for a
hypothetical grid with four classes, given a confidence level of 95% and a precision of 10%. For “Option
2,” the maximum proportion is 36.7%. For “Option 3,” the proportions and precision levels are identical to
those in the illustration above:

Scenario No Finite Population Factor Population = 10,000 Population = 1,000
Option 1 n =156 n =154 n =136
Option 2 n =145 n =143 n=127
Option 3 n =580 n =549 n = 368

NOTE: Increasing precision for a given class (e.g., “mixed coniferous;” Class 1), increases sample size
requirements.

Choosing Sample Locations:

Once you know the necessary sample size, you are then faced with the problem of how those sample
points should be distributed. Statistically, the most representative method is a random point distribution
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over the entire study area (Simple Random Sampling), but this can often be difficult or cost-prohibitive in
difficult terrain. This method can also potentially under-sample rare classification types. Congalton and
Green (1999:22-25) and Congalton (1988) discuss in depth the pros and cons of this and other common
sample designs. The following is a brief overview which may be useful for the reader:

1) Stratified Random Sampling: Each class receives a set number of randomly-distributed sample
points. This ensures that all classes will be sufficiently sampled, but this method may have the
same problems as simple random sampling in difficult terrain.

2) Cluster Sampling: Sample points are grouped into clusters, where all pixels in that cluster are
sampled. Congalton (1988) recommends that clusters should preferably be around 10 pixels in
size, and never larger than 25 pixels. Kesh (1965: 148-181) provides a detailed discussion of
issues involved with cluster sampling.

3) Systematic Sampling: The starting point is chosen at random, and all subsequent sampling
points are taken at some regular interval. This method can be especially problematic if the
landscape or model has some spatial periodicity.

4) Stratified Systematic Unaligned Sampling: A combination of random and systematic sampling, in
which each sample point is randomly located within the stratification interval.

Case Study — Mexican Jay Distribution Surfaces, Pinalefios Mountains, Arizona
This case study was based on research conducted by Wynne (2003).

In the United States, Mexican jay (Aphelocoma ultramarina) occurs only in the southern-most extent of
the southwestern United States. This species ranges from the Mogollon Rim extending southward into
southeastern Arizona and the southeastern-most New Mexico (Edwards 1986) and in the Big Bend area
of western Texas (Brewster County; Brown 1994). In the southwestern United States, this species has
been intensively studied in the Gila and Burro Mountains, New Mexico (Edwards 1986) and Chiricahua
Mountains, Arizona (Tanner and Hardy 1958; Balda 1970; Brown and Brown 1985; Brown 1994). From
the U.S., Mexican jays range southward into Mexico to northern Chihuahua, northern Coahuila, central
Nuevo Ledn, west-central Tamaulipas south to the highlands of Colima, northern Michoacan, state of
México, northern Morelos, Puebla and west-central Veracruz (Brown 1994). This case study is the first
habitat investigation of this corvid on the Pinalefios Mountains, Arizona.

Two predictive habitat surface models will be discussed in this case study; a classification tree-based
model and literature-based model. The classification tree -based model was developed using a 1993-95
retrospective dataset collected by Dr. William M. Block, USDA Forest Service, Rocky Mountain Research
Station, Flagstaff. Literature-based information was derived from the Birds of North America species
account (Brown 1994) and other peer-reviewed sources. Landscape scale habitat correlates used in
model development include vegetation, elevation, slope, aspect and distance to streams and springs.
The minimum mapping unit was 30 meters. l|dentification of the model with the best performance will be
accomplished using a multi-criteria model selection, consisting of highest overall accuracy, lowest

misclassification rate, highestK statistic, P-value (significant at < 0.05), highest sensitivity and specificity,
highest positive predictive power, and lowest commission and omission error rates.

Using an induced classification tree approach (refer to Wynne 2003), oak-juniper woodlands, elevation <
1988 meters, and slope < 24.5 were identified as habitat correlates. Results of the literature review
identified oak-juniper woodlands, pine-oak woodlands (Brown 1994; Balda 1970), and elevation between
1460 to 2363 meters (Bailey 1923; Tanner and Hardy 1958; Brown and Brown 1985). See predictive
habitat surfaces below.
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A statistical comparison of the models suggests no significant difference exists between the literature-
based and classification tree based models (Z=0.335, p = 0.369). Furthermore, neither model had

statistically significant K P-values, implying neither model classified Mexican jay habitat better than
random chance. However, using a multi-criteria model selection process, the classification tree-based
model did perform better than the literature-based model (see Table below). The classification tree-
based model had the highest overall accuracy (63.6%), lowest misclassification rate (0.364), and highest

Kappa value (R = 0.22). Additionally, this model had highest specificity for predicting presence (0.636),
highest model sensitivity for absence (0.636), highest predictive power for absence (0.84) and presence
(0.368), lowest commission rates for presence (0.364) and lowest omission rates for absence (0.364).

Metric Literature-based Classification-tree based
Overall Accuracy 56.8 63.6
Misclassification Rate 43.18 36.36
K 0.136 0.22
P-value 0.229 0.09
Sensitivity (Absence) 0.545 0.636
Sensitivity (Presence) 0.636 0.636
Specificity (Absence) 0.636 0.636
Specificity (Presence) 0.545 0.636
Positive Predictive Power (Absent) 0.818 0.84
Positive Predictive Power (Presence) 0.318 0.368
Commission Error (Absence) 0.364 0.364
Commission Error (Presence) 0.455 0.364
Omission Error (Absence) 0.455 0.364
Omission Error (Presence) 0.364 0.364

Bold text suggests better performance by model.

This case study provides a tractable method for identifying the model with the highest potential
performance when statistical significance is lacking between models.

For additional examples regarding the use of the Cohen’s Kappa and other statistics, please refer to
Farber and Kadmon (2003) and Fielding (2002).
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If you want to inspire confidence, give plenty of statistics. It does not matter that they should be accurate, or even
intelligible, as long as there is enough of them.
Lewis Carroll

Field Summary Statistics:

This tool provides functions similar to those available in the basic ArcView “Statistics...” options under the
standard “Field” menu item in the Table menu, with the exception that there are both more options and a
higher level of precision used for any calculations. The tool may be used to generate statistics on either a
theme in a view or a field in a table.

Summary Statistics on a Theme:

The button will only be enabled if the user has at least one feature theme in the current View. When
the user clicks the button, they will be prompted to identify the theme and/or fields for calculating the
statistics.

! Calculate Statistics: x|

Calculate Statistics For

% the selected features of " all features of
Themes Fields
Fanawria.zhp [l Airt_max ;I
Af_watersheds_reqress 3 regres: Airt_mean J

il f_ watersheds. ghy |u]

Airt_rnin
Airt_range

Airt_std

Airt_sum LI

|grore Y alues
[T lgrore I -3333

[Separate multiple values by commas]

OUTPUT OPTIOMS: " Simple & Advanced

Cancel

Also, the user may choose to calculate statistics on either all the features or only the selected features. If
no features are selected, this tool will use all the features regardless of which option is chosen. The user
also may choose to calculate statistics on multiple fields at one time.

The user may specify certain values they do not wish to include in the analysis. For example, it is
common practice to designate some number to mean “No Data”, or to identify values not involved in the
analysis. Researchers often use -9999 or -99999 for this purpose, especially with datasets where such a
value would be impossible (e.g., elevation, population, area, etc.) The user may designate as many of
these values as desired by entering them into the “Ignore Values” section, and checking the “Ignore” box.

The user may choose between either Simple or Advanced output. Simple output includes the Sum,
Number of Features, Mean, Minimum and Maximum, and is reported in a text box:
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! Statistics for Airt_std [Af_watersheds. ﬂ

Statigtics Repaort; A watersheds. shp

|»

AIRT_MEAM: ---eeeeeeee-
Tatal 127970.7739
Mean: 23.5674
Firirnm: 0.0000
bl amirmurn; 301667
Mumber of Features: 5430

AIRT_RAMGE: —---rmeereev
Tatal 14583.0447
tean: 2 6563
birrnm: 0.0000
bl awirmurn; 30,3333
MHumber of Features: 5430

AIRT_STD: v <

Y T

Copy to Clipboard | Copy and Close | Cloze |

Advanced output includes the Sum, Mean, Median, Mode(s), Minimum, Maximum, Range, Standard Error
of Mean, Variance, Standard Deviation, Number of Features, and Number of Null Values, and is reported
in a histogram:

2 statistics for Airt_mean [Af_watersheds.shp] M=l E3 ! statistics for Airt_range [Af_watersheds.shp] [Hi[=] E3 i statistics for Airt_std [Af watersheds.shp]  [HI[=] E3
— 1] — 1]
1305 83 4502
%63 1244 2251
0. 0 T - 0
0 33519 100556 167593 23463  20.1686T 025634 77083 12.847217.9861 23.125 20833 0 09355 18712 28068 3.7425 46781 56137
Number of Bars: .. Redraw Nurmber of Bars: I 12 .- Redraw Murnber of Bars: .- Redraw
AIRT_MEAN: [5430 valugs] e AIRT_RANGE: [5490 values] AIRT_STD: —oeeeeen -]
Statistics Report: &f_watersheds.shp Statishics Report: Af_watersheds shp Tatal 3050.4318
tean: 0.5556
AIRT_MEAN: reeeeeeeee AIRT_RANGE: —meeeeeeeee Mediar: 0.32735
Tatal 127570 7733 Total 14583.0447 tode: 0.0000
tean: 23.5674 Mean: 2 6563 Finimum: 0.0000
Mediar: 24. 28065 Mediar: 1.54170 Mawinum: 5.6137
Mode: 25,9167 Mode: 0.0000 Range: 5.6137
Fimimumm: 0.0000 Minimurn: 0.0000 Standard Errar of Mean: 0.0087
b aimum: 30,1667 P asimum: 30.8333 Wariance: 0.4170
Range: 30,1667 Range: 30,8333 Standard Deviation: 0.6458
Standard Erlnr nf Mean 0.0491 LI Standard Error of Mean: 0.0436 LI Number of Features: 5490 LI
........ s anca: 10 A7 E canb b ll o aliae: OO0
. [ Airt_mean =] Close |Airt Tange 3| Close [ airt_std 3| Close

Although only one histogram window will be open, the user may choose which set of statistics to view by
choosing the field from the drop-down box at the bottom of the window. Also, the user may change the
number of histogram bars to display by clicking the up/down arrows and selecting “Redraw”. The red line
behind the histogram bars demonstrates how the bars should be arranged if the data were normally
distributed. In the above examples, the mean air temperature values follow the normal distribution better
than the range and standard deviation of air temperature values. The “R” button at the window’s bottom
left is the “Refresh” button, and can be used if the image becomes corrupted. Clicking this button will
redraw the image .

Summary Statistics on a Field in a Table:

The button in the Table button bar will be enabled only if a numeric field has been selected. This tool
will allow the user to generate a large number of statistics on the values within a given field. The user
may choose from: mean; standard error of the mean; confidence intervals; minimum; 1% quartile; median;
3" quartile; maximum; range; variance; standard deviation; average absolute deviation; skewness,
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normal and Fisher’'s G1; kurtosis, normal and Fisher's G2; number of records; number of null values;
mode; and total sum for any attribute field(s) within a set of selected records.

This tool also allows users to break up the dataset into subsets based on one or more additional fields
and generate multiple statistics for each subset of data. For example, if a person had a table of county-
level statistics for all the counties in the United States, this tool would let them calculate a single set of
statistics for all counties combined, or separate sets of statistics for each state or region.

Users can use a single or multiple fields as classification fields to divide the data into subsets. If the user
chooses multiple fields, then this extension will develop a separate set of statistics for each unique
combination of classification values.

Begin by selecting the field containing your data, clicking the to open the “Field Statistics” dialog, and
setting your preferences:

i} Field Statistics: x|

i~ Generate statistics on [Pop1990]...

{* Generate statistics on subszets of [Fop1930]. based on other fields...

i |ze all 3140 recards
 Usze selected records (4171 of 3140 selected)

Generating Statistics on Multiple Subsets of Data:

Note that you have options to generate statistics on all data in the field or on subsets of that data. If you
choose to generate statistics on subsets of the data, you will next be prompted to specify the fields
containing your classification values. For example, if you wanted to analyze county statistics by state,
then you would need to specify the field containing the state names.

#2 Select and Sort Fields to Subsek Daka:

- Bailable Fields - - Selected Fields -
Mame

State_name -

State_name

State_fips

Crty_fips
Fipz
Mrea j (.

Cancel | ak

Note that you may choose multiple fields and change their order. If you choose multiple fields, then this
extension will generate statistics for each unique combination of field values. The field order will not
change the statistics produced, but will change the order they are presented in the final report.

Click ‘OK’ and specify the statistics you would like to generate. These statistics are described in detail
below:
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#! Summary Sktatistics: EI
bl ean: Scale:

W (W W Vaiancs
¥ Standard Dewiation

v Awverage Deviation

v Std. Emor of Mean
[~ Conf. Limits for Mean

Conf. Lewvel: I— Shape:
[¥ Skewness

Cuantles and Range: ———— | W Skewness [Fisher's G1)
i [+ Kurtosis
7 First Quarti v Eurtosiz [Fizher's G2)
irsk Quartile
W Median Other Statistics:
v Mode
¥ Third Quartile o
[+ Mumber of Bows
I Maimum ¥ Mumber of "Mull' ¥alues
W Range [+ Total Sum
Cancel | Help | k.

Click ‘OK’ and the extension will generate a report:

! Statistics Summary:

"Utak': 29 records. ..
“ermant': 14 recards...
"Wirginia': 136 records...
"W ashington' 39 recards. ..

- [State_name]
-» [State_name]
- [State_name]
-» [State_name]
]
]
]

L D x

-» [State_name] = ""West Wirginia' B5 records. ..
- [State_name] = "Wizconzin' 72 records. ..
-» [State_name] = "wWoming' 23 records. .

- [State_name] = "Alabama"
-3 B7 recaords. ..
bean: BO3I0T.268656716420
Std. Error of Mean: 11525.335034330485
Fimirmurn: 10753, 000000000000
1zt Quartile: 16634, 000000000000
Median: 32458.000000000000
Jrd Quartile; B7E1.3.000000000000 ll

Copy and Eln:nsel Cloze |

Generating Statistics on a Single Dataset:

If you choose to calculate statistics on all data in that field, you will next prompted to specify your statistics
in the Summary Statistics dialog. This version is slightly different in that here you have the option to
create a histogram if you wish.
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#! Summary Sktatistics: EI

bl ean: Scale:
[ {hiean: ¥ “anance

v Standard Dewviation

v Std. Error of Mean o
¥ Awerage Deviation

[~ Canf. Lirnits for Mear G —

Conf, Level: I [T Skewness

[T Skewness [Fisher's G1)

Quantiles and Range: ——— | [ Kurtosis
I Mivieaurn [~ Kurtosis [Fisher's G2
[~ First Quartile Other Statistics:
v Median V' hode
I~ Third Quartile e Number of Rows
v Murber of Mol W alues
M
L v Total Sum
[ Range [+ Histogram
Cancel | Help | k.

Choose the desired statistics and then click “OK.” If you selected the Histogram option, the output will
appear in a histogram as illustrated above. If the Histogram option was not selected, the output will
appear in a report window:

! Summary Statiskics: ﬂ

Summary Statistics for Aitt_range -
Mean: 2.68EE12893326

Std. Errar of Mean: 0.043566304352

b irvimrn; - 0. 000000000000

Median: 1.541 700000000

b asirnuam; 30.833:300000000

Mode: 0

Range: 300833300000000

Standard Deviation: 3.2283130507 1

Skewness: 2385167427056

Furtosis: 1046887 7859731 (I

Copy ko Clipbaard Copy and Cloge

This tool may also be accessed with Avenue code, which enables more advanced users to pass these
statistics to variables, and then use the calculated values in other places. Please review Calculating
Summary Statistics with Avenue on p. 51 for details on accessing the Avenue script directly.

> x

1) Mean: Calculated as: =~
n

S

ﬁ,

2) Standard (Std) Error of the Mean: Calculated as: s{Y} = where s = sample standard deviation
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3)

4)
5)

6)
7)

8)

9)

Confidence Interval: The confidence limits for population mean u with a confidence coefficient (1 —

a), given a sample population mean X, are calculated as:

X+t s{Y},
(1—%;n—1) { }
where s{Y} = i, s = Sample Standard Deviation
Jn
= istri i =(1-¢ —
and t(l%mfl) = value from the t distribution at p = (1 A) and n -1 degrees of freedom.

Minimum: The lowest value in the data set.

Quartiles and Median: Those values, at which at most (P)% of the data lie below the value, and at
most (1 — P)% of the data lie above the value. There are different ways to calculate quartile values
which produce similar yet different results. Some methods draw the quartile values from the data set
itself, so that the value called the “quartile” will always be found in the data. This script uses a
different method which occasionally calculates a quartile value which represents the midpoint
between two values from the data set, using the following algorithm:

Assuming the data have been sorted from lowest to highest:

Quartile 1 Index = (N +1)x 0.25 = Q(1)

Quartile 2 Index = (N +1)x0.50 = Q(2)

Quartile 3 Index = (N +1)x 0.75 = Q(3)
If Q(N)is an integer, then:

Quartile = Q(N)" Value
If Q(N)is not an integer, then:
R = that value at which R<N <R +1, and
(Q(R)”’ Va/ue) + (Q(R +1)" Value)
2

Quartile =

Maximum: The highest value in the data set.

Range: Maximum - Minimum

Z(Y/ - )7)2
Variance: Calculated as: Variance = = I
n—
(v, -y)
Standard Deviation: Calculated as: Std. Deviation = {|-= 1
n-—

Z|y,' _}7|

10) Average (Avg) Deviation: Calculated as: Avg. Deviation = =2
n

11) Skewness: Measures the degree of asymmetry of the sample data around the mean.
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m
32

Skewness =

m2
2y, =¥y
where: m, =2" moment = 2
n
> (v =YY
and: m, =3 moment = =
n

12) Skewness (Fisher's G1): There are alternative methods to calculate skewness measures of the data.
S-PLUS uses the Fisher’s G1 variation, calculated as:

b,/ -1
Fisher's G1= M

n-2
where: b, = mj/z (standard measure of skewness),
m2
Z(y,‘ _}7)2

and: m, =2" moment = =
n

2y =y)
and: m, =3 moment = =
n

13) Kurtosis: Measures the “peakedness” or “pointedness” in a distribution, and calculated as:

. m
Kurtosis = —-,
2
n

(v, -yy
where: m, = 2" moment = =
(yi - }7)4

and: m, = 4" moment = =
n

14) Kurtosis (Fisher's G2): As with Skewness, there are alternative ways to calculate kurtosis. S-PLUS
uses the Fisher’s G2 variation, calculated as:
3(n-1

(n+1)(n-1)
- n+1

o (
Fisher's G2 = (n - 2)(n 3)

i (standard measure of kurtosis),

where: b, =
2 m22
Z(y;‘ _.)7)2
and: m, =2" moment=-"1——
n
Z(y,‘ - }7)4
and: m, =4" moment=""2——
n
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15) Mode: The value occurring most often. There could be multiple modes or no modes within a given
dataset. If no value in the dataset is found more than once, this option will report no modes were
found. If no value occurs more than once, no mode is returned.

16) Number of Rows: The total number of rows of data examined during the analysis.

17) Number of ‘Null’ Values: The total number of cases of missing data. These are represented as “null”
numbers in the table, which are different than zeros.

18) Total Sum: Sum of all non-null values, calculated as: Zx

19) Histogram: This is a graphic illustrating the shape of the data and is useful for visually determining if
the data are normally distributed. You may change the number of vertical bars by clicking the
up/down arrows and then the “Redraw” button. The red line behind the bars shows how the data
would appear if they were normally distributed. The drop-down box at the bottom of the illustration
(containing the words “Airt_mean” in this example) shows the field from which the statistics were
calculated. If you generated this histogram from a theme in a View, you may have selected multiple
fields to calculate the statistics. This option allows you to choose which set of statistics to view.

The R” button in the lower left-hand corner is the Refresh button. If the histogram window becomes
corrupted, click the “R” button to regenerate it.

! statistics for Airt_mean [hik_leve_airt.dbf] [H[=] E3

L

TE93  0Ad422 1319391 158435 19.225

Mumber of Bars: I— .. Fiedraw |

AIRT_MEAM: [7133 values]
tean: 15.454424197392
Std. Error of Mean: 0027340305678
Minimum: ¥.233400000000
Median: 16.141700000000
b airnumn; 19, 825000000000
Maode: 182
Fange: 11.926600000000
Standard Dewiation: 2285043712479
Skewnessz: -0.131003591134
Kurtoziz: 2474288067371
Tatal Recards: 7133

| Zirt_mean
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The laws of probability, so true in general, so fallacious in particular.
Edward Gibbon

Probability Distribution Calculators:

i Probability Distribution Calculator: <! Table Probability Distribution Calculak x|
Test value; I 14 Input Value Field [Zi_max | el
alculate
Output Value: [0137239231663 ) Save Dutput to Field: [“Make New Field - =]
- - Digtribustion -

(= Probabilty [PDF) ChiSquare = " Probabiity [FDF) ChiSquare -]

™ Curnulative Probability [CDF) Esponential + Curnulatree Probabilty (CDF) Exponentia

= Quantile IDF; Inverse COF) F ¢~ Quantile [IDF; lreverse COF) F

Mormal Distribution Parameters: Lagistic Normal Distribution Parameters: Logistic

Mean: I 12335 LogMomal Mean: I 18 LogMomal

St Dev.: [1.334 St Dev.: [1.2213

I Foisson ;I I Poizson ;I
Help J Cloze | Help | Cancel |

This extension includes two versions of a Probability Distribution Calculator, each of which calculate
distribution data based on a variety of distributions and parameters. The Probability Distribution

Calculator is started from within a View, and is opened by clicking on the button in the View toolbar.
You simply enter the input and parameter values, specify whether you are calculating Probability,
Cumulative Probability or Quantile values, click “Calculate”, and the result appears in the “Output Value”
window. This calculator remains open until you close it, and you can leave the calculator open as you
conduct other ArcView routines.

The “Table Probability Distribution Calculator” is designed to work on all selected records in a table,
applying the distribution parameters to each value and saving the results to a field within the table. This

calculator is opened from within a Table by clicking on the button in the Table toolbar. Select the
field containing the “Input” values, then decide whether to create a new field or use an existing field to
save the “Output” values. Then, click “Calculate” to generate distribution values for all selected records.
The window stays open until you click “Calculate” or “Cancel”.

Distribution functions included within this extension may be grouped in three categories; Probability
Density Functions, Cumulative Distribution Functions and Quantile Functions. In general, the Probability
Density Functions return the probability the Test Value = X given that particular distribution. The
Cumulative Distribution Functions return the probability the Test Value < X, given that particular
distribution. The Quantile Functions (sometimes referred to as Inverse Density Functions or Percent
Point Functions) return the Value X at which P(X) = [specified probability], given that particular
distribution.

Functions and Probability Distributions

Distribution Probability Density Function Cumulative Distribution Function Quantile Function
Beta PDF_Beta CDF_Beta IDF_Beta
Binomial PDF_Binomial CDF_Binomial IDF_Binomial
Cauchy PDF_Cauchy CDF_Cauchy IDF_Cauchy

Chi-Square PDF_ChiSquare CDF_ChiSquare IDF_ChiSquare
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Exponential PDF_Exp CDF_Exp IDF_Exp

F PDF_F CDF_F IDF_F
Logistic PDF_Logistic CDF_Logistic IDF_Logistic
LogNormal PDF_LogNormal CDF_LogNormal IDF_LogNormal
Normal PDF_Normal_Simpsons CDF_Normal IDF_Normal
Poisson PDF_Poisson CDF_Poisson IDF_Poisson
Student’'s T PDF_StudentsT CDF_StudentsT IDF_StudentsT
Weibull PDF_Weibull CDF_Weibull IDF_Weibull

Equations for each function are included in the Distribution Functions, Parameters and Usages (p. 53),
but some of them do not have closed formulas which can be calculated and therefore must be computed
numerically. Those interested should refer to the references to find source code and computational
methods of calculating these functions. We recommend Croarkin & Tobias (date unknown) and
McLaughlin (2001) for illustrations of the various distributions, and Press et al. (1988-1997) and Burkardt
(2001) for computational methods. All of these sources are available on-line.

The descriptions in Functions, Parameters and Usages (p. 53) include four methods of utilizing each
function. The first method describes how to use the Probability Distribution Calculators to calculate
values. There are three additional methods available for programmers who may want to access the
functions through Avenue code. Simply copy the line of code exactly as written, substituting your
parameter variable names in the proper places.

Avenue Functions:

1) The first Avenue option sends your parameters to a central script called “KappaStats.DistFunc”,
which checks for possible errors in the parameters (e.g. using a negative value for Degrees of
Freedom). If the script finds errors, it will halt operation and alert you to the problem. If it doesn’t
find errors, it forwards your parameters to the appropriate script and returns the result. Users
may want to review the script “KappaStats.ProbDlogCalculate” for an example of this option.
IMPORTANT: Users should be aware this script only checks whether the input values follow the
rules described in Functions, Parameters and Usages on p. 53. It doesn’t check for programming
errors, such as sending a non-numeric value to the script.

2) The second Avenue option is similar to the first. It sends your parameters to a central script to
check for errors (in this case, “KappaStats.TableDistFunc”), but it doesn’t halt operation if it finds
an error. Rather, it returns an error message (in String format) detailing the problem. We
recommend this option for cases in which the user wants to conduct calculations on a series of
values (i.e. records in a table), but doesn’t want the function to stop if it finds an illegal value (e.g.,
possibly a record with no data). This option would allow the user to insert an “if-then” statement
in their code to check if the result is a String or a Number. Numerical responses would indicate
successful calculations while String responses could be appended to a running report of
unsuccessful calculations. Users may want to review the script
“KappaStats.ProbTabDlogCalculate” for an example of this option.

3) If you'd like to skip the error-checking routines, use the third Avenue option to send your
parameters to the relevant script directly.
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Calculating Summary Statistics with Avenue

The Summary Statistics tool collects a series of True/False and numerical parameters from the user and
sends them to a script called “KappaStats.CalcFieldStats.” This script executes the necessary
calculations and returns a list of results. The tool then prints those results up in a Report window for the

user.

Avenue programmers may bypass the dialog and send values to the script directly, and then they will
have the desired statistics directly available within a list. For example, many statistical calculations
require metrics such as means, standard deviations, variances, quartiles, etc. The user may want to
generate these values early in a script and then use them in later calculations. The
“KappaStats.CalcFieldStats” script makes it simple to generate such values from data in a table.

This option is simpler than the standard Avenue method for generating statistics, which is to create a new
file on the hard drive and then use the “Summarize” request to save statistics to the file. It also offers a
larger variety of statistical output, including confidence intervals, standard error of the mean, average
deviation, and kurtosis/skewness values. This option is also slower on large datasets. However, it
doesn’t divide up the dataset into subsets like the “Summarize” function.

The function may be used with just a few lines of code:

ListOfResults =
thevTab,

av.Run (“KappaStats.CalcFieldStats”, {ListOfInputParameters,
theField})

The object “thevTab” is a VTab object containing your data, and “theField” is a Field object in the
VTab, reflecting the field in which you want to calculate the statistics.

The “ListOfInputParameters” must contain 22 values, most of which are Boolean (e.g. true/false)
reflecting whether you want a particular statistic calculated. Note the last value should be set to “False”.

ListOfInputParameters = {CalcMean, CalcSEMean, CalcConInt, Con_Level,
CalcMinimum, CalclstQuart, CalcMedian, Calc3rdQuart, CalcMaximum,

CalcVariance,
CalcKurtosis,
CalcMode, False}

Where:

CalcMean:
CalcSEMean:
CalcConInt:

Con_Level:
CalcMinimum:
CalclstQuart:
CalcMedian:
Calc3rdQuart:
CalcMaximum:
CalcVariance:
CalcStandDev:
CalcAvgDev:
CalcSkewness:
CalcSkewFish:

CalcKurtosis:

CalcStandDev, CalcAvgDev, CalcSkewness, CalcSkewFish,
CalcKurtFish, CalcCount, CalcNumNull, CalcSum, CalcRange,

Boolean, True if you want to calculate the mean.

Boolean, True if you want to calculate the standard error of the mean.
Boolean, True if you want to calculate confidence intervals of the mean.
Number, 0 <p < 1, where p = probability = (1-a)

Boolean, True if you want to calculate the minimum value.

Boolean, True if you want to calculate the 1% quartile.

Boolean, True if you want to calculate the median.

Boolean, True if you want to calculate the 3 quartile.

Boolean, True if you want to calculate the maximum value.

Boolean, True if you want to calculate the variance.

Boolean, True if you want to calculate the standard deviation.
Boolean, True if you want to calculate the absolute average deviation.
Boolean, True if you want to calculate the standard skewness.
Boolean, True if you want to calculate the Fisher's G1 skewness.

Boolean, True if you want to calculate the standard kurtosis.
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CalcKurtFish: Boolean, True if you want to calculate the Fisher's G2 kurtosis.
CalcCount: Boolean, True if you want to calculate the total number of rows of data.
CalcNumNull: Boolean, True if you want to calculate the number of null values.
CalcSum: Boolean, True if you want to calculate the sum.
CalcRange: Boolean, True if you want to calculate the Range.
CalcMode: Boolean, True if you want to calculate the Mode.

ForHistogram: False, intended only for internal use.

When the script finishes, it will return a list of 19 values to you which represent the various requested
statistics. If you did not request a particular statistic, then it will not be calculated and the return list will
contain a “nil” object in its place. NOTE: if you requested a confidence interval, the upper and lower
levels are returned as a separate list (3rd object in the Return List).

Return list: {Mean, Standard Error of Mean, {Lower Confidence Level,
Upper Confidence Level}, Minimum, 1% Quartile, Median, 3™
Quartile, Maximum, Variance, Standard Deviation, Skewness,
Fisher’s GI Skewness, Kurtosis, Fisher’s G2 Kurtosis,
Record Count, Number of Null Values, Sum, Range, Mode}

For example: If you had a table of population demographic data containing a field of Annual Income
values, and you were interested in the mean annual income plus a 95% confidence interval around that
mean, the code would be set up as:

theDemographyVTab = YourTable.GetVTab

theField = theDemographyVTab.FindField(“Income”)

theInputParameters = {True, False, True, 0.95, False, False, False, False,
False, False, False, False, False, False, False, False, False, False,
False, False, False}

theReturnList = av.Run(“KappaStats.CalcFieldStats”, {theInputParameters,
theDemographyVTab , theField})

theMeanIncome = theReturnList.Get (0)

theLowerConfidenceLimit = theReturnList.Get(2) .Get(0)

theUpperConfidencelLimit = theReturnList.Get (2).Get (1)

All the objects in “theReturnList” will be “nil” objects except for the ones at indices 0 and 2. The Mean
will be at index 0, the Lower 95% Confidence Limit will be the first item in index 2, and the Upper 95%
Confidence Limit will be the second item in index 2.

In general, all the possible statistics may be obtained with the following lines of code. Simply copy and
paste the appropriate lines into your script:

theMean = theReturnList.Get (0)
theSEMean = theReturnList.Get (1)
if (Calculating_Confidence_Intervals)
LowerCI = theReturnList.Get(2) .Get (0)
UpperCI = theReturnList.Get(2) .Get (1)
end
theMinimum = theReturnList.Get (3)
theQl = theReturnList.Get(4)
theMedian = theReturnList.Get(5)
theQ3 = theReturnList.Get (6)
theMaximum = theReturnList.Get (7)
thevVar = theReturnList.Get(8)
theStdDev = theReturnList.Get(9)
theAvgDev = theReturnList.Get (10)
theSkew = theReturnList.Get (11)
theFisherSkew = theReturnList.Get (12)
theKurt = theReturnList.Get (13)
theFisherKurt = theReturnList.Get (14)
theCount = theReturnList.Get (15)
theNumberNull = theReturnList.Get (16)
theSum = theReturnList.Get (17)
theRange = theReturnList.Get (18)
theMode = theReturnList.Get (19)
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Functions, Parameters and Usages

Probability Density Functions:

1.

PDF_Beta: This function returns the probability that the Test Value = X, assuming a Beta distribution
and the specified Shape parameters. This is the standardized Beta function, where Location = 0 and
Scale (upper bound) = 1. According to McLaughlin (2001), parameters Shape1 and ShapeZ2 can be
any positive value, but rarely exceed 10. The function becomes nearly flat if the values becomes
much larger.

a) Parameters:
i) Test Value: Number
i) Shape1: Number >0
iii) Shape2: Number >0
b) Usages:
i) From “Probability Distribution Calculator”, select “Probability (PDF)” and Beta distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc", {“PDF_Beta”, {Test Value, Shape1,
Shape2}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc", {*PDF_Beta”, {Test Value,
Shape1, Shape2}})

iv) (Avenue). theProb = av.Run(“KappaStats.PDF_Beta”, {Test Value, Shape1, Shape2})

I'(S, +S,) Y51 y)Sz—l
L(S)I(S;)
where: y =Test Value, S, =Shape1, S, =Shape?2

and: I'(x)= Iowtx’le’ldt

Beta PDF =
c) Function:

PDF_Binomial: The Binomial distribution is used when there are exactly two mutually exclusive
outcomes of a trial. This function returns the probability of getting X successes out of N trials, given a
probability of success = P.

a) Parameters:
i) # Successes: Integer =0
ii) # Trials: Integer = 2, # Successes
iii) Probability of Success: Number (02 p =1)
b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Binomial
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc", {“PDF_Binomial”, {#Success, #Trials,
Probability of Success}})

i) (Avenue). theProb = av.Run("KappaStats.TableDistFunc", {“PDF_Binomial’, {#Success,
#Trials, Probability of Success}})

iv) (Avenue): theProb = av.Run(“KappaStats.PDF_Binomial”, {#Success, #Trials, Probability of
Success}})
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Bt jAy(l—A)By
y' (B-y)!

where: y =#Successes, A =Probability of Success, B =#Trials

c) Function: Binomial PDF :(

PDF_Cauchy: This function returns the probability that the Test Value = X, assuming a Cauchy
distribution with the specified mean and standard deviation. The Standardized Cauchy distribution is
that with Location = 0 and Scale = 1.

a) Parameters:
i) Test Value: Number
i) Location: Number
iii) Scale: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Cauchy distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*PDF_Cauchy”, {Test Value, Location,
Scale}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”’, {*PDF_Cauchy”, {Test Value,
Location, Scale}})

iv) (Avenue). theProb = av.Run("KappaStats.PDF_Cauchy", {Test Value, Location, Scale})

c) Function: Cauchy PDF = ! >
7B {14— (y — Aj }
B
where: y = Test Value, A =Location, B =Scale

PDF_ChiSquare: This function returns the probability that the Test Value = X, assuming a Chi-
Square distribution with the specified Degrees of Freedom. The Chi-Square distribution results when
v (where v = Degrees of Freedom) independent variables with standard normal distributions are
squared and summed (Croarkin & Tobias, Date unknown).

a) Parameters:

i) Test Value: Number =0

i) Degrees of Freedom: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Chi-Square
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*PDF_ChiSquare”, {Test Value, DF}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_ChiSquare”, {Test Value,
DF}})

iv) (Avenue): theProb = av.Run("KappaStats.PDF_ChiSquare", {Test Value, DF})
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v v,
2 2
Chi-Square PDF = £~ X" _

c) Function: 221"(‘;)
where: y =Test Value, S, =Shape1, S, =Shape 2
and: F(x):j:tx’le’ldt

PDF_Exp: This function returns the probability that the Test Value = X, assuming an Exponential
distribution with the specified mean. This script uses the 1-parameter version of the equation (i.e.
assuming Location = 0). The Standard Exponential Distribution is that which has Mean = 1.

a) Parameters:
i) TestValue: Number =0
i) Mean: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Exponential
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*PDF_Exp”, {Test Value, Mean}})

iii) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {*PDF_Exp”, {Test Value,
Mean}})

iv) (Avenue). theProb = av.Run("KappaStats.PDF_Exp", {Test Value, Mean})

c) Function: Exponential PDF = l67

where: x = Test Value, S =Mean (or Scale Parameter)

PDF_F: This function returns the probability that the Test Value = X, assuming an F distribution with
the specified Degrees of Freedom. The F distribution is the ratio of two Chi-Square distributions with
ratios v, and v, respectively.

a) Parameters:
i) Test Value: Number =1
i) 1% Degrees of Freedom: Number > 1
iii) 2 Degrees of Freedom: Number > 1
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and F distribution.
i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*"PDF_F", {Test Value, DF1, DF2}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_F”, {Test Value, DF1,
DF2}})

iv) (Avenue):. theProb = av.Run("KappaStats.PDF_F", {Test Value, DF1, DF2})
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F PDF =

c) Function: =
NEANEAINAS
2 2 v,

where: x =Test Value, v, =DF1, v, =DF2
and: T'(x)= Iowtx’le’ldt

PDF_Logistic: This function returns the probability that the Test Value = X, assuming a Logistic
distribution with the specified mean and scale.

a) Parameters:
i) Test Value: Number
i) Mean: Number
iii) Scale: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Logistic distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {"PDF_Logistic”, {Test Value, Mean,
Scale}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”’, {*PDF_Logistic”, {Test Value,
Mean, Scale}})

iv) (Avenue). theProb = av.Run("KappaStats.PDF_Logistic", {Test Value, Mean, Scale})

y—-A
L exp 5
¢) Function: Logistic PDF = 5
ool
l+exp| ——
B
where: y = Test Value, A =Mean, B =Scale

PDF_LogNormal: This function returns the probability that the Test Value = X, assuming a
LogNormal distribution with the specified mean and scale. A LogNormal distribution occurs when
natural logarithms of variable X are normally distributed. The Standard LogNormal Distribution is that
with Mean = 0 and Scale = 1. The 2-Parameter LogNormal Distribution is that with Mean = 0.

a) Parameters:
i) Test Value: Number =0
i) Mean: Number >0
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and LogNormal
distribution.
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10.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“PDF_LogNormal”, {Test Value,
Mean, Scale}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_LogNormal”, {Test Value,
Mean, Scale}})

iv) (Avenue): theProb = av.Run("KappaStats.PDF_LogNormal", {Test Value, Mean, Scale})

o 1 1(In(y)-A
c) Function: LogNormal PDF = ———exp| - =| ————
B\2rx 2 B

where: y = Test Value, A =Mean, B =Scale

PDF_Normal: This function returns the probability that the Test Value = X, assuming a Normal
distribution with the specified mean and standard deviation. The Standard Normal Distribution is that
with Mean = 0 and Standard Deviation = 1.

a) Parameters:
i) Test Value: Number
i) Mean: Number
iii) Standard Deviation: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Normal distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*"PDF_Normal”, {Test Value, Mean, St.
Dev.}})

i) (Avenue):. theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Normal”, {Test Value,
Mean, St. Dev.}})

iv) (Avenue): theProb = av.Run("KappaStats.PDF_Normal", {Test Value, Mean, St. Dev.})

2
c) Function: Normal PDF = 1 exp _l(uj
B\ 2rx 2\ B

where: y = Test Value, A =Mean, B =Scale

PDF_Poisson: This function returns the probability that the Specified Number of Events = X,
assuming a Poisson distribution with the specified mean.

a) Parameters:
i) # Events: Integer=0
i) Mean: Number >0
b) Usages:
i) From "Probability Distribution Calculator", select "Probability (PDF)" and Poisson distribution.
i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“PDF_Poisson”, {# Events, Mean}})

i) (Avenue). theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Poisson”, {# Events,
Mean}})
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11.

12.

iv) (Avenue). theProb = av.Run("KappaStats.PDF_Poisson", {# Events, Mean})

~A Ay
c) Function: Poisson PDF :u
y:
where: y =Test value, A = Expectation (mean)

PDF_StudentsT: This function returns the probability that the Test Value = X, assuming a Students
T distribution with the specified Degrees of Freedom. A Student’s T distribution with 1df is a Cauchy
Distribution, and it approaches a Normal distribution when DF>30. Various sources recommend
using the Normal distribution if DF>100.

a) Parameters:

i) Test Value: Number

i) Degrees of Freedom: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Student’s T
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“PDF_StudentsT”, {Test Value, DF}})

iii) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {*PDF_StudentsT”, {Test Value,
DF}})

iv) (Avenue): theProb = av.Run("KappaStats.PDF_StudentsT", {Test Value, DF})

r v+l v
2 yo| 2
Student's T PDF = —————— |1+
c) Function: = r‘(vj v
2
where: y = Test Value, v = Degrees of Freedom

and: T(x)= .[:tx‘le‘ldt

PDF_Weibull: This function returns the probability that the Test Value = X, assuming a Weibull
distribution with the specified Location, Scale and Shape parameters. The Standardized Weibull
Distribution is that with Location = 0 and Scale = 1. The 2-Parameter Weibull Distribution is that with
Location = 0.

a) Parameters:
i) Test Value: Number > Location
i) Location: Number
iii) Scale: Number >0
iv) Shape: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Weibull distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*PDF_Weibull”, {Test Value, Location,
Scale, Number}})
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i) (Avenue). theProb = av.Run("KappaStats.TableDistFunc”, {“PDF_Weibull”, {Test Value,
Location, Scale, Number}})

iv) (Avenue): theProb = av.Run("KappaStats.PDF_Weibull", {Test Value, Location, Scale,
Number})

c-1 (y-AY
¢) Function: VVQbuHPDF::(%)[Xi;ﬁj exp{{bj]

where: y =Test Value, A =Location, B=Scale, C =Shape

Cumulative Distribution Functions:

1. CDF_Beta: This function returns the probability that the Test Value < X, assuming a Beta distribution
with the specified Shape parameters. This is the Standardized Beta function, where Location = 0 and
Scale (upper bound) = 1. According to McLaughlin (2001), parameters Shape? and Shape?2 can be
any positive value, but they rarely exceed 10. The function becomes nearly flat if the values get
much larger than this.

a) Parameters:
i) Test Value: Number
i) Shape1: Number >0
iii) Shape2: Number >0

b) Usages:
i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Beta
distribution.
i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“CDF_Beta”, {Test Value, Shape1,
Shape?2}})

iii) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Beta”, {Test Value,
Shape1, Shape2}})

iv) (Avenue):. theProb = av.Run("KappaStats.CDF_Beta", {Test Value, Shape1, Shape2})

Beta CDF = /(y,S,,S,) (From Press et al, 1997)
c) Function: where: y = Test Value, S, = Shape 1, S, = Shape 2

B (a,b) 1 x
X tt1-t)dt
ab) [rra-t)

and: /(x.,a,b) Bab) B(a

and: B(a,b)= I:ta’l(l—t)b’ldt

2. CDF_Binomial: The Binomial distribution is used when there are exactly two mutually exclusive
outcomes of a trial. This function returns the probability of getting < X successes out of N trials, given
a probability of success= P.

a) Parameters:
i) # Successes: Integer=0

ii) # Trials: Integer = 2, # Successes
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i) Probability of Success: Number (0 2p = 1)
b) Usages:

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and
Binomial distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*CDF_Binomial”, {#Success, #Trials,
Probability of Success}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {*CDF_Binomial’, {#Success,
#Trials, Probability of Success}})

iv) (Avenue). theProb = av.Run("KappaStats.CDF_Binomial", {#Success, #Trials, Probability of
Success})

y | . .
c¢) Function: Binomial CDF =)’ L A(1-APF
SiNB-i)

where: y =#Successes, A =Probability of Success, B = #Trials

CDF_Cauchy: This function returns the probability that the Test Value < X, assuming a Cauchy
distribution with the specified Location and Scale parameters. The Standardized Cauchy distribution
has Location = 0 and Scale = 1.

a) Parameters:
i) Test Value: Number
ii) Location: Number

iii) Scale: Number >0

b) Usages:
i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Cauchy
distribution.
i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*CDF_Cauchy”, {Test Value, Location,
Scale}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”’, {CDF_Cauchy”, {Test Value,
Location, Scale}})

iv) (Avenue). theProb = av.Run("KappaStats.CDF_Cauchy", {Test Value, Location, Scale})

c) Function: Cauchy CDinJritan‘1 y-A
2 B

where: y = Test Value, A = Location, B = Scale

CDF_ChiSquare: This function returns the probability that the Test Value < X, assuming a Chi-
Square distribution with the specified Degrees of Freedom. The Chi-Square distribution results when
v (where v = Degrees of Freedom) independent variables with standard normal distributions are
squared and summed (Croarkin & Tobias, Date unknown).

a) Parameters:

i) Test Value: Number =0
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i) Degrees of Freedom: Number > 0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
Chi-Square distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“CDF_ChiSquare”, {Test Value, DF}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {*CDF_ChiSquare”, {Test Value,
DF}})
iv) (Avenue). theProb = av.Run("KappaStats.CDF_ChiSquare", {Test Value, DF})

y(v Xj
Chi-Square CDF = 2v2

c) Function: where: y =TestValue, S, =Shape 1, S, =Shape 2
and: F(x):'[:tx’le’ldt

and: y(x,y)= .[Oytx’le’ldt

CDF_Exp: This function returns the probability that the Test Value < X, assuming an Exponential
distribution with the specified mean. This script uses the 1-parameter version of the equation (i.e.
assuming Location = 0). The Standard Exponential Distribution is that which has Mean = 1.

a) Parameters:
i) Test Value: Number =0
i) Mean: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
Exponential distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*CDF_Exp”, {Test Value, Mean}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Exp”, {Test Value,
Mean}})

iv) (Avenue):. theProb = av.Run("KappaStats.CDF_Exp", {Test Value, Mean})

c) Function: Exponential CDF = 1-e’
where: x = Test value, B =Mean (or Scale Parameter)

CDF_F: This function returns the probability that the Test Value < X, assuming an F distribution with
the specified Degrees of Freedom. The F distribution is the ratio of two Chi-Square distributions with
ratios v, and v, respectively.

a) Parameters:

i) Test Value: Number = 1
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i) 1% Degrees of Freedom: Number > 1
iii) 2 Degrees of Freedom: Number > 1
b) Usages:

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and
F distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*CDF_F”, {Test Value, DF1, DF2}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {*CDF_F”, {Test Value, DF1,
DF2}})

iv) (Avenue). theProb = av.Run("KappaStats.CDF_F", {Test Value, DF1, DF2})

F CDF = 1—/[k,ﬁ,ﬁj
272

where: k:( i j
Vv, +Vy

c) Function: and: y = Test Value, S, = Shape 1, S, = Shape 2

. Bx(a’b)_ 1 Xta10q _ g\b-1
and: /(xa,b) B(ab) =B(a,b)j0t AL-t)"at

and: B(a,b)zj:ta’l(l—t)b’ldt

(From Croarkin & Tobias, Date Unknown; Press et al, 1997)

CDF_Logistic: This function returns the probability that the Test Value < X, assuming a Logistic
distribution with the specified mean and scale.

a) Parameters:
i) Test Value: Number
i) Mean: Number

iii) Scale: Number >0

b) Usages:
i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Logistic
distribution.
i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*CDF_Logistic”, {Test Value, Mean,
Scale}})

iii) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Logistic”, {Test Value,
Mean, Scale}})

iv) (Avenue): theProb = av.Run("KappaStats.CDF_Logistic", {Test Value, Mean, Scale})

c) Function: Logistic CDF = +
1+ exp(_yj
B
where: y = Test Value, A =Mean, B = Scale
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8. CDF_LogNormal: This function returns the probability that the Test Value < X, assuming a
LogNormal distribution with the specified mean and scale. A LogNormal distribution occurs when
natural logarithms of variable X are normally distributed. The Standard LogNormal Distribution is that
with Mean = 0 and Scale = 1. The 2-Parameter LogNormal Distribution is that with Mean = 0.

a) Parameters:
i) Test Value: Number =0
ii) Mean: Number >0
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
LogNormal distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“CDF_LogNormal, {Test Value, Mean,
Scale}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_LogNormal, {Test Value,
Mean, Scale}})

iv) (Avenue): theProb = av.Run("KappaStats.CDF_LogNormal", {Test Value, Mean, Scale})

In(y)-A
LogNormal CDF = ®| ————
c) Function: B

where: y = Test Value, A =Mean, B =Scale
and: (I)(x) = Cumulative Distribution Function of the Normal Distribution

9. CDF_Normal_Simpsons: This function returns the probability that the Test Value < X, assuming a
Normal distribution with the specified mean and standard deviation. Because the formula for this
function does not exist in a closed form, it must be computed numerically. This script uses the
Simpson’s approximation method (Stewart 1998, p. 421-424) to calculate a highly accurate estimate
of the Normal cumulative distribution function (accuracy to > 12 decimal places). The Standard
Normal Distribution is that with Mean = 0 and Standard Deviation = 1.

a) Parameters:

i) Test Value: Number

i) Mean: Number

iii) Standard Deviation: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Normal
distribution.

ii) (Avenue). theProb = av.Run("KappaStats.DistFunc”, {*CDF_Normal_Simpsons, {Test
Value, Mean, St. Dev.}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc’, {"CDF_Normal_Simpsons, {Test
Value, Mean, St. Dev.}})

iv) (Avenue): theProb = av.Run("KappaStats.CDF_Normal_Simpsons", {Test Value, Mean, St.
Dev.})
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10.

11.

Normal CDF = @(u]
c) Function: B

where: y = Test Value, A =Mean, B = Scale
and: @(x) = Cumulative Distribution Function of the Normal Distribution

CDF_Poisson: This function returns the probability that the specified Number of Events will be < X,
assuming a Poisson distribution with the specified mean.

a) Parameters:
i) # Events: Integer=0
i) Mean: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Poisson
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“CDF_Poisson, {# Events, Mean}})

i) (Avenue). theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Poisson, {# Events,
Mean}})

iv) (Avenue): theProb = av.Run("KappaStats.CDF_Poisson", {# Events, Mean})

A
Poisson CDF = y(y )
T'(y)
c) Function: where: y =Test value, A = Expectation (mean)

and: T(x)= on t* e 'dt

and: y(x,y)= joyt“e’ldt

CDF_StudentsT: This function returns the probability that the Test Value < X, assuming a Students
T distribution with the specified Degrees of Freedom. A Student’s T distribution with 1df is a Cauchy
Distribution, and it approaches a Normal distribution when DF>30. Various sources recommend
using the Normal distribution if DF>100.

a) Parameters:

i) Test Value: Number

i) Degrees of Freedom: Number > 0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
Student’s T distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {“CDF_StudentsT, {Test Value, DF}})

i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {*CDF_StudentsT, {Test Value,
DF}})

iv) (Avenue): theProb = av.Run("KappaStats.CDF_StudentsT", {Test Value, DF})
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c) Function: The CDF_StudentsT T Function is dependent on whether the test value is positive or

negative:
L Y1) ioy<o
2 \v+y- 22
Student's T CDF =
Y] R AL ALY RS
2 \v+y - 22
where: y = Test Value, v = Degrees of Freedom

. B, (a’b) _ 1 X ta-1 b-1
and: /(x,a,b) B(ab) =B(a,b)j0t (1-t)"dt

and: B(a,b)=[ t"*(1-t)""at

12. CDF_Weibull: This function returns the probability that the Test Value < X, assuming a Weibull
distribution with the specified Location, Scale and Shape parameters. The Standardized Weibull
Distribution is that with Location = 0 and Scale = 1. The 2-Parameter Weibull Distribution is that with
Location = 0.

a) Parameters:
i) Test Value: Number > Location
i) Location: Number
iii) Scale: Number >0
iv) Shape: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Weibull
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*CDF_Weibull, {Test Value, Location,
Scale, Number}})

i) (Avenue). theProb = av.Run("KappaStats.TableDistFunc”, {“CDF_Weibull, {Test Value,
Location, Scale, Number}})

iv) (Avenue):. theProb = av.Run("KappaStats.CDF_Weibull", {Test Value, Location, Scale,
Number})

=

c) Function: Weibull CDF = 1—exp[(
where: y =Test Value, A=Location, B=Scale, C=Shape

Quantiles (also referred to as Inverse Density Functions or Percent Point Functions).

1. IDF_Beta: This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the Beta distribution with the two specified Shape parameters. Because the formula for
this function does not exist in a closed form, it must be computed numerically. This script arrives at
the X-value through an iterative process, repeatedly testing X-values with the CDF_Beta function until
it arrives at P-value that is within 7x70 2 units from the specified P-value (this usually takes between
30-60 iterations).
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a) Parameters:
i) P-value: Number (0=p=1)
i) Shape1: Number >0
iii) Shape2: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Beta
distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {IDF_Beta, {P-value, Shape1, Shape2}})

i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Beta, {P-value, Shape1,
Shape2}})

iv) (Avenue):. theX = av.Run("KappaStats.IDF_Beta", {P-value, Shape1, Shape2})

S, -1

Beta IDF = j YM
c) Function: SII(S;)
where: y = Test Value, S, =Shape1, S, =Shape?2

(l-y)
and: T(x)= j':tx’le’ldt

IDF_Binomial: This function takes the specified probability and returns the value X such that the
Probability of getting (X — 1) successes < the Specified Probability. This function takes an iterative
approach to finding the correct X value, repeatedly trying different values of X until it reaches the
correct one. This iterative process rarely takes more than 25 repetitions.

a) Parameters:
i) P-value = Number (02zp=1)
ii) # Trials = Integer = 2
i) Probability of Success = Number (0 = p = 1)Usages:
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Binomial
distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {IDF_Binomial, {P-value, NumTrials,
Probability of Success}})

i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {*IDF_Binomial, {P-value,
NumTrials, Probability of Success}})

iv) (Avenue): theX = av.Run("KappaStats.IDF_Binomial", {P-value, NumTrials, Probability of
Success})

Binomial IDF: Iterative Process, repeatedly testing values of y, such that:

c) Function: p= Z{I'(B—I] (LAY

where: y =#Successes, A =Probability of Success, B = #Trials
Until: P(y —1) < User-Specified probability
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IDF_Cauchy: This function takes the specified probability and returns the value X, such that P(X) =
P-value, given the Cauchy distribution with the specified location and scale parameters. The
Standardized Cauchy distribution has Location = 0 and Scale = 1.

a) Parameters:
i) P-value: Number (0zp=1)
i) Location: Number
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator", select "Quantile (IDF; Inverse CDF)" and Cauchy
distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_Cauchy, {P-value, location, Scale}})

i) (Avenue). theX = av.Run("KappaStats.TableDistFunc”, {“IDF _Cauchy, {P-value, location,
Scale}})

iv) (Avenue): theX = av.Run("KappaStats.IDF_Cauchy", {P-value, Location, Scale})

c) Function: Cauchy IDF = A __B
tan(zp)
where: A =Location, B = Scale, p = Probability

IDF_ChiSquare: This function takes the specified probability and returns the value X, such that P(X)
= P-value, given the Chi-Square distribution with the specified Degrees of Freedom. Because the
formula for this function does not exist in a closed form, it must be computed numerically. This script
arrives at the X-value through an iterative process, repeatedly testing X-values with the
CDF_ChiSquare function until it arrives at P-value that is within 7x710 2 units from the specified P-
value (this usually takes between 30-60 iterations). The Chi-Square distribution results when v
(where v = Degrees of Freedom) independent variables with standard normal distributions are
squared and summed (Croarkin & Tobias, Date unknown).

a) Parameters:
i) P-value: Number (0=p=1)
i) Degrees of Freedom: Number
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
Chi-Square distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {*IDF_ChiSquare, {P-Value, F}})
i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {*IDF_ChiSquare, {P-Value, F}})
iv) (Avenue): theX = av.Run("KappaStats.IDF_ChiSquare", {P-Value, DF})
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Chi-Square IDF = jo
c) Function: 221"(;]

y e?x?
v

where: y =Test Value, S, =Shape1, S, =Shape2
and: T(x)= j':tx’le’ldt

IDF_Exp: This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the Exponential distribution with the specified mean. This script uses the 1-parameter
version of the equation (i.e. assuming Location = 0). The Standard Exponential Distribution is that
which has Mean = 1.

a) Parameters:
i) P-value: Number (0=p=1)
i) Mean: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
Exponential distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_Exp, {P-value, Mean}})
i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {*IDF_Exp, {P-value, Mean}})
iv) (Avenue). theX = av.Run("KappaStats.IDF_Exp", {P-value, Mean})

Exponential IDF = -4In(1-p)
where: g =Mean (or Scale Parameter)
and: p = Specified Probability

c) Function:

IDF_F: This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the F distribution with the specified Degrees of Freedom. Because the formula for this
function does not exist in a closed form, it must be computed numerically. This script arrives at the X-
value through an iterative process, repeatedly testing X-values with the CDF_F function until it arrives
at P-value that is within 7x70 "2 units from the specified P-value (this usually takes between 30-60
iterations). The F distribution is the ratio of two Chi-Square distributions with ratios v; and v,
respectively.

a) Parameters:
i) TestValue: Number =1
i) 1% Degrees of Freedom: Number > 1
iiil) 2 Degrees of Freedom: Number > 1
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
F distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {IDF_F, {P-value, DF1, DF2}})
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i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {*IDF_F, {P-value, DF1, DF2}})
iv) (Avenue). theX = av.Run("KappaStats.IDF_F", {P-value, DF1, DF2})

F[V +V, 71
X 2
FIDF = | VZ
. 0 V1+Vz
c¢) Function: v v
r2\ri
(s

where: x = Test Value, v_DF1 v,

and: T'(x)= '[O e dt

IDF_Logistic: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the Logistic distribution with the specified mean and scale parameters.

a) Parameters:
i) P-value: Number (0=p=1)
i) Mean: Number
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Logistic
distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_Logistic, {P-value, Mean, Scale}})

i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Logistic, {P-value, Mean,
Scale}})

iv) (Avenue):. theX = av.Run("KappaStats.IDF_Logistic", {P-value, Mean, Scale})

c) Function: Logistic IDF = A+ B In(le
-p
where: p = Probability, A =Mean, B =Scale

IDF_LogNormal: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the LogNormal distribution with the specified mean and scale parameters.
Because the formula for this function does not exist in a closed form, it must be computed
numerically. This script arrives at the X-value through an iterative process, repeatedly testlng X-
values with the CDF_LogNormal function until it arrives at P-value that is within 1x10 "% units from the
specified P-value (this usually takes between 30-60 iterations). A LogNormal distribution occurs
when natural logarithms of variable X are normally distributed. The Standard LogNormal Distribution
is that with Mean = 0 and Scale = 1. The 2-Parameter LogNormal Distribution is that with Mean = 0.

a) Parameters:
i) P-value: Number (0zp=1)
i) Mean: Number >0

iii) Scale: Number >0
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b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
LogNormal distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_LogNormal, {P-value, Mean,
Scale}})

i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {“IDF_LogNormal, {P-value, Mean,
Scale}})

iv) (Avenue): theX = av.Run("KappaStats.IDF_LogNormal", {P-value, Mean, Scale})

2
. 1 1(In(y)-A
Function: LogNormal IDF = ["| ———exp| - =| —22 = d
c) Function g '[O[Bx/ﬂ p[ 2[ 5 ly

where: y = Test Value, A =Mean, B =Scale

IDF_Normal: This function takes the specified probability and returns the value X, such that

P(X) = P-value, given the Normal distribution with the specified mean and standard deviation.
Because the formula for this function does not exist in a closed form, it must be computed
numerically. This script arrives at the X-value through an iterative process, repeatedly testing X-
values with the CDF_Normal _Simpsons function until it arrives at P-value that is within 7x710 72 Units
from the specified P-value (this usually takes between 30-60 iterations). Furthermore, there is no
closed formula for calculating the Normal cumulative distribution function, so this script uses the
Simpson’s approximation method (Stewart 1998, p. 421-424) to calculate a highly accurate estimate
(accuracy to > 12 decimal places). The Standard Normal Distribution is that with Mean = 0 and
Standard Deviation = 1.

a) Parameters:

i) P-value: Number (0=2p=1)

i) Mean: Number

iii) Standard Deviation: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Normal
distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_Normal, {P-value, Mean, St. Dev.}})

i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {“IDF_Normal, {P-value, Mean, St.
Dev.}})

iv) (Avenue): theX = av.Run("KappaStats.IDF_Normal", {P-value, Mean, St. Dev.})

BV2r 2\ B

where: y =Test Value, A =Mean, B = Scale

1 1(y—AY
c) Function: Normal IDF:J';/{ exp[—_[y j Ddy

10. IDF_Poisson: This function takes the specified probability and returns the value X such that the

Probability of getting (X — 1) events < the Specified Probability. This function takes an iterative
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11.

approach to finding the correct X value, repeatedly trying different values of X until it reaches the
correct one.

a) Parameters:
i) P-value: Number (02p=1)
i) Mean: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Poisson
distribution.

i) (Avenue): theProb = av.Run("KappaStats.DistFunc”, {*IDF_Poisson, {P-value, Mean}})
i) (Avenue): theProb = av.Run("KappaStats.TableDistFunc”, {“IDF_Poisson, {P-value, Mean}})
iv) (Avenue):. theProb = av.Run("KappaStats.IDF_Poisson", {P-value, Mean})

Poisson IDF: lterative Process, repeatedly testing values of y, such that:

_7(vA)
I'(y)
c) Function: where: y = Test value, A = Expectation (mean)

and: T'(x)= j: t* e dt

and: y(x,y)= ontx’le’ldt
Until: P(y —1) < User-Specified probability

IDF_StudentsT: This function takes the specified probability and returns the value X, such that

P(X) = P-value, given the Student’s T distribution with the specified Degrees of Freedom. Because
the formula for this function does not exist in a closed form, it must be computed numerically. This
script arrives at the X-value through an iterative process, repeatedly testing X-values with the
CDF_StudentsT function until it arrives at P-value that is within 1x70 2 units from the specified P-
value (this usually takes between 30-60 iterations). A Student’s T distribution with 1df is a Cauchy
Distribution, and it approaches a Normal distribution when DF>30. Various sources (esp. McLaughlin
2001) recommend using the Normal distribution if DF>100.

a) Parameters:

i) P-value: Number (0=2p=1)

i) Degrees of Freedom: Number > 0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
Student’s T distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_StudentsT, {P-value, DF}})
i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {*IDF_StudentsT, {P-value, DF}})
iv) (Avenue): theX = av.Run("KappaStats.IDF_StudentsT", {P-value, DF})
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F[V +1) et
y yil 2
Student's T IDF = —{1+—} dy
c) Function: v FKVJ v
2

where: y = Test Value, v = Degrees of Freedom

and: ['(x)= Iowtx’le’ldt

12. IDF_Weibull: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the Weibull distribution with the specified Location, Scale and Shape
parameters. The Standardized Weibull Distribution is that with Location = 0 and Scale = 1. The 2-
Parameter Weibull Distribution is that with Location = 0.

a) Parameters:
i) Test Value: Number > Location
ii) Location: Number
iii) Scale: Number >0
iv) Shape: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Weibull
distribution.

i) (Avenue): theX = av.Run("KappaStats.DistFunc”, {“IDF_Weibull, {P-value, Location, Scale,
Number}})

i) (Avenue): theX = av.Run("KappaStats.TableDistFunc”, {*IDF_Weibull, {P-value, Location,
Scale, Number}})

iv) (Avenue):. theX = av.Run("KappaStats.IDF_Weibull", {P-value, Location, Scale, Number})

c) Function: Weibull IDF = A+Bg/-Inp
where: p =Probability, A =Location, B =Scale, C = Shape
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Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong
question, which can always be made precise.
John Tukey

Additional Menu Functions:

Generating Separate Classification Tables:

This extension provides four options for generating stand-alone classification table based on a shapefile
of sample points and a grid or polygon classification theme. These classification tables may be useful for
general statistical purposes, but there are two additional important situations that may also lead you to
generate stand-alone tables:

1) Kappa Analysis runs faster: Extracting the classification data from polygons or grids, especially from
circular neighborhoods, can be time-consuming. In general the Kappa analysis will always run much
faster if the data is available in the table. If you plan on running the analysis more than once, it may
be advantageous to add the data to a table before you start.

2) Large Numbers of Grid Requests Crash ArcView: ArcView Spatial Analyst has a bug, which triggers
a crash after approximately 32,500 grid operations in a single ArcView session. If you have a sample
point theme with > 32,500 points, or if you use a circular neighborhood or conduct multiple analyses
which require > 32,500 cell value requests, ArcView will crash with the message:

zl

O GRD ERROR - Syntax emaor at or near symbol ML

Please refer to the Troubleshooting section on p. 79 for more information. If you are encountering
this problem, you can avoid it by the following steps:

a) Restart ArcView. Spatial Analyst is unstable after you see this error message and needs to be
restarted.

b) Select a series of subsets of your sample points and generate classification tables for each
subset. If ArcView crashes again while you do this, restart ArcView and pick up where you left
off.

c) After you have generated your data subsets, link each of them to your original sample point
theme and transfer the class values to a field in the point theme attribute table (see Linking and
Joining Tables on p. 77). Make sure you unlink each table before you move on to the next one.

Generating Class Values from Circular Region: Grid Source

This function allows you to extract a classification value from all grid cells intersected by a circular region
around each sample point (refer to Adjusting for Locational Uncertainty on p. 13 for a discussion of what
this does and why you may want to do it). This function will work on only the selected set of points (if any
are selected), or all points (if none are selected). To run this function, click the menu item and identify
your point theme and unique ID field:
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# Select Point Theme and ID Field | “* Select Classification Theme:

- Select Paint Theme - - Select Unigue |D Field - Please select Grid Clazsification theme [only integer
themes lizted)...

Observer 2 Tik_cde
0ld_cde

Georef

Ref_type

— | Ref_class

- vI
— Tmmre amm

L4l

@ Circular Neighborhood Analysis Complete: 1[

Circular Analysis Complete: -

- Point Theme = Observer 1
-» Located at chesnivav_gis30harcview1_jeffscriptsstatisticstkappa‘datatobs . shp
- |0 Field = 1d
-3 362 of 362 points examined...

- Circular Meighborhood Radius = 200

-+ Grid Theme = Supclzs_0B01 LI

{ CopytoClipboard | Copy and Close | Close | p

Upon completion, this function will add a table to your project that looks something like the following:

i circular_classes25.dbf
Limigns 4t A ERseg v Lamamen
0 300000 3 Clasz 3 Area = 100.00% of circle ;I
1 9.00000 3 Class I Area =59.14% of circle
2 7E6.00000 1 Clagz 1: Area = 96.94% of circle
3 119.00000 4 i Clasz 4: Area = 67 177% of circle
4 142 00000 1 Clazz 1: Area = 100.00% of circle
) 15600000 1 Clagz 1: Area = 95.44% of circle
[ 157.00000 1: Clazz 1: Area = 74.69% of circle
7 165 00000 3iClazz I Area = 98.42% of circle
g 176.00000 3 Claszz 3 Area = B0.20% of circle
9 182.00000 3 Claszz 3 Area = 54 B5% of circle
10 19100000 3 Class & Area = 84.29% of circle .
‘I 14 anwauinininlinl bl |l P PR R T | ok T S P H

Generating Class Values from Circular Region: Polygon Source

This function allows you to extract a classification value from all polygons intersected by a circular region
around each sample point (refer to Adjusting for Locational Uncertainty on p. 13 for a discussion of this
procedure). This function will work on only the selected set of points (if any are selected), or all points (if
none are selected). Click the menu item and identify your point theme and unique ID field:
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#2 Select Point Theme and ID Field | ** Select Polygon Theme and Class |

- Select Paint Theme - - Select Unique 10 Field - - Select Polpgon Thene - - Select Class Field -
Obszerver 2 Trk_cde

0Old_cde Fec_num

Supclsz_polys. shp Id -

Georef Rec_tum_1
Ref_type
—1 | Ref_class L |-
| - Jid| - =
Radius of Circular Meighborhood [in map units]: Carcel ok | y
%
Cancel )
# Circular Neighborhood Analysis Complete: 5[
Circular Analysis Complete: -

-» Point Theme = Obgerver 1
-» Located at chesnhayv_gisd0harcviews1_jeffscrptshstatistics\kappatdataobs . shp
- |0 Field = Id
-» 362 of 362 points examined. ..

--» Circular Neighborhood Radius = 200

-+ Polygon Theme = Supcles_polye shp ;I

" "Copy to Clipboard | Copy and Close | Close |

4

Upon completion, this function will add a table to your project that looks something like the following:

# circular_classes?6.dbf
Llmmas o A Llann Linananant
[iH 3.00000 3§ Clazz 3 Area = 100.00% of circle ;I
1 9.00000 3iClasz I Area = 58.11% of circle J
2 7600000 1: Clazs 1: Area = 97 10% of circle
3 115.00000 4: Clasz 4 Area = B7.11% of circle
4 142.00000 1:Clasz 1: Area = 100.00% of circle
] 156.00000 1: Clazz 1: Area = 98.02% of circle
E 157.00000 1:Clasz 1; Area = B2 16% of circle
7 165.00000 3iClasz I Area =93.17% of circle
a 17E.00000 3 Clazs I Area = 73.29% of circle
3 182.00000 3 Clasz 3 Area = B1.594% of circle
10 191.00000 3 Clasz I Area = B8.78% of circle =
‘I 44 EalnbrMnlninlninl bl [l P PR o T | ks Y R P Iﬂ

Generating Class Values from Point: Grid Source

This function allows you to extract a classification value from a grid cell by intersecting the sample point.
This output is similar to what one may find using the standard ArcView Zonal Statistics function with a
Zone field containing unique ID values. This function will work on only the selected set of points (if any
are selected), or all points (if none are selected). Click the menu item and identify your point theme and
unique ID field:
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# Select Point Theme and ID Field | “* Select Classification Theme:

- Select Paint Theme - - Select Unigue |D Field - Please select Grid Clazsification theme [only integer
themes lizted)...

Observer 2 Tik_cde
0ld_cde

Georef

Ref_type

— | Ref_class

- vI
— Tmmre amm

#2 Point Class Yalue Analysis Complete:

Point Analysis Complete:

- Paint Theme = Observer 1

-2 |0 Field = Id
-» 362 of 362 points examined...

-» Grid Theme = Supclss_ 0601
-» Origin = 583617 81617E » 3534625 500000

-» Entent: Width = 43720380000, Height = 30783.000000
-» Cell Size = 12315600000

CEopintipboad | CopyandCiose | Ciose |

-» Located at c:hesrihav_gis3Dharcview'1_jeffscrptsistatisticehkappatdatatobs1.shp

-» Located at c:hvesrhayv_gis3Dharcviewh1_jeffzonptshatatisticsik appatdatabsupcles_ 0601

[l

4

Upon completion, this function will add a table to your project that looks something like the following:

=

#! point_classesb.dbf

Erina A7 it Gase bl
: il 300000 a7 -
1 5.00000 3t
2 76.00000 1
3 11900000 4
4 14200000 ]
5 156 00000 ]
3 157.00000 4
‘ I rd N = nlnlnlnl bl Iﬁ

Generating Class Values from Circular Point: Polygon Source

This function allows you to extract a classification value from the polygon by intersecting it with the
sample point. The output is similar to what you might get if you do a spatial join on the polygon and point
attribute fields. IMPORTANT: This function assumes there are no overlapping polygons (which should be
the case in a properly-classified polygon theme). If there are multiple polygons at any particular point,
this extension will only extract the classification value from the first one it encounters. This function will
work on only the selected set of points (if any are selected), or all points (if none are selected). Click the

menu item and identify your point theme and unique ID field:
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! Select Point Theme and ID Field

- Select Point Theme -

Obzerver 2

Cancel

- Select Unique D Field -

Trk_cde
Qld_cde

Gearef

Ref_type

Ref_class
A |

Fiadiuz of Circular Meighborhood [in map units):

200

o —

! Point Class ¥alue Analysis Complete:

Poirt Analgsis Complete:

-» Point Theme = Observer 1
-» Located at crhesrbhay_gis30harcwiewh1_jeffzcnptshstatistics\kappatdatatobs1. shp
-3 |0 Field = 1d
-» 362 of 362 point: examined...

-» Paolygon Theme = Supclzs_polys.shp
- Located at
c:hesrhav_gis30harcview’1_jeffscriptshstatisticshk appatdata_3hsupclss_polys shp
- Clazz Field = Gridoode

- Cotee b Table = naint_clasees ¥ dRE

x| * Select Polygon Theme and Class x|
- Select Polygon Theme - - Select Clazs Field -
Id =
Fec_numm
Rec_nur_1
C | ] 4
ancel | Y
=
Y
[ |
e

;"""'EEE;TIE"ﬁfiiEEEEF&"""'E| Copy and Close | Closs |

Upon completion, this function will add a table to your project that looks something like the following:

Linking and Joining Classification Tables with Sample Point Theme:

#! point_classes7.dbf
Liipas A7 A Dlzsy !
= i 2.00000 R
1 5.00000 HIN
2 76.00000 1
3 11500000 4
4 14200000 1
5 156.00000 1
B 157 00000 i
7 155.00000 3.
1 ITJ

If you use the standard Table Link button to link your classification table with your point theme
attribute table (using the unique ID Field from the attribute table and the equivalent field from the

classification table; see the standard ArcView documentation on linking tables for more info), then all the
classification table fields will appear in the Kappa Input Data dialog and may be used in the analysis. If

you wish to transfer the classification data to the sample point theme permanently, do the following:

1) After the tables have been linked, set your point theme attribute table to Editable by clicking the

“Table” menu, then “Start Editing”.

2) Add a new field to your attribute table by clicking the “Edit” menu, then “Add Field”. Make sure
your new field is the correct type (i.e., don’'t make it a numeric field if your classification values are

strings).

3) Clear any current selection in your attribute table by clicking the Clear Selection button .

-77 -



4) Select your new field by clicking on the field name at the top of the table. It should have an inset
appearance.

5) Click the Calculate button to open the Field Calculator and transfer the data. If your newly-
created classification field was named [New_Field] and your class field from your joined
classification table was named [Class_val], then the Field Calculator dialog would be filled out as

follows:
! Field Calculator Xl
Fields Type Reguestz
[Unique:_id] 2] & Number . -
S *
[Carnrment] e - e
[Caunt] " Date -
[5_walug] 4
[Mew_Field) <
- 4= j
[Mew Field] =
[Clazs_wal] -

6) Save edits by clicking the “Table” menu, then “Stop Editing”.

7) If you wish, you may unjoin your tables by clicking the “Table” menu, then “Remove All Joins”.

Generating Unique ID Values:

This extension includes several functions for identifying grid or polygon values at sample points. Each of
these functions creates a separate table containing sample point ID values plus the grid or polygon theme
classification value. Because these functions create separate tables rather than modifying the original
sample point shapefile, you will need some unique ID value in your sample point attribute table.

In most cases, you will already have such a field available. In the rare case that a unique identifier field is
lacking, you can quickly generate one using the menu item “Add Unique Record Number Field” under the
“Kappa Tools” menu. This option will only be available if you have a single feature theme (point, line or
polygon) active in your view. After clicking this option, a message will appear similar to the following:

#! Record Number Field Added: x|

0 Field 'Rec_num' added to 'Observer 2' attnbute table...

IMPORTANT: This function will modify your original dataset and there is no “Undo” option. The change is
permanent.
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Troubleshooting:
Problem: The Extension does not load when the following error message occurs:

x

Can't comvert 'LISTBOX_SELECTION_MULTIROW!
to enumeration.

Solution: This problem is caused by an outdated version of the Dialog Designer. For some reason,
some versions of ArcView 3 were shipped with an older version of Dialog Designer which did not support
this "LISTBOX_SELECTION_MULTIROW" option (which means a listbox on a dialog is set so that you
can select multiple items from the list).

ESRI has a newer version of the Dialog Designer available on their website for free download. To obtain
the most recent version of the Dialog Designer, point your browser to:

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetalD=483

Problem: Extension crashes in mid-operation, producing an obscure message stating there is a syntax
error at or near symbol NL:

x

@ GRD ERROR - Syntax ermor at or near sembol ML

This is sometimes followed by the infamous “Segmentation Violation!” message:

x

@ Segmentation wiolation!

Sometimes ArcView crashes completely and vanishes without showing these messages, while other
times it vanishes after showing these messages.

Solution: There is no simple solution to this problem. It is due to a bug in Spatial Analyst which causes
SA to crash after approximately 32,500 grid operations or if SA tries to hold > 50 grids in memory at one
time.
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We are unaware of a simple way to resolve this problem. If possible, use smaller point data sets or try to
use fewer grids in your analysis. Alternatively, ArcGIS 9 is expected to run these operations without
encountering this problem.

Problem: Unable to find grid in a directory, even though you know it is there.

Solution: This is probably due to a space or invalid character in the pathname. Spatial Analyst fails to
recognize a grid if it lies in a folder with a space or period in it. For example, if you store your grids in the
standard default Windows directory “My Documents” or even “My Docs,” you will not see the grid listed in
the “Add Theme” dialog. The “Add Theme” dialog will show you all the shapefiles and images, but no
grids. This may be resolved by either renaming the folder (e.g., “my_docs”) or moving the grid file to a
different file location where it does not lie in a path with invalid characters.

Problem: You load your grids but you are unable to conduct any calculations on them (i.e., the grids
aren’t acting like grids).

Solution: These files may have been loaded as images. Grids may be loaded as either images or grids.
If they are loaded as images, no grid functions can be performed. Remove the grid and then re-add them
to you're the view by selecting “Grid Data Source” rather than “Image Data Source”.

Problem: Extension crashes in mid-calculation with the message:

x

@ Error in copying INFO tables

Solution: This error may be caused by either a corrupt INFO directory or if the working directory
pathname is too long. We are unaware of the exact pathname size that triggers the error, but it is
somewhere around 80 characters. If you have over 80 characters in your pathname and you see this
error, then you can probably avoid it by changing your work directory to someplace closer to the root. We
often create temporary GIS directories directly below the drive name (e.g., C:/temp_GIS).
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Enjoy! If you have any questions, or find bugs in the software, please contact the authors at:

Jeff Jenness
Jenness Enterprises
3020 N. Schevene Blvd.
Flagstaff, AZ 86004
USA

USDA Forest Service

Rocky Mountain Research Station
2500 S. Pine Knoll Dr.

Flagstaff, AZ 86005
jilenness@fs.fed.us

(928) 556-2012

J. Judson Wynne
United States Geologic Survey
Southwest Biological Science Center
Colorado Plateau Research Station
2255 N. Gemini Drive
Flagstaff, AZ 86011

jeffi@jennessent.com

http://www.jennessent.com
(928) 607-4638

=

Jenness
Enterprises
/ ’-\ United States Department of Agriculture - Forest Service m
RMRS Rocky Mountain Research Station LT
jwynne@usgs.gov ,!‘é USGS
Fax (928) 556-7092 [
science for a changing world

Tel (928) 556-7172

Updates to this extension and an on-line version of this manual are available at

http://www.jennessent.com/arcview/kappa_stats.htm
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