

Designing Wetland Conservation Strategies under Climate Change

Jiayi Li, Elizabeth Marshall, James Shortle, Richard Ready The Pennsylvania State University

> Carl Hershner Virginia Institute of Marine Science

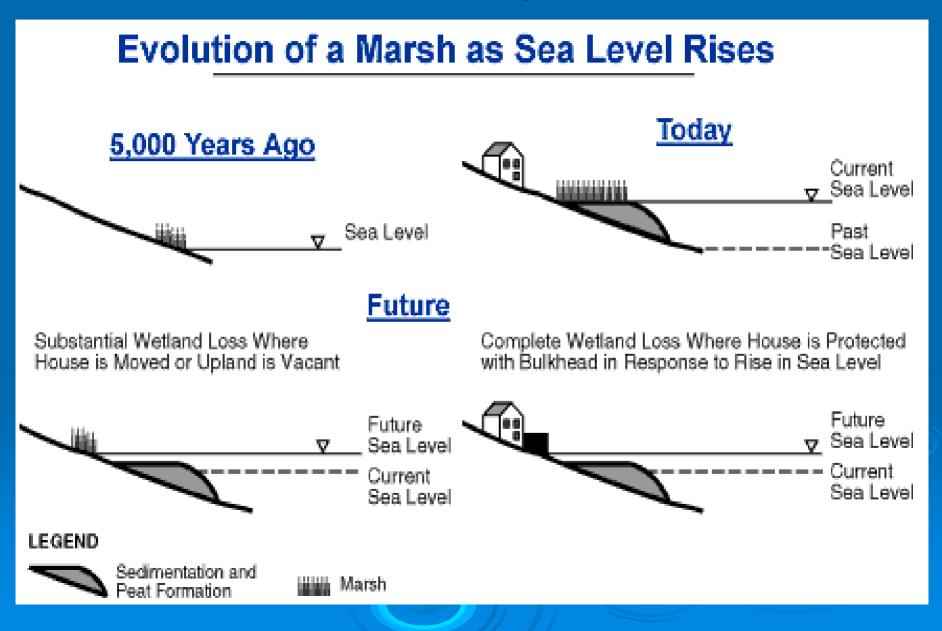
> > November 2005

Presentation Outline

- Introduction
- > Objectives
- > Uncertainties and Decision-Making Process
- > Model
- Information Structure
 Experimental Design
 Results and Conclusions

Introduction

A new threat to wetlands in recent years: sea-level rise associated with global warming and climate change.


The essential problem: identify land parcels to be preserved given uncertainty about sea-level rise and future land development that would minimize the total cost of wetland conservation.

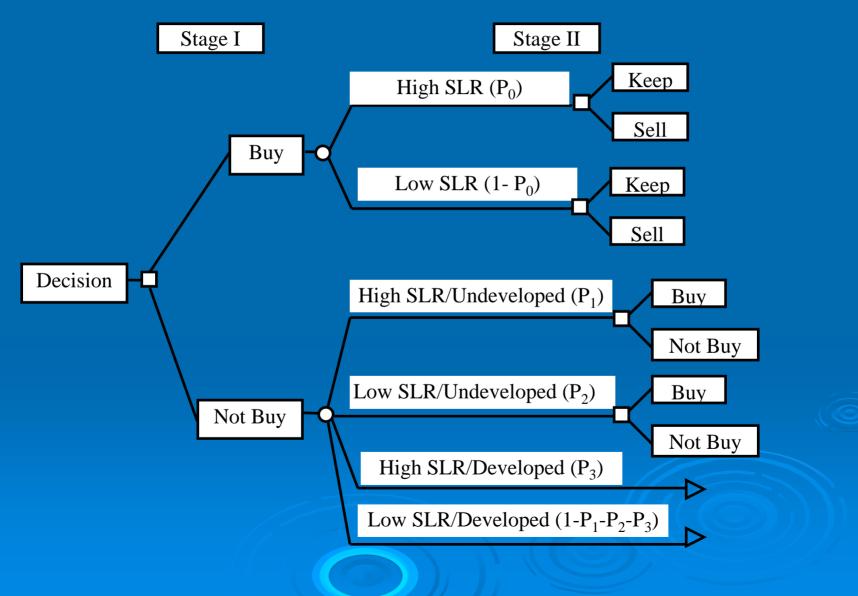
Wetland Conservation Strategies

Wetland conservation: both mitigation and adaptation response

- Three major wetlands conservation methods:
 - migration
 - creation
 - restoration

Wetland Migration

Elizabeth River Watershed


Source: Moon Engineering Company, Inc.

Objectives

 Develop optimal wetlands conservation strategies taking into account of uncertainties;
 Explore the sensitivity of the strategy.

Uncertainties and Decision-Making Process >2 wetland conservation methods: migration and restoration. >2 major types of uncertainties: - acquisition of new sea-level rise information - development of candidate undeveloped land parcels >Two-stage decision process (2005-2030).

Illustration: One Parcel

Wetlands Conservation Strategies Model

- > Acquire undeveloped land: serves as migration buffers or potential restoration sites
- Objective function: minimizing the cost of land acquisition and wetland restoration:

- modeled as a dynamic stochastic decision problem

 solved using discrete stochastic sequential programming (DSSP)

Constraint: "no net loss" of wetlands

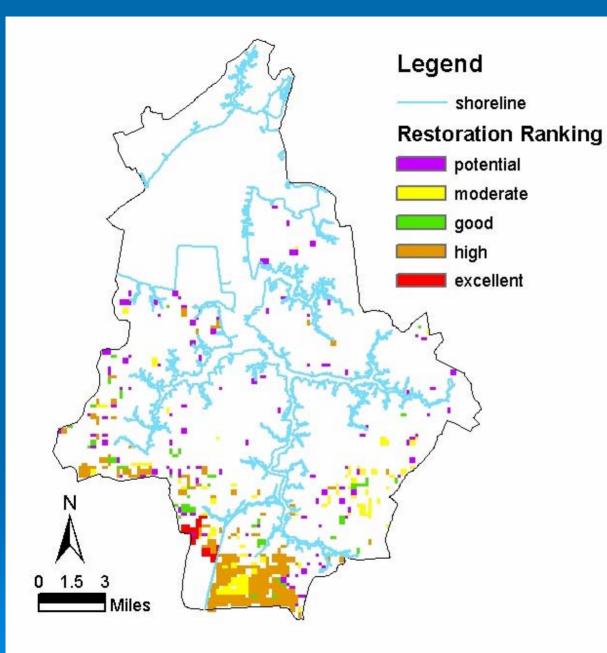
Two-Stage DSSP Model

 Objective: minimizes the expected costs while satisfying the goal of "no net loss" of wetlands
 The model is specified as below:

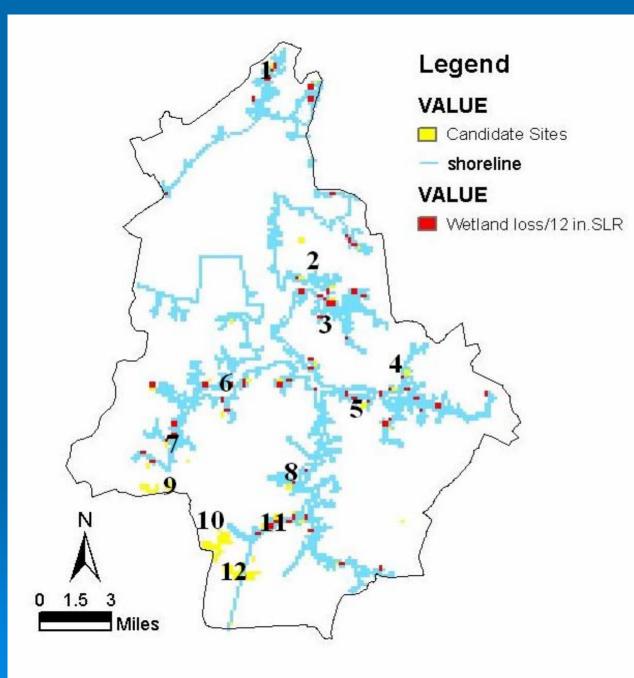
Minimize
$$\sum_{i} X_{1i}C_{1i} + \sum_{i} \sum_{k} P_k X_{2ki}C_{2i} - \sum_{i} \sum_{k} P_k Y_{2ki}S_{2i}$$

S.t.
$$\sum_{i} X_{1i} + \sum_{i} X_{2ki} \ge L_{l}$$
$$\sum_{i} X_{1i} + \sum_{i} X_{2ki} \ge L_{h}$$
$$\sum_{i} X_{1i} C_{1i} \le B$$
$$X_{1i} + X_{2ki} \le 1$$
$$Y_{2ki} - X_{1i} \le 0$$

 X_{1i}, X_{2ki}, Y_{2ki} are binary decision variables. i indicates parcels, and k indicates states of nature in stage II. C_{1i}, C_{2ki}, S_{2ki} are costs associated with the decisions. L_h and L_l are the wetlands conservation


goal under high and low sea-level rise. B is the budget constraint of stage I.

Information Structure


- Sea-level rise scenarios: 4-12 inches for 2030 (Warrick et al, 1996)
- > 3 Land use scenarios: compact, dispersed and nodal development.
- Development vulnerability index: considers four major development drivers and uses cellular automata (CA)
 - % undeveloped land in immediate vicinity
 - distance to shoreline
 - distance to primary roads
 - distance to population center

Wetlands Restoration Sites Selection Protocol

- Developed by Center for Coastal Resources Management of Virginia Institute of marine Science.
- Based on basic criteria of restoration sites and has been applied to southeastern Virginia.
- > A four-level hierarchical approach:
 - foundation: land use
- Classification: potential, moderate, good, high and excellent.

Selected Wetlands Restoration Sites

Candidate Conservation Sites

Development Probabilities of Compact Development Scenario

Parcel	Conversion Rate					
	20.2%	25.8%	31.1%	48.7%	62.0%	
No.1	0.9	1	1	1	1	
No.2	1	1	1	1	1	
No.3	1	1	1	1	1	
No.4	0.52	0.84	1	1	1	
No.5	0.68	0.94	1	1	1	
No.6	0	0	0	0	0.68	
No.7	0	0	0	0	0.8	
No.8	0	0.02	0.22	88.0	1	
No.9	0	0	0	0	0.06	
No.10	0.4	0.64	0.9	1	1	
No.11	0	0.02	0.3	0.96		
No.12	0	0	0	0.5	1	

Information Structure (cont.)

- Land price: based on development vulnerability index.
 - agricultural land: \$4,500 \$8,000 / acre
 - forested land: \$2,000 \$6,000 / acre
- Real land price appreciation: based on current land price.
- Wetland restoration cost:
 - range: \$10,000 \$80,000 / acre
 - average: \$20,000 \$30,000 / acre

Experimental Design

Factor	Values Selected				
Development Percentage	20.2	25.8	31.1	48.7	62.0
High SLR Probability	0.1	0.3	0.5	0.7	0.9
Land Price Adjustment (%)	-20	-10	0	10	20
Real Land Price Appreciation (%)	0-1	1-2	2-3	3-4	4-5
Discount Rate (%)	1	2	3	4	5
Budget Constraint of Stage I (%)	40	55	70	85	100
Restoration Cost (\$1,000/acre)	10	20	25	30	80

Base Case Scenario Results

> Optimization results using base case values:

Land Development Scenario	Expected Costs	Parcels Purchased in Stage I		
Compact	\$13,904,312	1,2,3,4,5,8,11		
Dispersed	\$13,994,928	1,2,3,4,5,11		
Nodal	No integer feasible solution exists			

Purchasing decision in Stage I: migration sites and restoration sites with high development pressure

Conclusions

- Wetlands conservation efforts should be first focused on migration sites.
- Land development planning should take wetlands conservation into account.
- Wetlands conservation needs to be carried out NOW, although uncertainties of climate change exist.

Questions?

Development Percentage Sensitivity

		Development Percentage						
	20.2%	25.8%	31.1%	48.7%	62.0%			
		Са	ompact					
Exp. Cost	\$13,749,482	\$13,885,786	\$13,904,312	\$14,018,176	_			
Parcel	1-5	1-5,8,11	1-5,8,11	1-5,8,11,12				
	Dispersed							
Exp. Cost	\$13,932,684	\$13,932,782	\$13,994,928	_	_			
Parcel	1-5	1-5	1-5,11					
Nodal								
Exp. Cost								
Parcel		6						

High SLR Probability Sensitivity

	High Sea-Level Rise Probability							
	0.1	0.3	0.5	0.7	0.9			
		Ca	ompact					
Exp. Cost	\$11,250,779	\$12,577,541	\$13,904,312	\$15,231,066	\$16,557,828			
Parcel	1-5,8,11	1-5,8,11	1-5,8,11	1-5,8,11	1-5,8,11			
	Dispersed							
Exp. Cost	\$11,320,579	\$12,657,754	\$13,994,928	\$15,332,103	\$16,669,277			
Parcel	1-5,11	1-5,11	1-5,11	1-5,11	1-5,11			
	Nodal							
Exp. Cost								
Parcel		6						

Land Price Sensitivity

		Land Price Adjustment						
	-20%	-10%	0	10%	20%			
		Са	ompact					
Exp. Cost	\$12,557,382	\$13,230,847	\$13,904,312	\$14,577,778	_			
Parcel	1-5,8,11	1-5,8,11	1-5,8,11	1-5,8,11				
	Dispersed							
Exp. Cost	\$12,629,918	\$13,312,423	\$13,994,928	\$14,677,433	\$15,359,938			
Parcel	1-5,11	1-5,11	1-5,11	1-5,11	1-5,11			
	Nodal							
Exp. Cost	\$12,917,593							
Parcel	1-6,10,11,12	6						

Real Land Price Appreciation Sensitivity

	Real Land Price Appreciation Rate							
	0-1%	1-2%	2-3%	3-4%	4-5%			
		Са	ompact					
Exp. Cost	\$13,366,859	\$13,604,017	\$13,904,312	\$14,168,354	\$14,168,354			
Parcel	1-5,8,11	1-5,8,11	1-5,8,11	1-5,8,11,12	1-5,8,11,12			
	Dispersed							
Exp. Cost	\$13,219,455	\$13,561,619	\$13,994,928	\$14,303,446	\$14,565,353			
Parcel	1-5,11	1-5,11	1-5,11	1-5,7,11,12	1-5,7,11,12			
Nodal								
Exp. Cost								
Parcel		6						

Discount Rate Sensitivity

		Discount Rate						
	1%	2%	3%	4%	5%			
		Са	ompact					
Exp. Cost	\$18,980,036	\$16,150,290	\$13,904,312	\$12,068,920	\$10,639,608			
Parcel	1-5,8,11,12	1-5,8,11,12	1-5,8,11	1-5,8,11	1-5,8,11			
	Dispersed							
Exp. Cost	\$19,110,067	\$16,285,006	\$13,994,928	\$12,028,194	\$10,496,590			
Parcel	1-5,7,11,12	1-5,7,11,12	1-5,11	1-5,7,11	1-5,7,11			
	Nodal							
Exp. Cost	_							
Parcel		6						

Wetland Restoration Cost Sensitivity

	Restoration Cost (\$1,000 / acre)							
	10	20	25	30	80			
		Ca	ompact					
Exp. Cost	\$9,602,509	\$12,470,365	\$13,904,312	\$15,338,240	\$29,677,538			
Parcel	1-5,8,11	1-5,8,11	1-5,8,11	1-5,8,11	1-5,8,11			
	Dispersed							
Exp. Cost	\$9,692,997	\$12,560,945	\$13,994,928	\$15,428,902	\$29,768,647			
Parcel	1-5,11	1-5,11	1-5,11	1-5,11	1-5,11			
	Nodal							
Exp. Cost								
Parcel		6						

Budget Constraint Sensitivity

	Budget Constraint							
	40%	55%	70%	85%	100%			
		Ce	ompact					
Exp. Cost			\$13,904,312	\$13,904,312	\$13,904,312			
Parcel			1-5,8,11	1-5,8,11	1-5,8,11			
	Dispersed							
Exp. Cost		\$13,994,928	\$13,994,928	\$13,994,928	\$13,994,928			
Parcel		1-5,11	1-5,11	1-5,11	1-5,11			
Nodal								
Exp. Cost				\$14,352,322	\$14,352,322			
Parcel		6		1-6,10,11,12	1-6,10,11,12			

Budget Constraint Sensitivity (3-4%)

	Budget Constraint							
	40%	55%	70%	85%	100%			
		Ce	ompact					
Exp. Cost		_	\$14,168,354	\$13,942,978	\$13,833,077			
Parcel			1-5,8,11,12	1-8,11,12	all			
	Dispersed							
Exp. Cost	_	\$14,542,401	\$14,303,446	\$14,099,526	\$13,994,928			
Parcel		1-5,11	1-5,7,11,12	1-8,11,12	all			
	Nodal							
Exp. Cost				\$14,387,910	\$14,193,907			
Parcel		6		1-7,11,12	all			

Thank You!

- Dr. Steve Graham of Penn State and Ms. Tamia Rudnicky of Virginia Institute of Marine Science (VIMS)
- Ms. Marcia Berman, Mr. Walter Priest and Mr. Dan Schatt of VIMS
- Ms. Jaleh Pett of the Planning Department of the City of Chesapeake
- Global Change Research Program, Office of Research and Development, U.S. Environmental Protection Agency

Development Probabilities of Dispersed Development Scenario

Parcel	Conversion Rate					
	20.2%	25.8%	31.1%	48.7%	62.0%	
No.1	1	1	1	1	1	
No.2	1	1	1	1	1	
No.3	0.88	1	1	1	1	
No.4	0.46	0.6	0.78	1	1	
No.5	0.74	0.98	1	1	1	
No.6	0	0	0	0.32	0.6	
No.7	0	0	0	0.44	0.78	
No.8	0	0	0	0.44	0.88	
No.9	0	0	0	0	0.12	
No.10	0.02	0.3	0.52	0.94	1	
No.11	0	0	0.1	0.72		
No.12	0	0	0	0.5	0.88	

Development Probabilities of Nodal Development Scenario

Parcel	Conversion Rate				
	20.2%	25.8%	31.1%	48.7%	62.0%
No.1	0.8	0.96	1	1	1
No.2	0.66	0.82	0.96	1	1
No.3	0.78	0.96	1	1	1
No.4	0.54	0.72	0.78	1	1
No.5	0.7	0.84	0.96	1	1
No.6	0	0.08	0.16	0.46	0.72
No.7	0.12	0.34	0.56	0.82	1
No.8	0	0	0	0.36	0.66
No.9	0	0	0	0	0.2
No.10	0.12	0.28	0.46	88.0	1
No.11	0.1	0.18	0.32	0.54	0.88
No.12	0.26	0.38	0.48	0.92	1