Tools for Interactive Decision-making under Uncertainty on Energy and Climate Change

Jürgen Scheffran ACDIS, University of Illinois, Urbana-Champaign

scheffra@uiuc.edu

Climate Science in Support of Decision Making

Washington, DC, November 15, 2005

Outline

- 1. Integrated decision-making on energy options
- 2. Adaptive control vs. optimal control in climate modeling
- 3. Data and uncertainty in integrated assessment
- 4. Interactive decision-making among multiple actors

Integrated Decision-making on Energy Options

p. 3

Energy in Integrated Assessment

Socio-economic system

Climate system

Adaptive Control Under Uncertainty

Carbon Limits and Adaptive Emission Rates

Technical Change and Climate Damage

p. 7

Technical Change and Adaptive Control

Carbon Intensity vs. Accumulated Emissions

Damage-induced control

Adaptive control

Projections for Population, GDP, Energy, Carbon

Relevant Factors

Randomly Sampled Climate Variables

Cumulative Probability Distributions

Factors of Climate Risk Assessment

Emission Reduction: a Global Cooperation Problem

$$G(t) = \sum_{i} G_{i}(t)(1 - r_{i}(t)) \leq G^{*}(t)$$

G(t): Global emissions at time t
G*(t): Global emission target at time t
G_i(t): Baseline emissions path of actor i
r_i(t): Emission reduction of i from baseline

Integrated Assessment with Multiple Actors

InvestmentAllocationEnergyEfficiencyValuesCostsSystemsBenefitsGoalsPricesRisks

Compatibility of Targets between Two Actors

Tax-induced Technology Switching Among Economic Competitors

Equilibria in investment space (C1, C2) of two firms with choice between high emission technology (p=0) and low emission technology (p=1) for tax $\tau = 0$ and $\tau = 3$.

Cooperation Channel for Low Emission Technology

Share z₁ for joint activities of industrialized country

Simulation of Emission Tradings Among 11 World Regions

0 5 10 15 20 25

Coalition Formation in Energy Use

Coalitions in Energy Management Simulation with 6 users and 6 providers of energy

Outlook

Analyse and compare specific energy technologies and paths with regard to economic and environmental conditions, including climate change and risk assessment

Use advanced methods and modeling tools within integrated assessment framework

Provide data-based modeling tools for adaptive control and decision-making under uncertainty

Develop and integrate climate, economy and decisionmaking tools into a probabilistic integrated assessment framework on emission reductions and climate change

>Involve multi-actor interaction in understanding the chance of realization of policy actions.