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Recovery of Perennial Vegetation in Military Target
Sites in the Eastern Mojave Desert, Arizona

By John W. Steiger and Robert H. Webb

Abstract

The effect of the age of geomorphic surfaces on the recovery of desert vegetation in military
target sites was studied in the Mohave and Cerbat Mountains of northwestern Arizona. The target
sites were cleared of all vegetation during military exercises in 1942-1943 and have not been
subsequently disturbed. The degree of recovery was measured by calculating percentage-
similarity (PS) and correlation-coefficient indices on the basis of differencesin cover, density, and
volume of species growing in and out of each target site. PS values, ranging from 22.7 to 95.1
percent (100 percent = identical composition), indicate a wide range of recovery that is partialy
controlled by the edaphic properties of the geomorphic surfaces. Stetistical analyses show a
strong pattern that indicates a greater variability in the degree of recovery for sites on older
surfaces than on younger surfaces and a weak pattern that indicates an inverse relation between
the degree of recovery and geomorphic age. Comparisons of the different effects of target site
construction on the edaphic characteristics of each target site provides an explanation for these
patterns and suggests the soil properties critical to the recovery process. Statistically significant
negative or positive response to disturbance for most species are independent of the age of the
geomorphic surfaces; however, there is strong evidence for a shift in response for the common
perennial species Acamptopappus sphaerocephalus, and to a lesser extent, Salazaria mexicana,
Encelia farinosa, and Coldenia canescens, among different geomorphic surfaces.

INTRODUCTION Prose, 1985; Prose and Metzger, 1985; Prose and
others, 1987; Prose and Wilshire, 2000), and

The effect of disturbance of geomorphic abandoned mining towns (Wells, 1961; Webb and

surfaces of different age on the recovery of desert
vegetation is potentially an important issue for
land-use managers. Several studies of the natural
revegetation of disturbed sites have cited the type of
geomorphic surface as a significant factor deter-
mining the course of recovery, but past work has
focused on the intensity of disturbance or the
predisturbance vegetation composition as the
primary factors affecting their results. These
include studies of excavation pits (Vasek, 1980),
utility corridors (Vasek and others, 1975a and b);
Kay and Graves, 1980), abandoned agricultural
fields (Karpiscak, 1980), nuclear test sites (Romney
and others, 1971), abandoned mine sites (Sulenski,
1972), military maneuver areas (Lathrop, 1983;

Wilshire, 1979; Webb and Newman, 1982; Webb
and others, 1983, 1986, 1987, 1988). Some of this
work was recently summarized in Lovich and
Bainbridge (1999).

Other revegetation studies in arid regions have
focused on the effect of the type of geomorphic
surface on species composition of communities, but
the research has been oriented toward the appli-
cation of succession theory to deserts. Revegetation
sequences, ranging from simple reestablishment of
the original species (Mueller, 1940) to seral
changes suggestive of classical succession (Vasek
and Lund, 1980), have been inferred by studying
contemporaneous geomorphic  surfaces that
represent different stages of landform devel opment.
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The application of succession theory to deserts
through the study of spatial patterns of vegetation
and geomorphic surfaces has resulted in much
controversy, primarily from the shortcomings of the
theory itself (Drury and Nisbet, 1973; Mclntosh,
1980) or its apparent ill-fit to arid lands (Shreve,
1942; Beatley, 1976; Lathrop and Rowlands, 1983).
Nonetheless, strong relations are present between
Mojave Desert plant assemblages and the age of
geomorphic surfaces (Webb and others, 1987,
1988), aswell asin the Sonoran Desert (McAuUliffe,
1991, 1994).

Landscapes are a mosaic of geomorphic
surfaces of different ages and physical properties.
The ages of surfaces may greatly differ although
each surface may be composed of similar parent
material. Geomorphic surfaces are created or
destroyed according to the landscape's disturbance
regime (White, 1979) and often will have different
soil characteristics according to age (Hunt, 1972).
Each set of soil characteristics comprising a
geomorphic surface (e.g. surficial morphology, soil
texture) may have adifferent effect on the mantling
vegetation.

Depending on the life-history strategies
(Grime, 1979) of the resident species, different sets
of soil characteristics may not cause differencesin
species composition across adjacent geomorphic
units of different age. Human-caused disturbance,
such as bulldozing or grading, may have different
effects on the geomorphic surfaces that comprise
the landscape and these effects may enhance or
diminish the ability of a species to colonize and
reproduce.

For example, the removal of the top 100 mm of
a well-developed soil may have more effect on a
potential colonizer than the removal of the top 100
mm of a less-developed soil, even though the
species could easily persist once it became estab-
lished on either type of soil. The course of revege-
tation, therefore, may be different for two different
geomorphic surfaces even though the sites may
bear statistically similar compositions of predistur-
bance vegetation and undergo similar disturbances.

In a study of revegetation resulting from man-
caused denudation on a variety of related
geomorphic surfaces, Webb and others (1988)
found evidence suggestive of an inverse relation
between the rate of revegetation and the degree of
soil development. In addition, they found that the

species composition of disturbed sites converged
with increasing time after disturbance to the species
composition of assemblages found on the oldest
surfaces. Relatively long-lived, maintenance-
oriented species dominated the oldest surfaces,
whereas short-lived, reproduction-oriented species
dominated the recently disturbed surfaces. The data
from Webb and others (1987, 1988) indicates that
the age of geomorphic surfaces has an effect on
recovery from disturbance, and life-history strat-
egies of the species involved are important to the
sequence of recovery.

Military target sites cleared of vegetation in
1942-1943 provides a basis for a study of the
influence of geomorphic surface on revegetation.
Identifiable geomorphic surfaces on bajadas
extending from the Mohave and Cerbat Mountains
of Arizona (fig. 1) can be compared according to
relative geomorphic age and differences in edaphic
characteristics.

Differences in the degree of recovery of
vegetation in target sites constructed on avariety of
these units provide an assessment of the relation
between increasing age of surfaces and recovery of
vegetation on disturbed sites.

SETTING

At unknown dates between 1942 and 1944, the
United States 1st Army, commanded by Genera
George C. Patton, Jr., cleared target sites for
military aircraft in the Mojave Desert (Bischoff,
2000). A series of rectangular target sites averaging
4 hain areawere cleared in western Arizonaduring
thistime (figs. 1 and 2). Thetarget sites are located
on avariety of geomorphic surfaces located in the
Mohave Mountains, on Dutch Henry Flats, and on
the eastern slopes of the Cerbat Mountains. No
information is available on construction and use of
these areas; however, aerial photographs taken in
1943 show completely cleared sites, and remnant
patterns of the bermsindicate the sites were cleared
by as few as a single pass of a bulldozer. Field
inspection suggested that up to 0.2 m of surface
material was displaced by blading. The sites were
primarily used for strafing runs and impact explo-
sives were not used.

The 22 target sitesare arranged in three parallel
lines of fiveto eight sites in the Mohave Mountains

2 RECOVERY OF PERENNIAL VEGETATION IN MILITARY TARGET SITES
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Figure 1. Map of the region including the Mojave and Cerbat Mountains, showing the

locations of target sites discussed in this study.

and Dutch Henry Flats area and a line of four sites
in the Cerbat Mountains area (fig. 1). The sites are
separated by 3 to 5 km in each line, with the three
lines separated by 8 to 10 km in the Mohave
Mountains and Dutch Henry Flats area. Most of the
target sites are accessible by dirt road but are
isolated and have not been disturbed by land-use
practices other than infrequent grazing by range
cattle.

Geomorphic Surfaces

Thetarget sites in the Mohave Mountains were
constructed on discrete geomorphic surfaces
characterized by alluvia veneers of Quaternary age
up to several meters thick on platforms eroded into
bedrock. The source rock for these surfaces are
Precambrian metamorphic rocks, Miocene volcani-
clastic rocks, and Plio-Pleistocene fanglomerates

SETTING 3



Figure 2. Obllque aerial photograph of target site B-3 (November 1984) The width of the
disturbance is 30-40 m. The small trees present are Cercidium microphyllum (Howard G.
Wilshire, U.S. Geological Survey).

(Howard and others, 1990, 2000). Wilshire and
Reneau (1992) give an overview and discussion of
these geomorphic surfaces and provide the geologic
basis for our assignment of surface designations.

The target sitesin Dutch Henry Flats are on an
intermittently active bajada whose source materials
are mainly Precambrian metamorphic and igneous
rocks eroded from the Hualapai Mountains (fig. 1).
The target sites on the eastern slope of the Cerbat
Mountains are on a variety of geomorphic surfaces
ranging from active flood plains to older aluvial
surfaces composed of metamorphic rock detritus.

The geomorphic surfaces in the Mohave
Mountains have been classified in a generalized
scheme of landform development in response to a
series of regional base level falls (Howard and
others, in press). The classification system
developed by Bull (1974, 1991) was used to
identify and align the terraces in a sequence of
geomorphic units on the basis of relative terrace
height, surficial morphology, and degree of
pedogenesis (table 1). The oldest units (Q1, Plio-
Pleistocene age) are extensively eroded and are
composed of locally-derived alluvium. No remnant
of the original geomorphic surface remains for Q1
units, which are characterized by reworked
alluvium irregularly overlying relict petrocalcic or

argillic horizons. The next oldest units (Q2, Q3a;
Pleistocene-Holocene age) are variably eroded
surfaces with well-developed desert pavement and
a soil with a calcic horizon. Active to recently
active units (Q3b, Q4; Holocene age) is charac-
terized by well-developed bar-and-swale topog-
raphy and weak soil development (table 1). These
surfaces are composed of coarse gravels and
cobbles near mountain fronts.

Distinctions among the surfaces are sometimes
difficult due to the interfingering effect of aluvial
deposition and differential erosion rates. However,
analyses of soil profiles, surficial morphology, and
relation to surrounding units can be used to differ-
entiate surfaces. The geomorphic surfaces on Dutch
Henry Flats and in the Cerbat Mountains have not
been classified according to the Q-unit system
developed by Bull (1974, 1991); however, surfaces
in these areas can be tentatively correlated with
those found in the Mohave Mountains by
comparing the relative degree of soil development.

Vegetation and Climate
The vegetation in and around the target sitesis

Mojave Desert-Sonoran  Desert  Transition
vegetation with major species from both deserts

4 RECOVERY OF PERENNIAL VEGETATION IN MILITARY TARGET SITES



Table 1. Surface designation and criteria developed by Bull (1974) for Quaternary geomorphic surfaces in the
Upper Colorado River region, Arizona-California, as applied by Howard and others (1990, 2000) and Wilshire
and Reneau (1992) in the Mohave Mountains of western Arizona.

SURFICIAL?
SURFACE GENERAL DESCRIPTION  POSITION MORPHOLOGY SOIL PROFILE AGE (yrs bp)?
Q1 Isolated ridges, highly Highl Absent to dlight pavement B horizon usually not ~ 200,000-1,500,000
eroded surfaces. variable  and varnish. Caliche preserved. K horizon
Moderately well-bedded to fragmentstypically present. (stage [11-1V) highly
unbedded C?ra\/el, sandy No channelization or gravel eroded, occasionally
gravel, and gravelly sand. bars. exposed.
Q2a  Welllpreserved surface 17t045m Moderateto strong pave- A, and B horizons 50,000-200,000
with little to no dissection.  above active ment and varnish. Subdued well-developed. Stage
Moderately well to poorly channel  bar/swale topography near 11-111 K horizon.
bedded sandy gravel and mountain front, smoother
gravelly sand. elsawhere.
Q2b Similar to Q2abut slightly 1.5t01.75m Similar to Q2a. Similar to Q2a but K 11,000-50,000
more dissected. above active horizon less devel oped.
channel
Q3a  Bar/swale topography with 1to4m  Slight to moderate pave- A, and B horizons ab- 2,000-11,000
coarse to extremely coarse  above active ment and varnish. Gravel  sent or weakly deve-
materials overlying finer- channel  barseasily discernible. loped. Weak to moder-
grained materials. ate stage | K horizon.
Q3b  Similar to Q3abut coarse lto2m  Pavement and varnish Weak A,, horizon and 0-2,000
material generally larger.  aboveactive absent. Gravel bars well pavement. B horizon
channel  developed. Channelization absent. K horizon weak
poorly devel oped. stage | or non-existent.
Q4 Active or recently active Active Bar and swale topography  No soil development. 0-2,000
aluvia channel. channel  predominates.

1From Wilshire and Reneau (1992).
2Ages are estimated by Bull (1974).

present and dominating according to habitat
(Brown and Lowe, 1980). Larrea tridentata and
Ambrosia dumosa codominate in the Mohave
Mountains and Dutch Henry Flats. Fouquieria
splendens and Opuntia sp. are important locally in
Dutch Henry Flats and Krameria sp. and Encelia
virginensis are abundant locally in the Mohave
Mountains. Acamptoppapus sphaerocephalus,
Hymenoclea, and Salazaria mexicana codominate
in the Cerbat Mountains with Acacia greggii and
Krameria sp. areimportant locally.

The Mohave Mountains and Dutch Henry Flats
are about 460-700 m in elevation, have low annua
precipitation, and experience high summer temper-
atures. Between 1967 and 1982, L ake Havasu City
(fig. 1) had an average of 112 days/year with
temperatures greater than or equal to 37°C and a
mean annua rainfall of 115 mm. Weather data for
the same period from Kingman (fig. 1), the nearest
town to the Cerbat Mountain sites indicate an
average of 17 days/year with temperatures greater
or equal to 37°C and 245 mm mean annual rainfall

(Sellers and others, 1985). The sites in the Cerbat
Mountains are at about 1,000-1,100 m elevation.

METHODS

Six target sites in the Mohave Mountains, two
on Dutch Henry Flats, and two on the eastern slope
of the Cerbat Mountains were selected for study.
Thetarget sites occurred on surfaces representative
of the major geomorphic surfaces found within
each geographical area. Surficial morphology,
major soil-profile characteristics, and corre-
sponding surface designations of selected target
sites are given in table 2. Target site K-2 was
constructed across two distinct geomorphic units
which were measured separately as K-2y and K-20.
Soil profiles were described and compared from
trenches usually 1 m deep and bracketing the
transect lines to confirm the continuity of
geomorphic unitsin control and target sites. Classi-
fication terminology for calcic horizons follows

METHODS 5



Table 2. Characteristics of geomorphic surfaces and perennial vegetation assemblages for all study sites.
Combined PS values are calculated by taking the mean of the cover and density PS values.

PS
VALUES CcC
SITE SURFICIAL MORPHOLOGY  SOIL CHARACTERISTICS! ~ UNIT |COVER DENSITY COMBINED| VALUE
A-2  Well developed bar/swale No B horizon, Stage | K Q3b 72.7 65.3 69.0 0.88
topography, primarily horizon.
cobbles/pébbles. No
pavement or varnish.
Channels prevalent.
A-4  Very dight bar/swale 30-60cm of weakly developed Q3aover | 84.4 87.5 86.0 0.97
topography. Patches of soil (some interstitial remnant
varnished pavement. Terrace carbonate%? over awell- Q2
2 m above active channel. developed B horizon or Stage
11-111 K horizon.
B-1 Isolated ridgetops. Slight Wesk A, horizon. No Q1 98.9 91.2 95.1 0.99
avement of pebbles/gravel. dlscernlY)_Ie B horizon. Stage
ery slight varnish. 111 K horizon.
B-2  WEell varnished pavement Strong A, and B horizons. Q2a 75.2 74.6 74.9 0.92
occasionally broken by Stage 111 K horizon.
I[:J{:;ttches of vegetation.
idges.
B-3 Ridgetop. No varnish or No discernible B horizon. Q1 56.0 60.3 58.1 0.62
avement. No caliche Stage 1V K horizon.
ragments on surface.
B-5 Sope with surface exposures 0-40cm of slightly oxidized Qls 28.6 16.8 22.7 0.44
of laminar carbonate. Many  material above Stage IV K
caliche fragments. horizon.
Dutch Henry Flats
C-0 Intermittently active bajada.  No discernible B horizon. Q3a? 75.0 823 78.7 0.92
Mostly fine-grained Wesk Stage Il K horizon.
materials.
C-1 Similarto C-0 Similar to C-0 but K horizon Q3a2 76.4 86.1 81.3 0.93
better devel oped.
Cerbat Mountains
K-1 Intermittently active bajada.  Vesicular A, horizon. Weak B 202 | 749 75.9 75.4 0.94%
Mostly fine-grained horizon. Stage Il K horizon. 3a
materials.
K-2y Activealuvia flood plain.  No B horizon. Weak Stagel K~ Q42 885 96.7 92.6 0.99°
Mostly sands. horizon.
K-20 Isolated alluvial terrace, 2-3  Well-developed argillic B Q22 243 14.8 196 0.09°
m above flood plain. Hor!zon. Strong Stage I-11 K
orizon.

L Full soil descri ptions are given in Appendix 1.

2 Correlated with the Mohave Mountain sequence on the basis of soil morphology (see text and Appendix 1).
3 Calculated i ndependently from Mohave Mountains and Dutch Henry Flats values.

Bachman and Machette (1977). Soil descriptions
aregivenin Appendix 1.

Vegetation was measured for target sites that
had sufficient areal extent and uniformity of
geomorphic unit and lacked evidence of recent
disturbancesin May and June of 1985, representing
about 42 years of recovery. Transects were placed
paralel to each other in and out of each target site
and oriented to maintain similar slope. Recovery of
perennial vegetation was determined by comparing

cover, density, and volume of shrubs taken from
three 200 m? belt transects (600 m? total); two 200
m? belt transects were measured in the Cerbat
Mountains. Transect data was recorded in 20 m?
intervals to generate statistical information.
Contiguous geomorphic surfaces were measured
and potential edge effects (Johnson and others,
1976) were avoided.

The degree of recovery for each site was
estimated using percentage similarity (PS) and

6 RECOVERY OF PERENNIAL VEGETATION IN MILITARY TARGET SITES



correlation coefficient (CC) indices (Gauch, 1982).
These indices allow a numerical comparison of the
varying degrees of recovery observed in different
sites. Three separate PS indices and one CC index
were generated for each study area. The PSindices
were calculated from cover data, density data, and
the mean of the cover and density PSvalues. The PS
index calculated from the mean of cover and
density PS values (“combined PS value’) avoids
the bias that cover or density PS values alone may
introduce against specieswith life-history strategies
that may emphasize one over another. For example,
species adapted to relatively stable environments
commonly have low reproduction rates and
relatively large size and species adapted to constant
disturbance typically have high reproduction rates
and relatively small size (Grime, 1979). Conse-
quently, cover measurements may over-represent
the former while density measurements may over-
represent the latter. Indices from volume data were
not calculated because the increased spread in the
datarange due to the multiplication cover measure-
ments by a height measurement would significantly
reduce the importance of low stature vegetation.
The one-sided Student's t-test (>0.95) was used to
detect significant differences in vegetation data in
and out of each target site for each species. A
principal components analysis (PCA) diagram was
generated with cover data to determine indistinct
relations among sites (Gauch, 1982).

RESULTS

Correlation of Geomorphic Units

To compare the degree of recovery of target
sites, we correlated the geomorphic units on Dutch
Henry Flats and in the Cerbat Mountains with the
target sites in the Mohave Mountains into a
framework that allows comparison of the edaphic
characteristics of each unit. The geomorphic units
underlying the sites in the Mohave Mountains (A
and B series, fig. 1) were previously described by
Wilshire and Reneau (1992) using the landform
classification system developed by Bull (1974,
1991). We corroborated these designations (see
table 2), which reflect a series of geomorphic units
that are believed to be erosional in origin and not

time-stratigraphic units (Wilshire and Reneau,
1992).

The siteson Dutch Henry Flats (C series, fig. 1)
can be correlated with Q3a units in the Mohave
Mountains (table 2). Both C-0 and C-1 have stage |
to weak stage |1 calcic horizons (Appendix 1) and
are located far enough from the source area in the
Hualapai Mountains to disregard the Q3a criteria
(table 1) not met by these sites; namely, the
presence of cobbles and boulders and the evidence
of bar/swale features (table 2). Smaller and dlightly
higher surfaces that show varnish on pebbles and
stream-cut  exposures of well-cemented calcic
horizons have been preserved on the bajada near C-
0 and are prabably correlative of Q2 units (table 1),
which further suggests the adequacy of the Q3a
designation. The sites on the eastern slope of the
Cerbat Mountains (K series, fig. 1) are 400 to 600
m higher in elevation than those in the Mohave
Mountains, receive runoff from a more extensive
watershed, and are much farther from the
controlling influence of the Colorado River on the
regional base level (Wilshire and Reneau, 1992).

As aresult of these factors and parent material
differences, the correlation of geomorphic unitsin
the Cerbat Mountains with those in the Mohave
Mountains is more difficult. The youngest unit —
K-2y — is a broad flood plain with no soil devel-
opment (Appendix 1) and is correlated with Q4
units in the Mohave Mountains. The adjacent
surface K-20 is 4 m higher than the channel and
contains a well-devel oped argillic horizon nearly a
meter in thickness with weak stage | carbonate
deposited in the soil peds. The soil morphology
suggests an age correlative with Q2 units despite
the lack of calcic horizon development usually
foundin soilson Q2 units. Higher rainfall and lower
temperatures and, to a lesser extent, differencesin
parent material, may be responsible for the lack of
cacic horizon development (McFadden and
Tinsley, 1985). K-1 can be correlated with a Q2b or
Q3a unit. The site bears a soil with a much less
pronounced argillic horizon than K-20 and a stage
Il calcic horizon (Appendix 1). There is no desert
pavement, an important criterion for designation of
Q2 units, on the east slope of the Cerbat Mountains.

RESULTS 7
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Behavior of Perennial Vegetation

Tables 3 and 4 present cover, density, and
volume data for the most important species in and
out of all target sitesfor the Mohave Mountains and
Dutch Henry Flats (table 3) and the Cerbat
Mountains (table 4). A complete set of vegetation
data appearsin Appendix 2. The widespread occur-
rence of these species alows for the analysis of
their colonization behavior across varying
geomorphic units, and their relative abundance
imparts a high degree of statistical certainty to the
results. For this discussion, species will be referred
to as having responded negatively if they have not
recovered to levels corresponding to predisturbance
conditions or having responded positively if they
are better represented in the target site than the
adjacent control.

In the Mohave Mountains and on Dutch Henry
Flats, Larrea, Krameria sp. (undifferentiated parvi-
folia and grayii) and Opuntia sp. have generaly
responded negatively to disturbance, while
Ambrosia has generally responded positively.
Statistically significant differences (p<0.05) in
cover and density vary across the geomorphic units
in no apparent pattern, but where statistically signif-
icant differences occur (table 3), the response of the
species is aways the same regardless of the
geomorphic unit.

Thisdoes not appear to bethe casefor the major
species in the Cerbat Mountains (table 4). Only
perennial grasses, primarily Hilariarigida, showsa
clear (negative) response to disturbance
independent of the geomorphic unit. Acampto-
pappus and to a lesser extent Salazaria show a
statistically significant (p > 0.95) shift in behavior.
On K-20, a relatively old geomorphic unit correl-
ative of Q2 units, both species show a significantly
negative response, but on K-1, a unit correlative
with Q2b/Q3a surfaces, both species show a statis-
tically significantly positive response (Salazariafor
density alone). Hymenoclea salsola shows a statis-
tically significantly positive response on K-20 but
its responseisinconclusive on the other two Cerbat
Mountain sites.

Depending on the site, eight other species show
statistically significant negative responses and six
species show datistically significant positive
responses (table 5). Three species, Cercidium

microphyllum, Encelia farinosa, and Coldenia
canescens show datistically significant shifts in
response. However, these conclusions are tentative
because their occurrence is relatively limited and
the cover and/or density of these may be under-
sampled.

Recovery of Perennial Vegetation

The revegetation observed in the target sites
after 40 years is highly variable. The degree of
recovery as indicated by percentage similarity
values ranges from 24.3 to 98.9 percent for cover
and 14.8 to 96.7 percent for density (table 2).
Combined PS values range between 19.6 to 95.1
percent and CC values calculated from cover data
range from 0.10t0 0.99 (table 2). In our experience,
PS values less than 60 percent probably indicate
distinctly different assemblages. Using this
measure, the only target sites that are dissimilar
enough to be considered not recovered are B-3 and
B-5, both old Q1 units showing extreme erosion,
and K-2, the oldest unit measured in the Cerbat
Mountains (table 2). Alternatively, PS values 90
percent and above indicate virtualy identical
assemblages (Gauch, 1982). Therefore, B-1, a Q1
unit bearing an amost monospecific stand of
Larrea, and K-2y, an active aluvial channel
bearing an almost monospecific stand of Hymen-
oclea, can be considered fully recovered.

Geologic Age and Recovery

The relation between geomorphic units of
increasing age and the degree of recovery as
expressed by PS or CC valuesis presented in figure
2. The length of the horizontal bars in the diagram
reflects the certainty to which a geomorphic unit
can be classified according to Bull's (1974, 1991)
criteria and the correlation of units in the Dutch
Henry Flats and Cerbat Mountains made in this
study. In addition, the relative horizontal
positioning of the bars reflects dight differencesin
soil morphology. For example, although both B-1
and B-3 are designated as Q1 units, B-3 exhibits a
better developed calcic horizon (table 2) indicative
of greater age(Bachmanand Machete, 1977).
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Table 5. Response to disturbance of secondary species as indicated by statistically significant (p<0.05)
differences of cover and(or) density in and out of target sites. See Tables 3 and 4 for information on major

species and Appendix 2 for complete vegetation data.

SPECIES

TARGET SITE

PHYTOECOL OGICAL MEASURE?

SPECIES NOT RECOVERED FROM DISTURBANCE (-)

Fouquieria splendens B-5, C-0 CD
Krameria sp.? K-20 CD
Ephedra sp.3 B-3 CD
Agave deserti B-3 D

Yucca bacata K-20 CD
Sephanomeria pauciflora B-5 D

Acamptopappus sphaerocephalus B-3 CD
Baileya multiradiata B-5 CD
Argemone corymbosa B-5 CD
Sphaeralcea ambigua B-5 CD

SPECIES ENHANCED AFTER DISTURBANCE (+)

Lycium sp.* B-3 CD
Opuntia basilaris ® A-2,B-3 C

Cassia covesii B-2 D

Gutierrezia sarothrae ® K-20 CD
Opuntia whipplei K-20 CD
Eriogonum fasciculatum K-20 CD

SPECIES SHIFTING BEHAVIOR

Encelia farinosa
Coldenia canescens
Cercidium microphyllum ’

A-2(-); B-5(-); B-3(+)
B-5C(-); B-3(+)
B-5(-); A-2(+)

B-5, D; A-2 and B-3, CD
CD
B-5,D; A-2,CD

1D, hoth cover and density; C, cover only; D, density only.
2 See Tables 3 and 4. Krameria includes both K. parviflora and K. grayii.
3 Includes Ephedra viridis and E. trifurca.

4 ncludes Lycium andersonii and L. torreyi.

5 See Table 3. O. basilarisisthe only member of the genus found in the Mohave Mountains which responds positively to disturbance.

6 Includes asmall amount of Chrysothamnus paniculatus.

The strongest pattern in figure 3 indicates a
higher variability in the recovery of vegetation on
older surfaces than the recovery of vegetation on
younger surfaces. Thetarget siteson Q1 unitsin the
Mohave Mountains have combined PS values
ranging between 22.7 percent for B-5, 58.1 percent
for B-3, and 95.1 percent for B-1 (table 2). The
youngest geomorphic unit (Q3b) shows acombined
PS vaue of 69.0 percent (A-2) while relatively
older geomorphic units (Q3a/Q2 and Q2) plot
relatively close (fig. 3) with combined PS values of
86.0 and 75.6 percent (A-4 and B-2), respectively.

Thetarget siteson Dutch Henry Flatsand in the
Cerbat Mountains plot in similar positions as the
target sites in the Mohave Mountains with

7 See section on “Behavior of Perennial Species.”

geomorphic units of comparable age. Combined PS
values for C-0 and C-1 (78.7 and 81.7 percent,
respectively) are similar to the values generated
from other sites on or correlated with Q3a units (A-
4, 86.0 percent, and K-1, 75.4 percent).

A second pattern isindicated by the analysis of
thetarget sitesin the Cerbat M ountai nsindependent
of the other sites studied. The positions of the three
target sites (K series; fig. 3) suggest an inverse
relation between the degree of recovery and relative
geomorphic age. Thisrelation isalso evident, but to
alesser degree, in the positions of the target sitesin
the Mohave Mountains. The positions of A-2 and
B-1 on figure 2 reduce the certainty of this
assertion. The principa components analysis
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Figure 3. The amount of geomorphic development versus recovery of perennial vegetation
(as measured using percent similarity) for target sites in the Mohave and Cerbat
Mountains, western Arizona. The heavy lines represent a hypothetical recovery path.

diagram (fig. 4), generated with cover datafor sites
in the Mohave Mountains and Dutch Henry Flats,
further illustrates the pattern of increasing
variability with the type of geomorphic surface. The
variability of revegetation on Q1 units is much
greater than that on younger surfaces; for example,
al Q3 unitsplot very closetogether when compared
to other units. The variability of revegetation on Q1
units is partially explained by the high degree of
dissimilarity between undisturbed Q1 sites in
comparison with that between younger sites.
Compositions of predisturbance vegetation on Q1
units are also much more variable than other units.

DISCUSSION
Blading Disturbance and Vegetation
Response

Uniform blading of up to 0.2 m of surface

material from different geomorphic units has
resulted in different patterns of revegetation in the

Mojave Mountains, Dutch Henry Flats, and the
Cerbat Mountains. The patterns of vegetation
recovery can be interpreted both as responses to a
disturbance of varying severity aswell asthan asa
response to the age of geomorphic surfaces. Differ-
ences in soil characteristics, the life-history strat-
egies of the species present, and annual variations
in rainfall (Beatley, 1980) dictate the degree of
recovery manifested on each site. The soil charac-
teristics that affect the establishment, growth, and
reproduction of species vary from surface to
surface. These characteristics (table 6) will be
referred to as functional edaphic characteristics, as
opposed to edaphic characteristics with no signif-
icant bearing on revegetation. As noted in table 6,
functional edaphic characteristics are closely
related to the age of geomorphic surfaces.

The effects of disturbance on revegetation vary
according to the functional edaphic characteristics
of each unit and how those characteristics are
modified by the disturbance. For example, Q4
surfaces are composed of unweathered aluvium
receiving intermittent but fairly frequent pulses of
overland flow, which periodically removes existing
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Figure 4. Principal-components analysis for sites in the Mohave Mountains and Dutch
Henry Flats. The analysis is based on standardized cover data (see Appendix 2).

vegetation and rearranges and(or) replenishes the
seedbank. The functional geomorphic character-
istics of this unit are not significantly altered by
blading, and blading Q4 surfaces has effects similar
to those of natural floods. Conversely, A horizons
on Q3 units are richer in nutrients and contain a
better-established seedbank. Blading this unit,
consequently, will have a greater effect on revege-
tation than the blading of a Q4 unit.

The severity of disturbance during blading is
greater for Q2 units than for Q3 and Q4 units. The
functional geomorphic characteristic of Q2 units
that is most obvious is the presence of desert
pavement. Virtually no perennial speciesare ableto
grow in areas with well-developed pavements,
although the size of the interstices between surface
particles varies across atypical Q2 unit and patches
of vegetation occur. The vesicular A, horizon
controls infiltration to the extent that less moisture
penetrates these surfaces, with concomitant
decreases in perennial vegetation cover (McDonad
and others, 1995; McAuliffeand McDonald, 1995).
Theargillic horizon occurswithin aslittle as 80 mm

of the surface of Q2 surfaces and could be exposed
by blading. Blading could therefore have a signif-
icant positive effect on the moisture dynamics of
the disturbed surface, allowing greater infiltration
and presumably more growth of perennia
vegetation.

The effect of disturbance caused by blading on
Q1 units can vary over alarge range depending on
the thickness and nature of the material overlying
the petrocalcic horizon. Thicknesses can range
from 0-2.0 m, with surface exposures of laminar,
Stage 1V carbonate at some sites. Consequently,
blading may have as little effect as disrupting the
soil surface or as drastic an effect as complete
removal of the surface horizons.

A partial table of the expected effects of
blading on the functional edaphic characteristics of
each unit is presented in table 6. The table is
considered partial because of the lack of data
relating vegetation dynamics to geomorphology in
arid regions. The assumption of uniform blading
made throughout this study is difficult to justify.
Field evidence suggests that the bulldozer operator
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Table 6. A partial list of the possible effects of blading on selected functional edaphic characteristics in the

eastern Mojave Desert.

UNIT?
SURFACE DESIGNATION: Q4 Q3 Q2 Q1
FUNCTIONAL EDAPHIC PAVEMENT, A,,?
CHARACTERISTICS OF ACTIVE? A2 AND ARGILLIC PETROCALCIC?
GEOMORPHIC SURFACES CHANNEL HORIZON HORIZONS HORIZON
EXPECTED DISTURBANCE
SEVERITY
HORIZONSAT  NITROGENS nonetoslight®  severe dlight to very severe’”  noneto very severe®
THE SURFACE  CONTENT
SEEDBANK noneto slight®  severe slight to very severe’  noneto very severe®
ROOT-CROWNS*  nonetodight®  dlighttosevere  dlight to very severe’  noneto very severe®
INFILTRATION none dlight very severe noneto very severe®
RUNOFFAND none slight very severe noneto very severe®
EROSION
SUBSURFACE ROOQOTING none none severeto very severe  none to very severe®
HORIZONS LIMITATIONS
MOISTURE none none very severe noneto very severe®
RETENTION
THROUGHFLOW  none none dlight to very severe  noneto very severe®
EXPECTED RATE OF VEGETATION  fast slow slow to very slow fast to very slow
RECOVERY
OBSERVED PSVALUES® 92.6 69.0 - 86.0 19.6-74.9 22.7-951

1 Includes units correlated with the Mohave Mountain sequence.

2 Most important edaphic characteristics determining the unit's uniqueness in controlling revegetation.
3 See GarciaMoya and McKell (1970) for adiscussion of nitrogen in upper soil horizons.
4 Indicated range also takes into account the composition of pre-disturbance species likely to be growing on site. Assumes the majority of root-

crowns survive disturbance (observed on most target sites studied).
5 Combined PS value; see Table 2.

6 Range dependent on flood frequency.

7 Range dependent on density of pavement.

8 Range dependent on thickness of material overlying petrocalcic horizon.

ceased blading where vegetation was aready
absent. This appears to be the case on severa
patches of well-developed pavement on the surface
of B-2 and likely in severa areas of A-4. Incom-
plete blading changes the patch geometry and
therefore affects the proximity to new seed sources
as well as invalidating the assumption that the
vegetation was in fact disturbed.

Patterns of Recovery

Two patterns of recovery dictated by
geomorphic age are apparent for the study sites.
The pattern of increased variability on older
surfaces is the most obvious (fig. 3). The inverse

pattern, which suggests an inverse relation between
the degree of vegetation recovery and geomorphic
age, is less apparent (fig. 3). These patterns are in
accord with observations on the effects of blading
on functional edaphic characteristics.

The rate of recovery would be expected to be
most rapid on Q4 units because species occupying
sites in washes are adapted to relatively frequent
disturbance by flooding. In addition, desert washes
receive additional moisture, which presumably
could increasetherate of plant recovery. The active
channels in the Cebat Mountains (K-2y)
completely recovered in lessthan 42 years. Therate
of recovery would be expected to be dower for
units of increasing geomorphic age. Q3 units
develop an A, horizon, which presumably is richer

DISCUSSION 13



in organic material and nutrients, and the oldest Q3
units show development of desert pavement (table
1). Channel density decreases on each progres-
sively older unit, creating a more stable surface on
which species less tolerant of disturbance may
colonize as well as reducing the amount of water
running onto the surface to supplement rainfall.
Consequently, these surfaces have recovered less
than Q4 surfaces.

Q2 units are more stable, but increasing age is
associated with denser desert pavement, thicker A,
horizons, and better developed argillic and calcic
horizons, which retard root penetration and
decrease water infiltration. The variation would be
expected to be greater on Q2 unitsthan Q3 unitsdue
to the patchy nature of desert pavement and the
various mechanisms by which soil horizons
influence plant growth. Blading of K-2o resulted in
the removal of the A,, horizon and, in several areas,
exposure of the well-developed argillic horizon.
Apparently, the lack of recovery observed at K-20
(table 2) stems, in part, from the inability of some
speciesto grow on an exposed argillic horizon. The
blading of B-2 was discontinuous and consequently
the amount of recovery is greater than would be
expected if the surface had been uniformly
disturbed.

Thevariation intherate of recovery on Q1 units
was expected to be larger than that of any of the
units studied. The vegetation established on Q1
units is patchy, with the large spatia variation
related to whether loose substrate overlies the near-
surface petrocalcic horizons. Undisturbed units
with very little or no material overlying the petro-
calcic horizon bear virtually no vegetation and the
rate of recovery may be inapplicable. If vegetation
is established and blading totally removes loose
substrate, the site will not be expected to recover
until the substrate is reestablished. Blading a series
of Q1 units with increasingly thicker material
overlying the petrocalcic horizon should result in
sower rates of recovery, until the overlying
material isthick enough not to be alimiting factor.

Therecovery on site B-1 (table 2) is apparently
caused entirely by root-crown sprouting. Inter-
fluves between the Q1 ridges crossed by the target
site are dominated by Ambrosia. Based on the
response of this species el sewhere, Ambrosiawould
be expected to establish in the target site (Prose and
others, 1987); however, no individuals could be

found on the entire disturbed Q1 surface. Evidently,
blading left virtually every Larrea root-crown
intact, which effectively prevented colonization by
Ambrosia.

Successional Implications

The inverse pattern suggested in figure 3
implies successional convergence (Horn, 1975;
Webb and others, 1987, 1988), which indicates a
change of vegetation from sites with different
species compositions toward a uniform compo-
sition or regiona climax. Usualy, the term
succession is applied to species or assemblage
changes in wetter climates with completely biotic
control, but here the term is used to denote compo-
sitional change in a system where environmental
stress has strongly influenced diversity and niche
separation. Although the concept has biological
(Pickett, 1976) and statistical (Horn, 1975) support,
successional convergence has not been well
documented (Mclntosh, 1980) and would be
considered a somewhat unusual occurrence due to
the variety and complexity of the spatial and
temporal gradients that create any given landscape
mosaic (Whittaker and Levin, 1977).

The geomorphic surfaces discussed in this
paper are created by base-level changes caused by
climatic shifts and(or) tectonic activity (Wilshire
and Reneau, 1992). The events causing base-level
changes have occurred under different sets of
environmental conditions, and until more complete
paleoecological information is known, it is safe to
assume that the processes that created each unit are
relatively unique. Consequently, the sequence of
landform evolution implied by the geomorphic
units present in the Mohave Mountains cannot be
viewed as the result of an ongoing, continuous
process, and “convergence’ can only be used as a
term indicating the relation between vegetation
compositions of existing units rather than as aterm
indicating vegetation change through time.

However, successional convergence can be
investigated on units created during the Holocene
(Q3, Q4,; table 1), where climate and tectonic
activity can be assumed to be relatively constant
(however, see Cole and Webb, 1985). The
principal-components analysis (fig. 4) shows a
pattern among the younger units which indicates

14 RECOVERY OF PERENNIAL VEGETATION IN MILITARY TARGET SITES



successional convergence. The disturbed sites on
target sites C-0, A-2, and A4 plot extremely closeto
each other with respect to their controls. The target
sites on these Q3 unitswere scraped of their organic
horizons, resulting in surfaces functionally similar
to Q4 units. A convergent pattern emerges from
figure 3 if disturbed sites are considered similar to
undisturbed Q4 units. However, the assumption of
disturbance “resetting the successional clock back
to zero” (Whittaker and Levin, 1977, p. 132) is not
necessarily valid and the small number of sampled
sites precludes any definitive conclusions.

Species Revegetation Strategies

For this study, we hypothesized that uniform
disturbance on two geomorphically-distinct units
bearing similar compositions of vegetation may
result in different revegetation patterns. The data
generated by this study cannot be applied directly to
test this hypothesis. However, consideration of the
possible mechanisms leading to variability in
colonizing assemblages is heuristically valuable.
Two mechanisms — one physical and one
biological — can create variability in revegetation
among different-age geomorphic  surfaces.
Geomorphic surfaces have different sets of
functional geomorphic characteristics which are
effected differently by disturbance and élicit
different vegetation responses. Also, the variability
in revegetation occurs because one or more species
in the assemblage have a life-history strategy that
emphasizes variable response among surviving
individuals or incoming seedlings.

The biological mechanism influenced by life-
history strategies is supported by the occurrence of
species that show behavior shifts independent of
geomorphic surface (tables 4 and 5). Encelia
farinosa and Coldenia canescens show no pattern
of significant behavior shift according to differ-
ences in unit designation or the differences in
functional geomorphic characteristics within each
unit. There do appear to be intraspecific associa-
tions between Acamptopappus and Salazaria and
Encelia and Coldenia; both pairs significantly
change their responses in the same direction over
the same units. For example, both Acamptopappus
and Salazaria shift from a negative response on K-
20 to a positive response on K-1. These intraspe-

cific associations could be the result of similar
competitive-avoidance strategies or indicate
geomorphic control on species behavior.

The most striking exampl e of the importance of
life-history strategy to response to disturbance
irrespective of geomorphic unit is the ability of
several speciesto root-crown sprout. As previously
discussed, nearly monospecific stands of Larreain
and out of target site B-1 and the abundance of
Ambrosia nearby strongly suggests that surviving
root-crowns completely controlled the revegetation
of this site. Similar root-crown survival and subse-
gquent dominance may account for the apparent
positive response of Cercidiumto blading on target
site A-2. Several individuals of 1.4 m or more in
height occurred inside the target site and their large
size gave the species an inordinately high
dominance within the transects. Outside of the
target site, no plants occurred in the transects
although very large (4-5 m tall) individuals were
scattered throughout the area. Consequently, the
apparent behavior shift recorded for this species
(table 5) may be the result of undersampling.
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APPENDIX 1

Soil descriptions for geomorphic units underlying each target site. Soil pits were usually examined in
various locations around each site to confirm the continuity of geomorphic unit; descriptions were recorded
for the most representative soil of the site. Key to abbreviationsis given at end of appendix. Parent material

is discussed in text.

SITE A-2
Geomorphic surface: Q3b; Bar/swales, cut with active channels. Elevation: 463 m
Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOg Stage
A 0-10, a kg, Is 10YR5/4 lo SO, po wv es
(10YR3/4)
Cl 10-20, c kg, d 10Y R6/4 o SS, po wsbk ev; Stage |
(10YR4/4)
Cc2 20-82, ¢ kg, Is 10YR6/4 so SO, po sg ev; Stage |
(10YR4/4)
C3 82-117+ K, s 10YR6/4 so S0, po ev; Stage|
g (10YR4/4) P % «
SITE A-4
Geomorphic Surface: Q3a over Q2; slight bar/swale on terrace 1-2 m above active channel. Elevation: 597 m
Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOg Stage
A 0-10, a kg, d 10YR6/4 so Ss, po wv es
(10YRA4/4)
C1 10-45, g kg, Is 10YR6/3 o SS, po m ev; Stage |
(10YRA4/3)
Cc2 45-70,a, W kg, Is 10YR6/3 S0, po m es, Stage |
(10YR4/3)
I1C3 60-130+ kg, Is 8YR6/4 sh Ss, po wsbk ev; Stage |
(8YRA4/4)
Note: Uncomfortably overlies buried soil indicated by awell-developed argillic or petrocalcic horizon at depth of 20-60 cm.
SITE B-1
Geomorphic Surface: Q1; isolated ridgetop 5+m above active channel. Elevation: 518 m
Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCO; Stage
A 0-5a kg, d 10YR6/3 so Ss, po wpl ev
(10YR3/3)
C1 5-28, c kg, d 10YR7/3 o Ss, po wsbk ev
(10YR4/3)
c2 28-50, ¢ kg, d 10YR6/3 6] S0, po wsbk ev; Stagell
(10YR3/3)
C3 50-70+ kg, o NA vh NA m ev; Stage |1l
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SITE B-2

Geomorphic Surface: Q2a; well-varnished pavement on flat ridge 3+ m above active channel. Elevation: 646 m

Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOgj Stage
A 0-8,a d 7.5YR5/4 so ps, ss wpl es
(7.5YR3/4)
B 8-28, c kg, scl 5YR5/4 o S, ps sbk es, Stage |l
(5YR3/4)
BC 28-52, a kg, sl 7.5YR5/4 so s p sbk ev; Stagelll
(7.5YR4/6)
C 52-60+ NA NA vh NA m ev; Stage |1l
(NA)
SITE B-3
Geomorphic Surface: Q1; ridgetop 4+ m above active channel. Elevation: 695 m
Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOj Stage
A 0-5,¢ gd 10YR6/4 so Ss, po pl, v ev
(10YR4/4)
C1l 5-35,d gd 10Y R6/4 o Ss, ps sbk ev; Stage |
(10YRA4/4)
Cc2 35-60 gs 10Y R6/4 sh Ss, ps sbk ev; eroded
(10YRA4/4) Stage IV
C3 60+ NA NA vh NA lam ev; Stage IV
(NA)
Note: Site has a highly variable, eroded petrocalcic horizon.
SITE B-5
Geomorphic Surface: Q1; terrace 10+ m above active channel. Elevation: 585 m
Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOg; Stage
BC 0-43, a gl NA sh ps, sh? sbk ev
C 43+ NA NA vh NA lam ev; Stage IV

Note: Site represents an eroded soil with Stage IV petrocalcic horizon. Highly variable BC horizon contains blocks of eroded carbonate.
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SITE C-0

Geomorphic Surface: Intermittently active bajada 10-12 km from mountain front. Elevation: 475 m

Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOg; Stage
A 0-8, ¢ sl 10YR6/4 lo SS, po pl, wv es
NA
Cc1 8-29, ¢ Is 7.5&;&6/4 Ss, po wsbk ev; Stage |
Cc2 29-61, 9 Is 7.5%56/4 S0, po wsbk ev; Stage -1l
C3 61-125+ Is 7.5YR6/4 lo SO, po m es; variable
(NA)
SITE C-1

Geomorphic Surface: Intermittently active bajada 10-12 km from mountain front. Elevation: 524 m

Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOgj Stage
A 0-11,c gd 10YR5/4 lo Ss, po pl €0
(10YR3/4)
C1 11-30, g gls 7.5YR5/4 Ss, po wsbk [Se)
(7.5YR4/4)
C2 30-75,9 als 7.5YR5/4 Ss, po wsbk es-ev; Stage |
(7.5YR4/4)
C3 75-110, c gls 7.5YR6/4 SO, po wsbk ev; Stagell
(7.5YR5/4)
Cc4 110-130+ gls 7.5YR5/4 sh-h S0, po sbk €o-ev; possible
(NA) gypsum horizon
SITE K-1

Geomorphic Surface: Intermittently active bajada 1 km from mountain front. Elevation: 1048 m

Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOg; Stage
A 0-8, a gls 7.5YR5/4 lo SO, po m es

(7.5YR3/4)

AB 8-30, g gd 7.5YR5/4 sh SO, ps wsbk ev; Stage |
(7.5YR4/4)

BA 3041, c gd 7.5YR5/4 sh Ss, ps wsbk ev; Stagell
(7.5YR4/4)

B 41-63,9 gsl-scl 5YR4/6 sh SS, ps sbk ev; Stagelll
(5YR3/4)

C 63-130+ gd 10YR7/4 h Ss, po sbk ev; Stagelll
(10YR5/4)
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SITE K-2y

Geomorphic Surface: Active alluvial flood plain lined with terraces. Elevation: 1058

Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOj; Stage
A 0-8,c gls 10Y R5/4 lo S0, po m [So)
(10YRA4/4)
Cc1 8-62, g gls 10YR5/4 so SO, po sg €0
(10YR4/4)
Cc2 62-143+ gls 10(\’(\&5))/4 so SO, po wsbk e, Weak Stage |
SITE K-20
Geomorphic Surface: Isolated alluvial flood plain. Elevation: 1061
Depth/ Color Consistency Reaction/
Horizon Boundary Texture Dry (Moist) Dry Wet Structure CaCOj; Stage
A 0-10, a d NA 6] po, ss sbk e
(10YR3/4)
BA 10-20, ¢ scl NA sh s p sbk €0
(5YR3/4)
B 20-60, scl 2.5YR3/4 vh S, r €0
9 ¢ (2.5YR4/4) P P
BC 60-82, g d NA h Ss, po sbk eo-ev; Stagel
(2.5YR3/4)
C1 82-100, ¢ Is NA sh S0, po wsbk eo-ev; Stage |
(2.5YR3/4)
Cc2 100-130 gls NA so SO, po sg es-ev; Stage |
(5YR5/4)
C3 130-160+ Is NA lo d, po m €0
(7.5YR4/4)
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KEY TO APPENDIX |

BOUNDARY TEXTURE
a-abrupt s-sand gsl-gravelly sandy loam
c-Clear Is-loamy sand gls-gravelly loamy sand
g-gradual sl-sandy loam gl-gravelly loam
d-diffuse I-loam g-gravel
w-wavy scl-sandy clay loam sg-sandy gravel

gscl-gravelly sandy clay loam

kg-cobbly gravel

CONSISTENCY

DRY WET

lo-loose so-non-sticky po-non-plastic
So-soft ss-dightly sticky ps-dightly plastic
sh-dlightly hard s-sticky p-plastic
h-hard
vh-very hard

STRUCTURE REACTION
m-massive eo-no effervescence
sg-single grained e-dightly effervescent
wv-weakly vesicular es-strongly effervescent
gr-granular ev-violently effervescent
pl-platy
wpl-wesakly platy
pr-prismatic
sbk-subangular blocky
wsbk-weakly subangular blocky
lam-laminar

For detailed information on the nomenclature used see Soil Survey Staff (1975).
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	*
	65
	–
	535
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	300
	*
	–
	–
	–
	–
	50
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	0.0
	*
	285
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	2235
	2115
	C
	*
	185
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	100
	65
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	35
	5535
	5285
	5200
	5250
	915
	850
	1635
	*
	765
	7900
	*
	4950
	265
	*
	5800
	4785
	4215
	5300
	*
	36.85
	65.3
	87.5
	91.2
	74.6
	60.3
	16.8
	82.3
	86.1
	–
	0.2
	–
	–
	0.0
	*
	2.5
	–
	50
	–
	–
	0.0
	*
	1200
	–
	0.1
	–
	0.4
	–
	–
	–
	C
	–
	50
	–
	–
	0.1
	0.1
	–
	–
	–
	0.1
	100
	50
	–
	–
	–
	250
	1.0
	0.4
	0.1
	0.3
	2.3
	*
	5.5
	750
	*
	100
	–
	100
	250
	*
	975
	–
	–
	0.2
	1.7
	–
	–
	–
	–
	150
	50
	–
	–
	–
	–
	–
	P
	–
	–
	–
	–
	–
	50
	–
	–
	P
	–
	–
	0.1
	–
	–
	50
	–
	–
	50
	–
	–
	–
	P
	–
	0.6
	0.0
	*
	4.5
	–
	50
	–
	50
	0.0
	*
	325
	–
	–
	0.2
	–
	1.0
	*
	P
	–
	–
	150
	–
	2000
	*
	25
	–
	–
	–
	–
	–
	P
	–
	–
	–
	–
	–
	50
	–
	–
	–
	–
	0.0
	*
	1.1
	–
	–
	–
	–
	0.0
	*
	200
	26.2
	*
	17.6
	0.1
	0.2
	0.5
	*
	4.6
	11100
	*
	3700
	100
	50
	450
	*
	3225
	2.9
	4.9
	20.5
	22.6
	2.6
	*
	–
	4700
	4050
	10500
	11750
	950
	*
	–
	–
	–
	–
	–
	6.7
	*
	0.1
	–
	–
	–
	–
	12250
	*
	200
	1.1
	1.4
	–
	–
	0.4
	0.2
	1900
	1800
	–
	–
	300
	100
	–
	–
	–
	–
	0.1
	P
	–
	–
	–
	–
	75
	50
	–
	–
	–
	–
	P
	–
	–
	–
	–
	–
	25
	–
	–
	–
	–
	–
	P
	–
	–
	–
	–
	–
	25
	–
	0.2
	–
	–
	–
	–
	–
	100
	–
	–
	–
	–
	–
	–
	–
	–
	–
	1.4
	*
	0.6
	–
	–
	–
	–
	1375
	*
	225
	0.2
	0.1
	–
	–
	–
	–
	1350
	400
	–
	–
	–
	–
	2.7
	*
	7.9
	–
	–
	0.5
	*
	9.3
	3200
	*
	6000
	–
	–
	1225
	*
	5575
	34.5
	32.8
	21.3
	*
	26.1
	15.6
	*
	28.5
	35850
	*
	24000
	10950
	12150
	19350
	*
	12250
	74.9
	88.5
	24.3
	75.9
	96.7
	14.8



