text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
 
Materials Research (DMR)
design element
DMR Home
About DMR
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Workshops and Reports
Focused Research Groups
Research and Education Highlights
See Additional DMR Resources
View DMR Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional DMR Resources
DMR Proposal Submission Deadline
Broadening Participation
Professional Societies
Materials Websites
NSF Guide to Proposal Writing
Links for Kids
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 08-128
The Lightness of Electrons in a Twisting Metal Crystal

Watching a crystal of bismuth metal in a powerful magnetic field, researchers discover new states of electrons that behave like light

Photo of torque cantilever which measures magnetic property of bismuth in intense magnetic fields.

This torque cantilever is used to measure magnetic property of bismuth in intense magnetic fields.
Credit and Larger Version

July 25, 2008

A team of researchers, at Princeton University's Materials Research Science and Engineering Center and from the Universities of Michigan and Florida, has observed electrons moving through a crystal of bismuth metal behaving like light.

This discovery, supported by the National Science Foundation (NSF) and detailed in today's edition of the journal Science, could lead to new kinds of electronic devices.

Electrons, or the particles of electricity, fly through space like tiny baseballs. Alternatively, when an electron speeds between a crystal's periodic arrangement of atoms it behaves very differently. The fundamental equations that describe its motion in the crystal are very different from those of a free-flying baseball. For example, in bismuth, the fundamental equations of electron motion resemble those that describe the behavior of light. Although the electrons whirl about the crystal slower than at the speed of light, the electrons behave as if they are without mass like photons, the tiniest unit of light.

Over a decade ago, theoretical physicists supported by NSF studied electrons confined to artificial layered structures made of semiconductors--the stuff of which transistors are made of. They predicted that new kinds of electronic matter governed by the rules of quantum mechanics would emerge from the electrons in different layers coordinating their motions. Scientists hypothesized that bismuth crystals should also exhibit analogous electronic states.

The Princeton group, led by physics professor N. Phuan Ong, fixed a crystal of bismuth onto a flexing beam, or cantilever, and then placed this apparatus in a high magnetic field created at the NSF National High Magnetic Field Laboratory, which can generate magnetic fields that are more than a million times stronger than the earth's faint magnetic field.

Under such enormous magnetic fields, the cantilever twists. The way it twists tells the Princeton researchers about the subtle new kind of matter in the bismuth crystal.

In a single crystal of bismuth, electrons are often confined to three valleys in a complex abstract landscape that scientists use to represent an electron's energy in the crystalline structure. Through careful study of the twisting cantilever, they observed a transformation from a state where the electrons prefer to occupy only one valley to a state in which the electrons share their time among all the valleys in a dance choreographed by the fundamental rules of quantum mechanics.

"This is exciting because this was predicted but never shown before, and it may eventually lead to new paradigms in computing and electronics,"said Thomas Rieker, NSF program director for materials research center.

With this work, the theory of electrodynamics suggests a rich landscape of electronic states of semiconductors, and the Princeton researchers are continuing their adventure. Someday, these newly discovered electronic states of matter may enable powerful new electronic devices that exploit the principles of quantum mechanics to compute and communicate. For now we can marvel at the subtle beauty of nature that lives in a universe of electrons that lies beneath the shiny skin of a metal crystal.

-NSF-

Media Contacts
Dana W. Cruikshank, NSF (703) 292-8070 dcruiksh@nsf.gov

Program Contacts
Thomas P. Rieker, NSF (703) 292-4914 trieker@nsf.gov

Related Websites
Princeton University's Institute for the Science and Technology of Materials (PRISM): http://prism.princeton.edu/faculty_direc.html
NSF's Division of Materials Research (DMR): http://www.nsf.gov/div/index.jsp?div=DMR

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

The cover of the July 25, 2008 edition of Science featuring a pink ribbon.
The Princeton team's research findings appear in the July 25, 2008 edition of Science.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Mathematical & Physical Sciences (MPS)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
July 28, 2008
Text Only


Last Updated: July 28, 2008