
Using Service and Product Providers to Leverage Your Energy Efforts

October 20, 2004

About The Web Conferences

- Monthly
- Topics are structured on a strategic approach to energy management
- Help you continually improvement energy performance
- Opportunity to share ideas with others
- Slides are a starting point for discussion
- Open & Interactive

Web Conference Tips

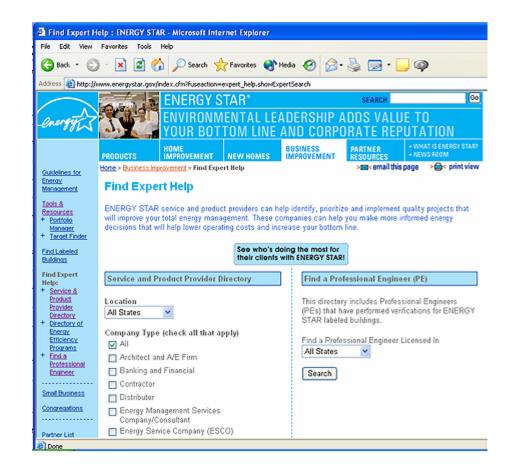
- Mute phone when listening! Improves sound quality for everyone.
- If slides are not advancing, hit reload button or close presentation window and press the launch button again.

Web Conference Tips

Chat Feature

- Presentation Slides will be sent by email to all participants following the web conference.
- Hold & Music If your phone system has music-on-hold, please don't put the web conference on hold!

Today's Web Conference



- Introduction
- James Dore Wheatstone Energy
- Tom Pagliuco Prenova
- Questions & Discussion
- Announcements

Find Expert Help

On-line directory of service and product providers that support the goals of ENERGY STAR partners

www.energystar.gov

Using Service and Product Providers to Leverage Your Energy Efforts

Prenova/Owens Corning Energy Process Optimization

Thomas Pagliuco – Prenova Fred Dannhauser – Owens Corning

October 20, 2004

Who is Owens Corning?

- World leader in building materials systems and composites systems
- \$5 billion in sales in 2003
- 70+ Manufacturing Facilities
- Proactive approach to managing energy costs

Who is Prenova?

- Expertise in Energy Process Management Solutions
- Independent broker for energy supply/demand ideas
- \$1.6 billion in energy spend 35,000 locations
- Collaborative approach to energy management
- Customers
 - √ pay less for energy
 - ✓ use less energy
 - ✓ risk less as they manage future energy strategies

Owens Corning - Prenova Relationship Overview

Since 2002, Prenova provides an energy management solution to Owens Corning's North American facilities for:

- Energy Supply Management
- Energy Price Risk Management
- Energy Process Optimization
- Bill Payment and Data Management
- Utility Due Diligence
- Remote Monitoring, Scheduling, Alarming and Trending

Owens Corning – Prenova Energy Process Optimization Overview

- 11 Insulation and Composite Glass plants
- Total energy spend of over \$50 million per year
- Optimization phase: 4 7 months per plant
- No process area off limits for energy savings investigation

What is Energy Process Optimization?

- A methodology that realizes energy savings by leveraging existing assets and implementing processes and procedures that create sustainable results
- Benefits are:
 - ✓ Improves Return on Net Assets (RONA)
 - ✓ Establishes and propagates best practices
 - ✓ Offers low barrier to implementation
 - ✓ Requires little capital
 - √ Provides process for continuous improvement
 - ✓ Reduces maintenance and raw material costs

Energy Process Optimization Principles

- Process focused approach
 - ✓ Paretto analysis of energy usage
 - ✓ Statistical process control methodology
 - ✓ Cross functional team involvement
- Data driven decision making
- No cost or low cost to implement
 - ✓ Operations and maintenance opportunities
 - √ Capital opportunities identified not essential to success
- Provide resources focused on energy reduction
- Ensure sustainable savings/continuous optimization

Energy Process Optimization Process

Phase One - Energy process optimization using a five step approach;

Culture Change

- Education and increased energy awareness
- Processes and procedures developed and implemented

Assess the facility

- Paretto analysis of energy use by process area
- Material and energy balancing

Define the process

- Regression analysis
- Measurement and verification systems defined
- Define the infrastructure to support sustainability and continuous improvement

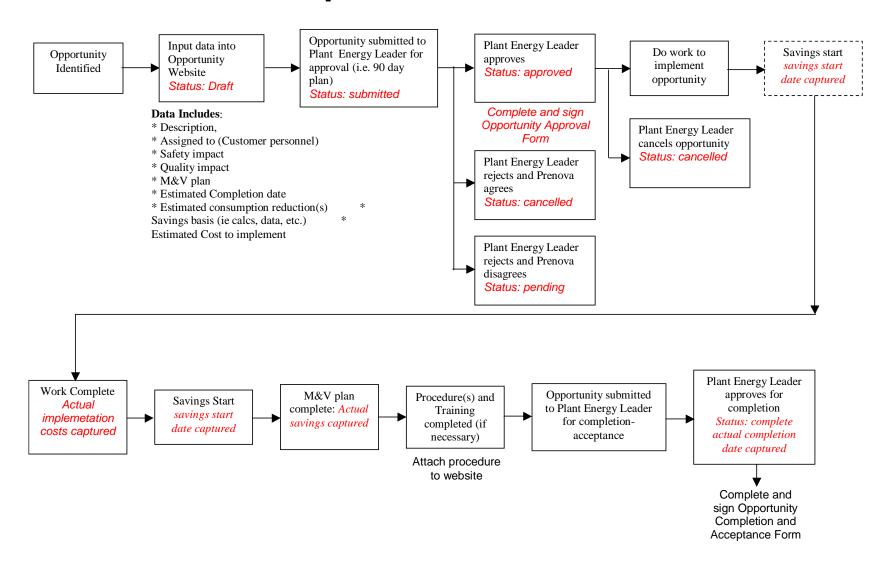
Understand and manage process variation

SPC techniques

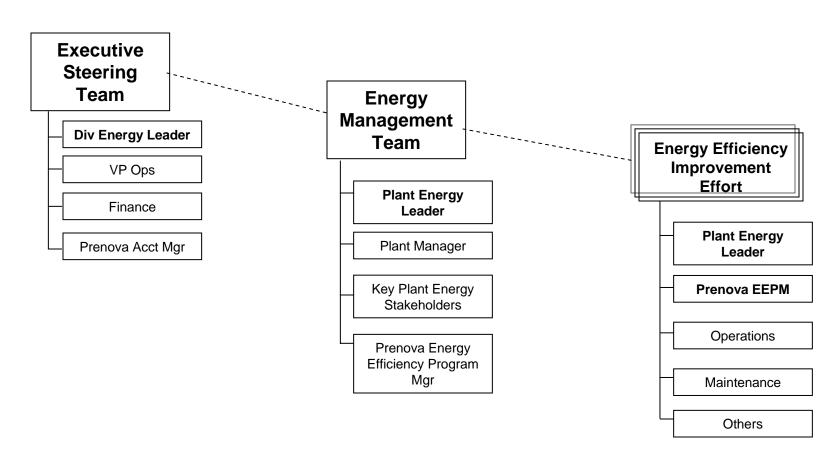
Improve the process

- Savings opportunities identified, quantified, and implemented
- Web based reporting of opportunities
- Project Management for the opportunity implementation effort

Phase Two – Sustainability and Continuous Improvement

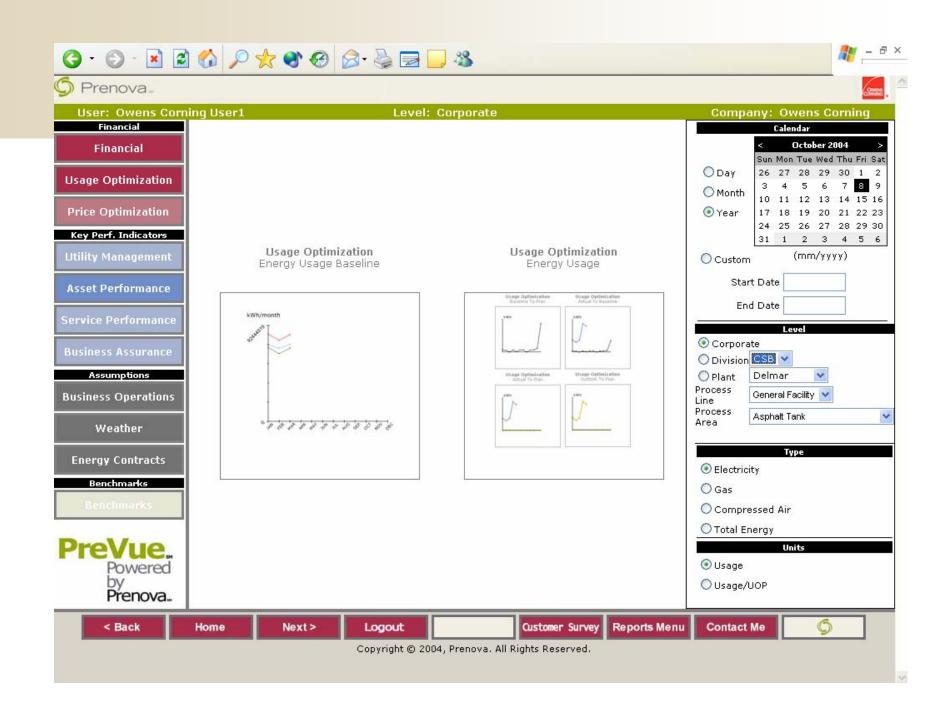

System in place to measure and monitor energy process performance

Alarming and reporting


Data analysis enables additional opportunities to be identified and implemented

CSB		4:		.4:.		DL				-4 (- L								_
WENS Energy Process Optimization Syste	m - Op	tim	IIZa	atic	on	۲n	ase	Pr	oje	Ct 3	SCr	iea	lule	:				_	_
				+		-			-			-		Н	-			+	+
Key Tasks										Proie	ect W	eek							_
	-3	-2	-1	0	1	2 3	4	5 6				_	1 12	13	14 1	5 16	17 18	8	\Box
ange the Culture and Behavior																			Ť
Executive Management Team								A000000 10000				ANNO 1000			JOHNSON JOHNSON	AND SHARROW, N	100000E		
Plant Mangement Team				88			M								_		-	-	7
Increase Awareness of energy usage and cost	<u> </u>																		1
														.0000000000					1
cess Understanding and Insight																			
Facility and process questionnaire															***************************************				
Facility Profile	Books																		
Determine utility baseline (regression analysis)																			
Idea brainstorming - process teams	T		************	************															
Systems, process and procedures audits (burner tuning, chiller water, compressed air, steam, etc.)																		
Opportunity Impact Analysis	ļ																		
Action List	T																		
Benchmarking						3000000													1
ntify Measurement Characteristics																			
Develop key energy measurement metrics														J.0000000	JANSON (1888)	AR HIRMON	A0000 0000		+
Determine key energy variables		-								-				1				-	1
Measurement and monitoring needs analysis		1											-	+		1	-	-	+
Develop cost for Performance Measurement and Monitoring System	 															-			
PMMS Approval	 													\leftarrow		-			-
• • • • • • • • • • • • • • • • • • • •		-					ļ		<u> </u>										
PMMS Installation	 								_										
M&V system definition - Short Term	.	-														4-4			
M&V system definition - Long Term	 	-					ļ			ļ.,,,						4-4			
Design Energy Management Reporting System	 													ļļ					
	ļ																	-	-
nage Process Variation		Įl					ļ												
Implement short term M&V system																			
Monitor process improvement changes																			
rove the Process																			
Implement Opportunity Impact Analysis																			
Manage Action list																			
manage / televirillet														,			## <u></u>		

Opportunity Identification, Approval and Acceptance Process


Energy Process Optimization Organization

Sustainability

Performance Monitoring and Management System

- Implemented at 6 plants
- Implementation in progress at remaining 5 plants
- Enhanced visibility to energy performance by plant and process area
 - ✓ Web reporting
 - ✓ Alarming
- Desired Results
 - ✓ Drive sustainability of energy savings
 - ✓ Platform for continuous improvement
- Demo: PMMS and PreVUE

Results Achieved

Energy Savings

- √ 7% average reduction in annual energy spend
- √ 71,000,000 kWh
- ✓ 476,500 MMBtu

Costs

- ✓ Average cost per plant was \$120,000 after rebates
- ✓ Rebate funding was \$775,000

Financial Return

✓ Less than 4 months average payback

Energy Process Optimization Additional Benefits

- Energy Efficiency Program Managers integrated into plant teams
- Synergy between supply and demand efforts
- Focus on energy use and reduction
- Awareness of energy usage/cost by process area
- Process and procedures to drive sustainable savings
- Best practices and common opportunities replicated
- "Engaged" other organizational teams in the effort
- Performance Measurement and Monitoring System
- Facilitates EPA Energy Star Partner of the year

Contact Information

Owens Corning

- Fred Dannhauser, Leader, Global Energy
- 419-248-6555
- fred.dannhauser@owenscorning.com

Prenova

- Tom Pagliuco, Director Industrial Field Services
- 732-254-9158
- tpagliuco@prenova.com

FritoLay and Wheatstone Energy

Using a National Service and Product Provider (SPP) to Add Value and Leverage Resources

Table of Contents

- Introduction
- Results
- Program
- Process
- Benefits of a National SPP Strategy
- Conclusions
- Question and Answer

Introduction:

A 70 year old leading manufacturer in the snack food industry

Wheatstone Energy.

A 12 year old design – build energy efficiency firm

Results:

- \$2.2 Million Energy Savings
- 3.1 Years Average Payback
- 96 Distribution Centers
- 16 Production Plants
- 4 Year Partnership

Program Outline:

- Design Program Overview
- Identify Capital and Savings Impact (ROI)
- Develop Buying Criteria (Simple Payback)
- Define a Funding Process
- Establish Goals and Timeline
- Execute Program Development Agreement

Process Outline:

- Design Communication Schedule
- Design and Build a Beta Site
- Design Audit Schedule
- Implement Audits and Proposal Deadline
- Review Proposals with Customer
- Develop an Implementation Strategy
- Acquire Funding
- Implement Construction Strategy

Overall Benefits to FritoLay

- \$2.2 million annual energy savings
- \$750, 000 maintenance savings
- Standardized Design and Equipment
- Knowledge and Experience Retention
- Economies of Scale Competitive Pricing
- Minimal Internal Effort
- Energy Goals Attained

Conclusion:

- Achieved FritoLay Energy Program Goals
- Minimized FritoLay Effort and Resources
- Leveraged Wheatstone Skills and Resources
- Produced Win/Win Results

Question and Answer

Contact:

Jim Dore

Director Of Sales and Marketing

770.916.7107 fax: 770.916.7108

Cell: 404.428.2343

Jim.dore@wheatstoneenergy.com

www.wheatstoneenergy.com

Questions & Discussion

Energy Awareness Month

October is Energy Awareness Month

www.energystar.gov/energymonth

Upcoming Web Conferences

November 17 – Increasing Energy Performance with CHP

January 19 – ENERGY STAR Update

www.energystar.gov/networking

Thank You!