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NOMENCLATURE

A area (cross sectional flow area)
o sonic velocity
cp specific heat at constant pressure
c, specific heat at constant volume
CS control surface
cv control volume
g local gravitational constant
1b_ ft kg m
g 32174 —M = 7
‘ b, s> N2
.f.‘
h specific enthalpy
ft']bf Nm
J mechanical-thermal energy equivalent | 778.26 BTy =1 T
o

k specific heat ratio: k = EP—

v
Kys Ky as defined in text (Equations 24 and 26)
m mass flow rate
M mass
p pressure
Q rate of total heat input
R gas constant (ratio of universal gas constant to molecular weight of gas;

kJ ft 1bf
Rpropane = 0.18855 EEK-= 35.04 B R

S specific entropy
t time

vii



t time duration from start of blow down to the instant at which

choked flow ceases

T temperature

u specific internal energy

v specific volume

v total volume

v total velocity

Z compressibility factor

o density

asterisk* refers to quantities at critical section when choked flow exists

asterisk0 refers to properties in the ideal gas state

subscript0 refers to isentropic stagnation conditions
subscriptoi refers to initial stagnation conditions

subscript refers to atmospheric (ambient) conditions

atm

viii



I. Introduction

The pressure relief capability of safety valves is under investigation at
the University of Maryland under sponsorship of the Department of Transportation.
The completed study will provide industry and the Department of Transportation
with accurate valve sizing equations, ﬁass flow charts and tables for propane,
propylene, n-butane, ethylene, anhydrous ammonia, butadiene, chlorine, vinyl
chloride and several other commodities generally shipped in rail tank cars,

This report discusses the flow of gases and vapors from a rail tank car
(or any other pressure vessel) to the atmosphere during the final phase of the
venting process, when only vapor is left in the tank. Two major points are
addressed, namely, the non-steady flow due to a finite pressure reéérvoir, and
the effect on the blow-down process if the vapor is not assumed to be a perfect
or ideal gas (if a more complex equation of state is selected to describe the
thermodynamic behavior of the vapor).

The analytical non-steady flow equations given in CHaptef IIT are valid
for any vapors or gases which exhibit perfect gas behavior. For more complex
equations of state an analytical solution to the blow-down process does not
exist in closed form and the problem must be solved numerically, as is Shown
in Chapter IV. The question of how predicted mass flow rates will differ for
vapor flow when, instead of the perfect gas equation, more realistic and
complex equations of state are applied, is shown in Chapter V. The particular
example chosen is the flow of propane vapor from a DOT 112 type rail tank car,
starting at the instant at which there is no more liquid propane in the tank,
The vapor was assumed to flow through a safety valve which has a critical area
of 7.86 square inches and a valve coefficient for vapor flow of 0.88; the
valve was assumed to stay fully open during the entire flow period. The

initial pressure in the tank car was 300 psia and the initial temperature



170°F.  The various equations of state which are compared to each other in

this example are: the perfect gas equation with different compressibility

factors (1.000, 0.700 and 0.7567), the ideal gas equation

(specific heat

ratios are not constant), Van der Waal's equation, the Benedict-Wehb-Rubin

equation and Starling's equation.

II. Steady Flow Equations for Perfect Gases

The energy equation for a system with a control volume CV and a control

surface CS ijs

Q- Tu=2 u+V2 dv + (u+ vV )”-K 1
- ot 9z |P PV.+ 35—+ 9z )pV-dA (1)
c Vv C S

where the work rate term N includes shaft work, shear work and all other work.

Assyming steady state during the flow process and negligible heat transfer and

work input, equation (1) reduces to

v -
u+ pv + 7t 9z | pV-dA = 0.
C S

For uniform flow, equation (2) can be rewritten as
v22 V]Z
h2 + —E—-+ 92, p2V2A2 - h] + —ET'+ gz] p1V]A]
and the continuity equation (steady state) becomes

m = p]V]A] = ;)2V2A2 = pVA

=0 (3)

b



For gas flow the changes in potential energy due to change in elevation are
negligible and equations (3) and (4) yield the general, steady state velocity

equation

v=V21 I <h0—h>

The constants J and 9 which must be introduced when the customary éngineering

units are used have the following values:

ft 1bf . Nm

J=778.26 —
Btu J

and

Equation (5) is the basic equation for the velocity of the flowing medium
which is brought from the stagnation state (velocity equals zero) given by
the stagnation enthalpy h0 to the velocity V at which point the cdrresponding
enthalpy has the value h.

In order to derive expressions for the masé f]bw rate of a medium flowing
from a given upstream state to a given downstream state, the equation of state
of the flowing medium must be known or prescribed and the thermodynamic flow
process must be known or prescribed. This report discusses the flow of gases.
The equation of state assumed in this chapter is the equation of state for an

ideal gas,

pv = RT.



Furthermore, assuming the gas to be calorically perfect, i.e., the specific

heats are constant,

(ho—h> cp(TQ-T) , (7)
(Cp__cv)] (8)

x
1]

and

2 (9)
k = 9)
CV

Equation (5) becomes

V- \[zgc(k—_"T) R T, (1 L) (10),
0

In order to relate the properties of the stagnation state to the properties at

any flow condition the thermodynamic process which governs the flow must be
prescribed. In the flow of gases, viscous losses due to shear play a minor

role in short flow sections, i.e. the loss in stagnation pressure due to

friction is very small. 1In the absence of shock waves or major flow restrictions

the isentropic. flow assumption is valid, so that
k-1
%:(L)k (11)
0 Po

and

=
—_
—
N
o

(%)

FP
S



With the isentropic relationship given by equation (11), equation (10)

can be rewritten

v=\/({—'§—> gCRT0[1-<g;') k ] (13).

The mass flow rate m can now be derived from the continuity equation

(equation (14)), and equation (13) using the ideal gas equation (6) and the

isentropic relationship given by equation (12). The mass flow rate is

2 k+1 ‘
Bep 0 2k | /b Nk _ /p_\ K (14)
7R k=T 1 \P P
IR ; 0 0 :

where the compressibility factor Z was introduced to account for real gas effects

according to the relation
pv = ZRT (15).

Equation (14) gives the mass flow rate of a gas from a reservoir (e.g.
a pressure vessel) in which the temperature and pressure are To and Po .
respective]y; The pressure p in equation (15) is the static pressure at that
downstream section at which the cross sectional area is A. Suppose the flow
problem to be analyzed is that of a pressure vessel from which a gas flows
to the atmosphere through a converging nozzle. The static pressure at different
sections of the nozzle will decrease in the flow direction. At the nozzle exit
a free jet will form. In the flow example discussed here, the static pressure
is then the atmospheric pressure and the area A is the nozzle exit area.

Equation (14) shows that for a given stagnation temperature T0 and



stagnation pressure Py the mass flow rate will increase with decreasing down-
stream pressure. This is, however, only possible as Tong as the flow velocity
at the nozzle throat is less than sonic. Once sonic flow exists at the throat
of the nozzle a decrease in receiver pressure will no Tonger influence the
mass flow rate. The nozzle is said to be choked; for choked flow to exist,

the pressure in the reservoir must be
*

Po 2 (16).

2 \k-T
k+1

From the isentropic relationships (11) and (12) it follows that

T -2 (17)
To k+1
and
* 2 k]—l
b= (— i (18).
0 k+1 )

The mass flow rate equation for choked flow follows directly from equation (14)
and expression (16) where the equality sign is used in the latter expressjon; the

mass flow rate is



Equation (19) is the mass flow rate equation for choked gas flow; it
can be used in predicting venting rates from pressure vessels as long as 1,
the condition given by equation (16) is satisfied; 2, the gas behaves like a
perfect gas; 3, no heat transfer takes place; 4, the vessel is so large that
during the time in which the flow is considered, the stagnation temperature T R
and the stagnation pressure P, stay constant; and 5, the flow losses are
negligible. Choked flow will exist as long as expression (16) is satisfied.
For choked flow from a pressure vessel to the atmosphere through holes, valves

*
or converging nozzles the atmospheric pressure can be substituted for p 1in (16).

ITI. Non-Steady Flow Equations for Perfect Gases

In most blow-down 1ow processes from pressure Yesse]s the pressure in the
vessel is sufficiently high so that choked flow exists during most of the blow-
down period. The governing mass flow equation is therefore equation (19).
However, pressure vessels are finite in size, i.e. the Pressure in the vessel
will drop as a function of time and consequently the mass flow rate is also a
function of time. 1In this chapter the non-steady mass flow equation will be
derived.

Let the volume of the vessel be denoted by V , then the mass inside the

vessel at any instant is
M(t) = Vo (t) (20).

Taking the derivative with respect to time yields

m(t) = - u—dEtQ (21)

since the volume ¢ is constant. The minus sign was included because mass outflow



is considered, i.e. the stagnation density decreases with time. Writing

equation (21) in the form

mdt = - Vdo, (22)

and introducing equations (19), (15), (11) and (12) yields

= - p dp (23) |

where

s
_ 2 k=T
K '\/k }_kﬂf (24).

Integration of equation (23) yields

2
oy (t) A" Ks V T K
= t+ 1 (25)
; v

pO'l

where

k+l
-1

- k-1 2 \k : '

The subscripts oi refer to the stagnation condition at t = 0 i.e. the stagnation

condition before the flow started.



Writing the isentropic relationships in the form

and

T, (t) (p (t) ) %L .
0 0 k

= (28)
Toi Poi ;)

the time-dependent mass flow rate for choked flow is obtained from equation (19)

and (25). The result is
m(t) = —0of _ Ky [F (t)] k-1 (29)
where

F(t) =

(30).

A KA /T
—i_ﬂ t + 1]
v

The time-dependent stagnation pressure, temperature and density in the tank follow

directly from equations (25), (27) and (28);

Py (£) = Py [F (t)] “ (31)



T (1) =T, [F <t)] ’ | (32)

and

2
Poi [F (t)]k'] (33).

n

p. (t)

The time tC until choking stops during blow down to the atmosphere is
derived from equation (31) and the relationship (16) where the equal sign
is used and p* = Patm® The Tatter equality is true for converging choked nozzles.

After some algebraic manipulation the result in the following form is obtained.

LI k-1
b= (kf—] k-1 <ﬂ> 2k (34)
A K3 v Toi Patm

The mass M (t) which is in the tank at any time t can be derived by inte-

grating equation (29) or by using equation (33). If the mass of the gas

initially in the tank is denoted by Mi then

2
M (t) = h, [F (t)]k,* - (35).

The non-steady mass flow rate during choked flow from a finite pressure
reservoir to the atmosphere and the accompanying non-steady decreases in stag-
nation pressure, stagnation temperature and stagnation density are given by
equations (29), (31), (32) and (33) respectively. It was assumed that the gas
is a calorically and thermally perfect gas and that the gas undergoes only
isentropic processes. When a more complex and generally more realistic equation

of state is assumed rather than the perfect gas equation, a closed form analytical

10



solution Tor the non-steady mass flow rate is not possible and the problem must

be solved numerically,

IvV. Numerical, Non-Steady Flow Calculations for Real Gases

The relationships developed in the previous two chapters are valid for
any gas which behaves like a perfect gas. Unfortunately, for certain flow
situations, such approximations are not valid, and more complex equations of
state, such as the Van der Waal's or Starling's must be used. IIn general it
1§ not possible to derive analytically equations in closed form fPr mass flow
rates; hence numerical methods must be employed.

Consider a gas which satisfies the following equation of state;

p=p(p, T)

It is possible, using equation (36) and caloric information (such as
ideal gas enthalpy), to derive expressions for other thermodynamic properties

of interest in flow calculations (enthalpy, entropy and sonic velocity) as

functions of density and temperature. Sallet and Palmer [1] have done this for

Starling's equation of state; these relations and those for a Van der Waal's
gas are given in the appendix.

Utilizing all previously stated assumptions about the flow situation,
and replacing the perfect gas relations with those derived from equation (36)
for the real gas, yields the following set of equations for the non-steady,
choked flow problem;

mass flow rate:

11

(36).



energy:

e e ™|
- - ¢ P » I _ =
continuity:
. d . :
nt) = -y | (39)
dt : .

isentropic flow:
* *
S(D,T)=s.=s(po1.,To].) (40)

and isentropic expansion in vessel:

Soi T ° (po’ To) | (41)

where all densities and temperatures are evaluated at time t.

The condition for existence of choked flow, equation (16), becomes

*

*
p(p,T) >Poim

The flow equations may be solved numerically by the following procedure.
The stagnation state of the gas in the vessel is assumed to be known at time t.
The exit (starred) state is then found by solving equations (38) (energy) and
(40) (isentropic flow) simultaneously for p* and T* at time t. From equation
(37), the mass f]ow rate is calculated. Equation (39) (continuity equation),

written in forward, finite difference form as

po (t*+at) = o (t) - m (1) & |

12



is then used to give the density of the gas in the vessel at time t + At. The
new vessel temperature, To(t + At), is found by solving equation (41)
(isentropic expansion). This procedure is repeated for each time step until

the fJow is no longer choked; i.e.

% *

P (o T) <Pyn

Convergence of the forward time differencing is checked by decreasing the time
step, At, and comparing the time at which the choked flow condition is no longer

satisfied.

V. Blow-Down of Propane Vapor from a Rail Tank Car

In order to simulate the blow-down of propane vapor from a rail tank car,
the methods and equations developed iﬁ the previous two chapters were used. °
The tank car was treated as a simple vessel with the following properties;

Volume = 127.43 m® (4500 t3),

2 2 2

Critical Valve Area = 0.507 x 10™° m“ (7.86 in“),

Valve Coefficient = 0.88 and hence

Effective Valve Area = 0.446 x 1072 2 (6.92 inz).

When the blow-down begins, the pressure of the propane in the tank car was
assumed to be 2.068 MPa (300 psia) and its temperature 350° K (170° F).

Three sets of blow-down calculations were made assuming perfect gas behavior
(with k = 1.14), each using a different compressibility factor, Z. The three
values of Z used were 1.0, 0.7 and 0.7567. The last value was determined as the
compressibility factor predicted by Starling's equation of state at the initial
stagnation conditions.

Four sets of calculations were made with various approximatiaons to the

real gas behavior. The first assumed ideal gas behavijor, but did not assume

13



constant specific heats. The other three calculations were for Van der Waal's,
Starling's and Benedict-Webb-Rubin (BWR) equation of state. The results for the
BWR equation were virtually identical to those using Starling's equation, and
hence, will not be presented. The coefficients for the BWR equation were taken
from ref. 2, those for Van der Waal's from ref. 3, and the coefficients for
Starling's equation (as well as expressions for h° and sd), were téken from
ref. 4. | '

The results of the blow-down simulations are presented in Figures T th;ough
3. Figure 1 gives the pressure in the pressure vessel (stagnation pressure) as
a function of time when several different equatioﬁs of state are used to describe
the thremodynamic behaviqr of the propane vapor. Figure 2 compares the predicted
mass flow rates at various times, after the start of venting when the different
equations of state for propane vapor are used, while Figure 3 compares. the mass
of propane vapor which is predicted to be left in the vessel, again for various

equations of state.

VI. Discussion

This article discusses the non-steady venting of gases and vapors from
pressure vessels to the atmosphere. Two questions are addressed, namely how
does the finite size of the pressure vessel infiuence the rate of pressure, tem-
perature, density and mass flow decrease and how does the choice of equation
of state influence these predicted results. | |

The first question was treated using a perfect gas undergoing %sentropic
expansion. The flow process was restricted to choked flow, as only choked
flow is of interest when the venting of pressure vessels is discussed. The'
results are shown in equations (29) through (33). It is seen that the initial

mass flow rate, the initial stagnation preséures, temperatures and densities

14



must be multiplied with a time dependent function [F (t)] ¢ where C is either a
constant determined by the specific heat constants of the gas or a numerical
constant. The function F (t) includes terms for the vesse] volume V and the
venting area A*. In the non-steady flow example discussed in chapter V

and shown in Figures 1 through 3, the calculations in which the propane vapor is
expressed by a perfect gas equation can be performed either by using the numerical
methoq indicated qr by simply making use of the explicit solutions given in
chaptey III.

The second question is of importance because currently used methods in
sizing pressure relief valves for vessels which contain liquified gases assume
that the valve remains in the vapor space of the vessel and that the fluid
which f]ows‘through the valve can be modeled as a perfect gas with a suitable
compressibility factor. This investigation showed that this assumption is indeed
valid and fully sufficient for the flow of propane vapor, under conditions nor-
mally encountered in the storage and transport of LPG provided that the
compressibility factor is properly selected. Starling's equation of state is
reputed to be the most accurate equation of state for propane in the literature
to date. It is seen from Figures 1 and 3 that the vessel pressure and the mass
of vapor left in the tank as predicted when using Starling's equation agree
well with the non-steady pressure and mass predictions when the perfect gas
equatiqn with a compressibility factor of 0.7567 is employed. The use of the
perfect gas equation, however, is much simpler as the explicit solutions devel-
oped in chapter III can be used and the use of the computer is not necessary.
While calculations with the perfect gas equation with Z = 0.7567 slightly
underestimates the stagnation pressures, the mass flow rates are somewhat over-
estimated as seen in Figure 2.

The compressibility factor of Z = 0.7567 was calculated from Starling's

15



equation using the given initial stagnation conditions. It is of interest to
see how the predicted non-steady pressure and mass flow rates differ when a
compressibility factor is chosen which is given in standard thermodynamic texts
such as reference 3. This is shown in Figures 1 to 3 by the curve denoted
"Perfect Gas, Z = 0.7." Other thermodynamic equations of state which appeared
to be 6f interest and which were used in the flow predictions shown in Figures 1
through 3 were the Benedict-Webb-Rubin equation (all results coincided with
results based on Starling's equation), the Van der Waal's equation, the perfect

gas equation with Z = 1.0 and the ideal gas equation.
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Figure 1: Stagnation pressure as a function of time as

predicted using various equations of state
for propane vapor.
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Appendix

Van der Waal's Equation of State:

2
P (F), T) = -‘&RT_‘ ap

1 - bp

_ _RT _ _ 0
h (os T) = 755 = RT - 2ap + h" (T)

- pRT . 0 T
s (p, T) RTn1_bp s- (T)

_ dh® (T
CV (p, T) = - R+ T
R2
C o (ps Ty =C, (o, T) - 5 T
P 2ap (1 - bp)® - RT
T ' =
C (p, T) |RT + 2ap (1 - bp) '
c (p, T) cp 0.1 >
v P (1 - bp)

Starling's Equation of State:

_ 2 3 4 2
P (p, T) = pRT + (BORT - Ay - C /T +D /T - E /T ) P

6

+

( bRT - a - d/T) p3 +a (a+d/T)p

co® (1 + YOZ) exp (— YOZ) /T

+
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h (p, T)

s {p, T)

c, (p, T)

2 3 4
(BORT - ZAO - 4CO/T + 5D0/T - 6EO/T > P

%— (2 bRT - 3a - 4d/T) o2

+ ;—a (6a + 7d/T) p5

+c[3- (3+';'Y02"Y204) exp (-sz)] /\(T2
+ h® (T)

= - R 1In (p RT)

3 4 5
- (BOR + ZCO/T - 3DO/T + 4EO/T ) p

N —

5

+C [1 - (1 —%sz -Y204> exp ( -sz )]/YT2

+ 59 ()

(bR + d/T2> p2 s 1 Otdps/T2

3 4 5
- R+ (GCO/T - ]ZDO/T + ZOEO/T ) o

p24/1% - 2 ag®asr?

6¢C [1 - (1 +;—Y02> exp ('sz)]/YT:;

dh® (T
dt

+
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where

and

c (p, T)

aT

i 3P

"

+

oP

-

(@]

p (ps T)

o=

]

3P
3

2 3 4
RT + 2 < BORT - Ao - CO/T + DO/T - EO/T' ) o

302 (bRT - a - d/T)

+ 6a05 (a + d/T)

+

cp2 [3 + 3yp2 - 2Y204] exp (.- sz )/T2

3 4 5 2
oR + (BOR + 2C0/T - 3DO/T + 4EO/T ) o

(bR + d/T2> 03 - ado®/7°

2cp2 ( 1+ ypz> exp ( - sz )/T3
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