

SAVING THE LAST GREAT PLACES ON EARTH

Using Climate Change Information to Support Adaptive Coastal Conservation

Lynne Hale The Nature Conservancy Global Marine Initiative www.nature.org/marine

Achieving enduring conservation in a changing world

SAVING THE LAST GREAT PLACES ON EARTH

The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive.

Our Approach to Conservation

SAVING THE LAST GREAT PLACES ON EARTH

Actions informed by information/results→ Adaptive management

Setting Priorities

Taking Action

Planning and Acting at Multiple Scales

Changing Climate

SAVING THE LAST GREAT PLACES ON EARTH

Adds a new risk factor for

- Conservation Priorities
 and Portfolio
- Conservation Actions and Strategies

Is not yet incorporated in most of our work

Rising seas, more storms... Population shifts & viability...

There is no steady state in the ocean

Setting Priorities

SAVING THE LAST GREAT PLACES ON EARTH

With partners....

- Identify conservation targets- ecosystems & species
- Collect available information
- Establish conservation goals
- Analyze threats / "costs"
- Use decision-support tool (MARXAN) to set priorities;

An Ecoregional Assessment 2005

Conservation Targets

- 36 conservation targets based on today's conditions <u>examples</u>
- Salt and brackish marshes
- Oyster reefs
- Seagrasses
- Shoreline types
- Sea turtle nesting beaches
- Shorebird and water bird habitat
- Short-nose sturgeon habitat
- Offshore hard-bottom areas
- Benthic habitat types

Conservation Costs and Suitability Indexonservancy.

SAVING THE LAST GREAT PLACES ON EARTH

Mapped data for 10 "cost factors" to develop a Suitability Index:

Population growth housing density road density major port facilities shipping lanes dredged channels hardened shorelines Superfund sites NPDES permits dredge disposal sites

No climate related "costs"

Products

SAVING THE LAST GREAT PLACES ON EARTH

- Spatial <u>database</u> of diversity & cost factors
- Objective <u>decision-</u>
 <u>support</u> framework
- <u>Portfolio</u> of conservation action areas

An urgent need to consider potential climate change impacts on the portfolio 10, 20, 50 and 100 years out

Conservation Action

SAVING THE LAST GREAT PLACES ON EARTH

RISING SEAS AND THE ALBEMARLE: A CASE STUDY

Pearsal and Deblieu

PALAU AND CORAL BLEACHING

1998 coral bleaching event. Conservancy.

...a wake-up call

Need to look internationally to address these global threats

What happens when corals die Conservancy

The reef disintegrates: values decrease for shoreline protection, food & livelihoods, recreation & tourism

A Simplified Resilience Model for Coral Reef Ecosystems

Factors that help the corals survive a bleaching

Screening

Shading

Stress Tolerance

Water temperature modeling

Marine Protected Area design

Global Marine Initiative

SAVING THE LAST GREAT PLACES ON EARTH

Reef Resilience Toolkit

Resilience Partnership

Incorporating Climate Change Information in Marine Conservation

- Increase the climate IQ of conservation practitioners
- Increase focus of climate change science community on conservation implications
- Link climate data collection with biological and physical changes / communicate implications
- Work with practitioners to adapt their tools to incorporate climate change information
- Develop / learn from adaptation