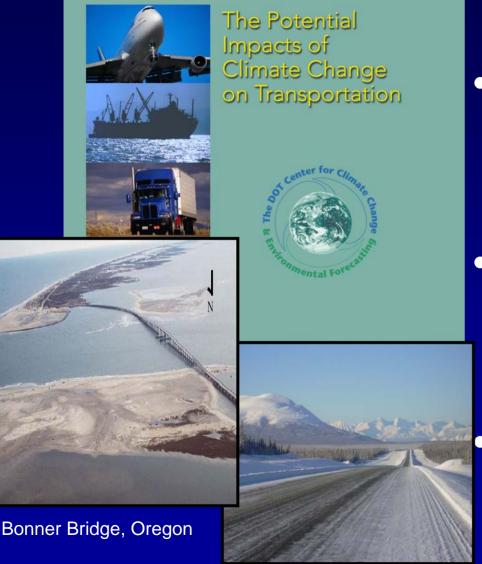


CCSP Product 4.7

Impacts of Climate Change and Variability on Transportation Systems and Infrastructure:


Gulf Coast Study

ACCOUNT RESPECTABLE

Overview

- Project objectives, 3 phases
- Study area
- Research team and stakeholders
- Methods, scientific approach
- Status

 Transportation infrastructure is built for the long haul

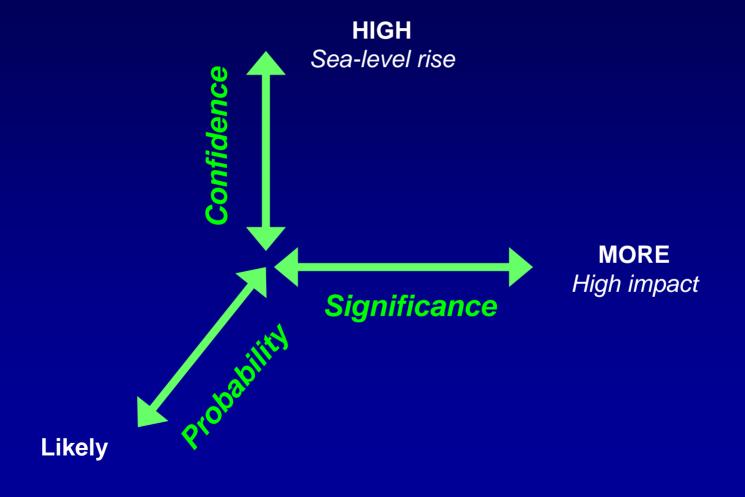
- As climate changes, our infrastructure may have to evolve to handle new conditions
- Impacts on transportation is an underdeveloped area of research
- Each region has unique transportation assets and vulnerabilities

Alaska Highway

Potential Impacts of Climate Change on Transportation

Climate Changes and Variability

- •Temperature change
- Precipitation change
- Accelerated sea-level rise
- Increased storm surge and intensity


Transportation Decision-Making

- System Planning
- Project Development
- Operations
- Maintenance
- System Assessment

Transportation Impacts

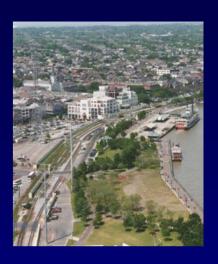
- Location
- System design
- Design specifications
- Materials
- Safety
- Emergency management / evacuation
- Replacement / repair schedules
- Investment levels

Risk & Resilience Need for New Tools

Gulf Coast Study

Objectives

- Collect data needed for assessing transportation vulnerability
- Develop knowledge about potential impacts
- Assess the significance of these risks
- Develop a methodological approach for assessment
- Identify strategies for adaptation
- Develop decision-support tools


Gulf Coast Counties

- 11% of US coastal population
 population ≅ doubled since 1950
 projected 25-40% growth by 2025
- 42,000 km² of land of land below 1.5 m
- 69% of US waterborne commerce
- 85% of US OCS oil and gas production
- 2/3 of US oil imports

Gulf Coast Case Study Design

• Phase I – current effort

- Synthesis of existing data and information
- Preliminary vulnerability assessment of region
- Conceptual framework for risk and vulnerability assessment

Phase II

- In-depth assessment of impacts and risks to selected locations
- Development of risk assessment tools and techniques

Phase III

- Identification and assessment of adaptation strategies
- Development of techniques to evaluate adaptation strategies

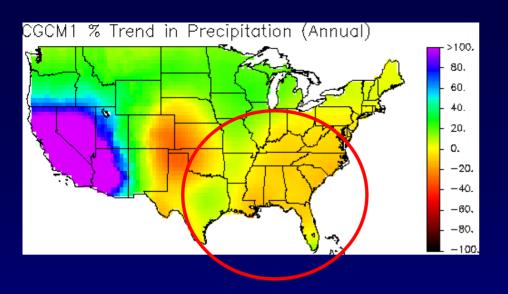
Phase 1 Research Team

- U.S. Department of Transportation (Lead Agency)
- U.S. Geological Survey (Supporting Agency)
- Cambridge Systematics
- Texas A&M University
- University of New Orleans
- Louisiana State University
- Wilbur Smith & Associates
- Texas Transportation Institute

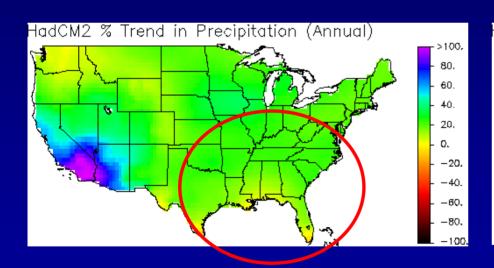
Expert Panel

Vicki Arroyo Director of Policy Analysis Pew Center on Global Climate Change	Philip B. Bedient Professor of Engineering Rice University	Leigh B. Boske Associate Dean Lyndon B. Johnson School of Public Affairs University of Texas	Tom Podany Assistant Chief, Planning U.S. Army Corps of Engineers, New Orleans District
Alan Clark Director of Transportation Planning Houston-Galveston Area Council	Fred Dennin Regional Administrator, Region 3 Federal Railroad Administration	Paul S. Fischbeck Professor of Social and Decision Sciences Carnegie Mellon University	Anthony Janetos Vice President Heinz Center for Science, Economics and the Environment
Thomas R. Karl Director, National Climatic Data Center National Oceanic and Atmospheric Administration	Gilbert Mitchell Chief, Geodetic Services Division National Geodetic Survey National Oceanic and Atmospheric Administration	Kenneth Perret Assistant Secretary Louisiana Department of Transportation and Development	Burr Stewart Strategic Planning Manager Port of Seattle
Chris C. Oynes Gulf of Mexico Regional Director Minerals Management Service	Elaine Wilkinson Executive Director Gulf Regional Planning Commission		

Potential stresses associated with climate/global change and variability:


Key drivers

- Changes in precipitation and temperature
- Accelerated sea-level rise
- Increased storm surge and intensity


Potential stresses associated with climate/global change and variability:

Key drivers

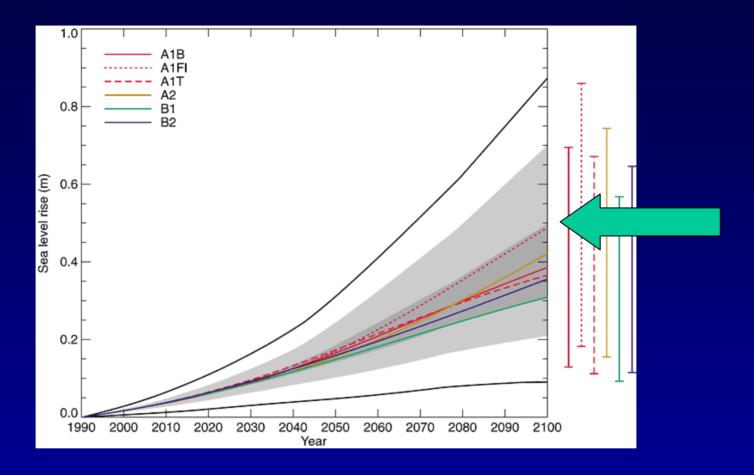
- Changes in precipitation and temperature
- Accelerated sea-level rise
- Increased storm surge and intensity

Future Annual
Precipitation
(2000-2100)
simulations from 3 AOGCMs

Will the Gulf Coast get wetter or dryer??

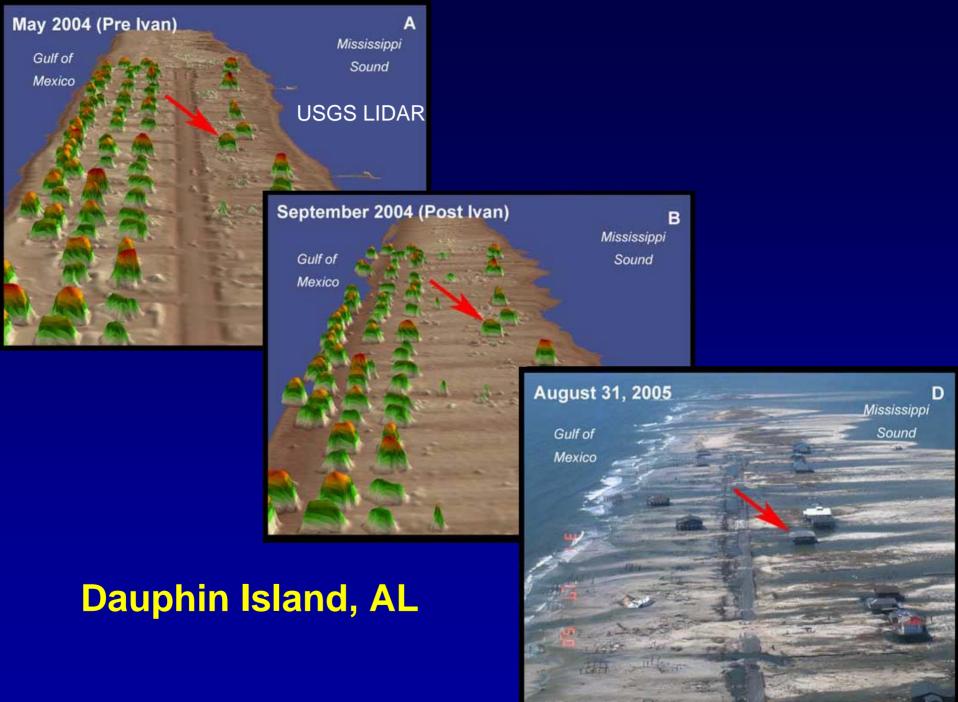
How will seasonal rainfall and extremes be affected??


Potential stresses associated with climate/global change and variability:


Key drivers

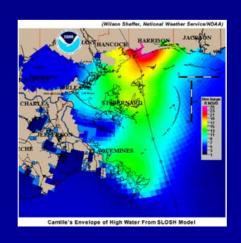
- Changes in precipitation and temperature
- Accelerated sea-level rise
- Increased storm surge and intensity

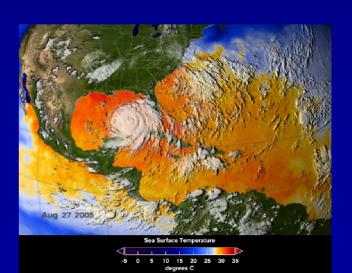
Global sea-level rise is expected to "accelerate" 2- to 4-fold over the next century (IPCC 2001).


An increase in the rate of sea-level rise is one of the more certain and most costly consequences of global warming.

Global average sea level rise (1990 to 2100) for the IPCC SRES emission scenarios.

Mid-range estimate in 2100 is 0.48 m (IPCC, 2001).


Potential stresses associated with climate/global change and variability:


Key drivers

- Changes in precipitation and temperature
- Accelerated sea-level rise
- Increased storm surge and intensity

A major question for coastal transportation planners: How will changes in temperature affect hurricane intensity?

Data for Regional Characterization

Transportation Infrastructure

Road networks

Primary evacuation routes

Railway network

Rail Networks

Amtrak Stations

Fixed guideway transit facilities

Airports

Ports

Oil and gas pipelines Intermodal freight terminals

Navigable waterways

Mobile, Alabama

Imagery and Topographic Maps

Thematic Mapper (TM) Landsat 5 satellite data at 90 meter resolution Aerial Photography at 1 meter resolution from the 1998 DOQQ Topographic Maps (DRG) at 1:24000, 1:100000, and 1:250000 scales

Elevation/Land surface

National Elevation Dataset (NED) for Gulf Coast Study Area LIDAR for coastal Louisiana LSRC/NGS land surface elevation trends Coastal erosion and vulnerability rates of shoreline and wetland loss

Earth Sciences

Geologic units
Soil Geographic Database (STATSGO)
National Land Cover Dataset (NLCD)
Ecological units

Hydrology

National Hydrographic Dataset (NHD) FEMA Q3 flood data Hydrologic Unit Watersheds

Administrative Geography and Other Infrastructure

Political Boundaries Demographic data

Demographic data

Urbanized areas

MPO planning boundaries

Coastal and Hazard Planning Districts

Key petrochemical and energy resources

Industrial centers

Employment centers

Government/Federal facilities

Military bases

Public health, education, service facilities

Emergency response and safety facilities

Temperature/Precipitation

Historic temperature/precipitation, 16 NOAA climatic divisions Drought severity and frequency probabilities Model ensemble predictions for future temperature and precipitation in the study area (from NCAR)

Streamflow

Streamflow gage network locations, peak flood probabilities Historical flood frequency analysis of select drainages

Hurricane Windfields and Surge

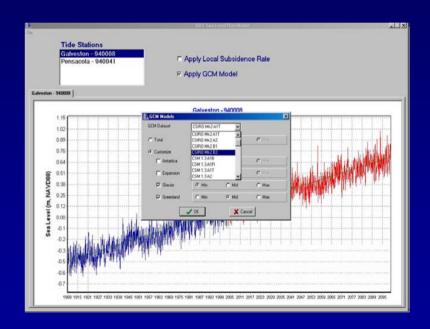
Historic windfield reconstruction on 10km Grid Network 15, 30, 50, 150 yr storm return frequency by grid location Wind speed and direction analysis (1851-2100) by storm category I-V

Simulated effects of increasing storm intensity 5-20% Hurricane surge records analysis and synthesis Simulated surge flood heights and extent for Cat. I-V storms (SLOSH)

Simulated ADCIRC model surge scenarios for SE Louisiana

Historic Sea-level Trends

NOAA Tide Stations


- Annual average for station and period of record
- Monthly means for station and period of record

Projected Sea-level Change

SimClim Program (P. Urick, NZ) Future Eustatic Sea-level rise 2000-2100 Based on numerous GCM model output and emission scenarios

USGS/DOT SLR model (Doyle) of historic and future sea-level rise 1900-2100

Rectified to NAVD88 datum based on 42 IPCC GCM model scenarios

Gulf Coast Study - Status

- Phase 1 underway. Completion expected in late 2007.
 - Hurricanes Katrina and Rita caused:
 - Significant disruption to study team
 - 4-5 month delay
 - Potential changes in scope
- Phases 2 and 3 to follow.

Gulf Coast Study - Status

- ✓ Research Team complete
- ✓ Expert Panel/Advisory Comm. identified
- ✓ Database developed
- ✓ Preliminary climate analysis completed
- Preliminary analysis of transp. impacts
- Selection of sites for Phase 2
- Risk Template

Impacts and Adaptation Key Questions

- What climate information or data would make a difference to the decisions being made today regarding transportation?
- What is the best way to handle uncertainty in assessing future changes and impacts?
- Can thresholds be set for risk to specific infrastructure?
- Can new techniques be developed to help assess future risks due to climate change?