

Top 3 Energy Projects

June 20, 2007

Call-in Number: 1-866-299-3188 Conference Code: 202 343 9965

U.S. ENVIRONMENTAL PROTECTION AGENCY

About The Web Conferences

- Monthly
- Topics are structured on a strategic approach to energy management
- Opportunity to share ideas with others
- Slides are a starting point for discussion
- Open & Interactive

Web Conference Tips

- <u>Mute phone</u> when listening! Improves sound quality for everyone.
 Use * 6 to mute and # 6 to un-mute
- Hold & Music If your phone system has music-on-hold, please don't put the web conference on hold!
- Presentation slides will be sent by email to all participants following the web conference.

Today's Web Conference

- Welcome
- Andrew Kitchens Hines
- Bill Allemon & Kim Humes Ford
- Announcements

Energy Star Energy Management Networking Web Conference

June, 2007

Andrew Kitchens

Senior Manager

Corporate Engineering

- Privately-owned, entrepreneurial firm
- Regional Offices Houston, San Francisco, Chicago, New York, Atlanta, London
- 3,150 employees worldwide 2,100 in U.S. and 1,150 outside U.S.
- Offices in 96 cities 67 in U.S. and 29 cities outside U.S. and 15 foreign countries
- Over 730 projects developed or acquired globally
- Over US \$16 Bn of assets under management with Hines equity
- Operate more than 250 properties, over 107 MM square feet
 - 50.8 MM square feet with Hines equity ownership
 - 56.9 MM square feet managed by Hines for third parties

Hines Worldwide Presence

Hines

What are Hines Top Three Energy Projects?

Train engineering teams in energy management

Hir	le	s									Con	ipan 1 d	Uni	ity R	eport 7 200									
	-		-			and the R					1	6	-	-		-	N/M		-	-	-	-	Corrections.	I Lines
-	÷	1	2	60°	ŝ	-	Anani J	-	All and Ref	553	-	÷	100.1 2011	100	583		1000	252	ing Cons BA	30.0	25	200 2007 2007	ine in See See	i'm.
-	Ph w		101	1.00			-	_			_	_	_		_	_								_
-	Here	783.5	11.54	Della M	H-2808		8.7 ZI	M/F	HC11	3835-88	-	U UNI	-00	84	1210	TIDEM	COMM.	NC	0.798	acur	12184	MACC	1081 1.41	-875
10-100 A	100		2.95	9104	-	-110	1.48	100	10.00	3.86	10.05	300	1200	APR -	LICE	1000	10.00	925	200	NUM	005	8.75	CTK DOP	28
•	internal Approximation	-	122	an a				-	-		-		-	-	-	-	Langer .	**	-	-	-	-	-	-
10-0010	-		UR.	-	401	1-015	63-8	458		414	1012H	- 185	more.		1.85	Care .	1018	0.84	1876	- 045	30.84	-	THE PAR	1.26
	CHH	100	100.0	U 40H	CORE DA	2464	1 241	100	HPOR NTS	317885	11.00	CONTRACT OF CONTRACT	1.0	100	100	110	0401	14	N.C.S.	110	2000	NAME:	3311.00	CDR.
	1000		and a	100 mg	-		-	-	-	-	-	-	-	ine.	-	-	1.14.00	**	****	-	-	-	-	-
			un.			10.00	-	2.44	100		1000	100	1.00		1000		10.05	100	1.05	1.44	THE OWNER		10.00 - 100	1.04
								99	100	Con	party U	SRY RE	port to	Cont	perisons									
	100						0.6.160	101201	A 100 14	00198-0		N MARK	64 H00	Co and a	up con a	a 5, mag 100	140108	conce						
	100.000	1.000	ALC: N	AND IN T		100	autors.	10.00	101-100	and show the	-	eren .	100	10.0	-	and the second	-	-	-	-	12.54	-		
-	-	in jer			-	10				1.1	5.53		-		1	1	120		2013	1.1			10015	
			1.00	Distant.	1.10	1.000	1.000	100	- 44	1.00	1110	1000	1.00	24.0	1100	201	2.10	1.44	1100	10.00	21.05	11.00	22.0 0.000	16.75
-	See."	6- B.P	. 13.24	in a s	angen -			-		-		-	-	-			-		-	-		-		-
ALC: NO DECISION			PEN.	0.05	140	1,200	1.10	1.00%	6.00	1.120	10.00	1.000	2.05	deare.	100	10.0	140%	100	1446	0.00	1110	1100	2115 0.05	115
-	See.4	66 E.A	1128	ini ya k Manaz	an an Na an an		-	-	-	-	-		-	-	-	-			-	-	-	-	-	-
Record re-			2015	1485	147	L Lars	3,246	LUN	. 428	1.128	00208	105	203 5	1105	105	966	1275	100	100	140	10100	635	2126 626	112%
-	6-m/4	Rive Bulle	C 1120	an	NAME OF T	176	-	-	-	11.798		. mail	3.46	INC	-	-	-				21.00	-		-0.0
*****			-	-1156				100	-	110		***	1010		***	1010		-158	1.10	-	-1156	41.755	P #5 416	
	2.04					33	0.93	201			Č,m.	in the	of some	Ervia		10.51		88			è90			101.00

Understand how energy is used to support the efficient operation of the building within the rate structure

Understand utility reporting techniques and the utility rate structure

Train engineering teams in energy management

o Explore and evaluate new energy savings technologies

Those that make sense for the property are presented in a professional manner to management and ownership for evaluation

Feasible energy reduction programs that have been approved are implemented

Operate the HVAC system proficiently

- o Understand the HVAC design intent for the building
- o Understand the HVAC plant's capabilities
- o Understand the building's unique HVAC characteristics
- o Understand the building's limitations relative to providing HVAC

OPERATE

Hines

Energy Project #2 TRAIN -

Operate the HVAC system proficiently

- o Utilize economizers
- o Utilize optimal start-up / free-wheeling / duty-cycling
- o Properly sequence equipment

Energy Project #2 TRAIN

- OPERATE

Operate the HVAC system proficiently

o Operating schedules optimized for efficient operation (occupancy, seasons, etc.)

o Routine physical verification of on/off functions

OPERATE

Hines

Maintain the HVAC system thoroughly

- o Solid water treatment for heat transfer (chillers, air handlers, exchangers)
- o Air handlers (filters, oil/lubrication, condensate control)
- o Pumping systems (strainers, alignments)

Commission the HVAC system and equipment

- o Chiller performance
- o Air handlers (dampers, control valves, sensors, controllers)
- o Terminal boxes (dampers, control valves, sensors, controllers)
- o Water volume performance (pumps, control valves, sensors, controllers)

Cooling 15-25%

A chiller can consume 20% of a building's total electricity

50% inefficiency factor in a chiller can equate to **10% increase in the building's** electrical consumption

Hines conducts chiller performance tests on a regular basis

- Performance is calculated based on real-time conditions, measuring;
- o Water temperatures
- o Water volumes
- o Electrical voltages and amps

Each test takes about 45-minutes to complete and provides prompt indications of declining chiller performance

Common causes of decreased chiller efficiency:

- o Poor heat transfer
- o Lubricant contamination of the refrigerant
- o Improper refrigerant charge

Measures to increase chiller efficiency include:

- o Cleaning water tubes
- o Adjusting / changing refrigerant charge
- o Adjusting water volumes

An 800-ton Chiller operating at 550 tons (partial load)

Rated at .64 kilowatts per ton

0.64 kilowatts per ton x 550 tons = 352 kilowatts per hour

352 kilowatts per hour x 12 hours = 4,224 kilowatt hours (kWhs)

\$0.10 per kWh electric rate

\$0.10 x 4,224 kWhs = \$422 / day

Operating at .83 kilowatts per ton (about a 30% inefficiency)	0.83 kilowatts per ton x 550 tons 456 kilowatts per hour						
\$548 - \$422 = \$126 / operating day	456 kilowatts x 12 hours = 5,478 kilowatt hours (kWhs)						
\$126 x 248 operating days / year	\$0.10 per kWh electric rate						
\$31,248 Annual Savings	\$0.10 x 5,478 kWhs = \$548 / day						

Hines

Partnering with the EPA

100+ Buildings with the ES Label Representing over 64-million sq ft

Keeping Hines energy managers informed

Over 50 energy-related Best Practices

myHines.com – the Hines resource for energy management material Hines

Buildings of superior quality and architectural merit backed by responsive, professional management attract better tenants, command higher rents and retain their value, despite the ups and downs of real estate cycles

2007 50th Anniversary

Gerald Hines Founder of Hines

Ford Motor Company

Energy Efficiency Project Highlights

Bill Allemon CEM, Manager, Energy Efficiency Kim Humes PE, Energy Program Manager

June 20, 2007

Agenda

- Ford Utility Monitoring System
- Commercial Facility Energy Saving Upgrades
- Fumes to Fuel Project

Ford Utility Monitoring System (UMMS)

- Near real time monitoring incoming utility meters
 - Electricity: 15 minute
 - Natural Gas: hourly/daily
- System Overview
 - 43 Assembly & Manufacturing Sites in North America
 - 200+ meters
 - Power Quality monitoring at 12 key sites
- Access via password protected external webpage

Data Flow

Utility Meter Utility Monitoring Panel Host Server w/cell phone (External) Pulse \Box Transmitter 0000 Any computer on with internet access

Benefits of the Utility Monitoring System

 Effective tool in reducing kw demand during non-production periods

- Like facility (Assembly, Stamping, Manufacturing) kw demand comparisons monitored to identify BIC plants and transfer best practices to other similar plants
- VPN access used to develop customized reporting by plant for weekly review

Jun 01 2007 to Jun 16 2007

Benefits of the Utility Monitoring System

- Provides access to electricity and natural gas usage data to better manage and reduce energy costs/consumption
 - Significantly reduces timing for energy data collection and reporting
 - Reduces purchasing cost of natural gas via access to accurate/timely consumption data for daily balancing
 - Improves benchmarking and identification of BIC practices
 - Identifies peak shaving opportunities for electricity

May 01 2007 to Jun 01 2007

Benefits of the Utility Monitoring System

- Web-based Real Time Power Quality monitoring
 - Ability to view/monitor power quality events at key sites
 - Easy to view multiple-plant data simultaneously
 - Historical data availability of PQ events
 - Eliminates need for unique software at each plant
 - Provides documentation for potential lost-cost sharing with utility company

Warning: some events are not shown because they are beyond the boundary of the current chart overlay.

System Highlights

- User-friendly software
 - User customized dashboard allows quick access to data
 - Data trends and analysis are easy to create and share
 - Excel download allows limitless data analysis
 - Graphs can be cut and pasted into emails for distribution

ION Enterprise Energy Management

System Highlights

- Accessible from work and home
 - Software accessible via password protected website
- Externally Hosted Software
 - Schneider server hosts application
 - Internal IT hosting barriers eliminated
 - Lower installation cost (hard wired and wireless)
 - Software upgrades included in maintenance agreement
- Wireless Data Transfer
 - Wireless modems and modhoppers reduced infrastructure cost

N. EEM

Logout

Ford World Headquarters Energy Performance Contract

Annual Savings

- 9% overall energy reduction
- **\$** 369,200
- 1,354,777 kWh electricity
- 46,138 MMBtu natural gas
- 12,555,170 gallons water
- 1,370 tons of CO₂ greenhouse gas emissions

Other Benefits

- Reduced environmental impact of cooling tower wastewater
- Reduced chemical consumption for cooling tower water treatment

Concepts Implemented

- CO₂ Demand controlled ventilation
- Electrostatic cooling tower water treatment system
- Retrofitted existing lighting with energy efficient components
- Water saving faucets, toilets and urinals
- Variable frequency drives on chilled water system

Ford Research and Innovation Center Energy Performance Contract

Annual Savings

- -10%+ overall energy reduction
- **\$245,300**
- 2,654,000 kWh electricity
- 18,279 MMBtu natural gas
- 3,100 tons of CO2 greenhouse gas emissions

Concepts Implemented

- CO₂ Demand controlled ventilation
- Retrofitted existing lighting with energy efficient components
- Added set back and occupancy control for laboratory exhaust and fume hoods
- Optimized scheduling of building air handling units.

Ford Motor Company Paint Fumes-to-Fuel System

- Tenfold concentration of VOC's + incineration using natural gas
- Meets environmental regulations
- However...
 - High energy demand
 - Produces significant amount of NO_x , SO_x , CO_2 emissions
 - Maintenance issues

Fumes to Fuel Project New VOC abatement technology

- >2000-fold concentration + conversion into electricity
 - Virtual elimination of NO_x , SO_x ; 10-fold reduction in CO_2 emissions
 - Net energy production
 - Can run on natural gas in off-hours to produce cheap electricity

Fumes to Fuel Project Concentrator

- Carbon wheel technology yields tenfold byvolume concentration
 - Not sufficient concentration for fuel cell system or even flare
 - Safety (fire) and maintenance issues
- Fluidized bed systems achieve 1,000-10,000 fold concentration
 - Early fluidized beds had a durability problem (adsorber beads)
 - FBC's now used routinely in various industries
 - Furniture painting, semiconductor, Teflon tubing industries, printing, ...
 - First automotive application

Traditional Carbon Wheel

Fumes to Fuel Project 5 kW Alpha prototype demonstration

Dearborn Assembly Plant, July 17, 2003

Fumes to Fuel Project Beta System

- Utilizes Stirling cycle engine for VOC control and energy generation
- Eliminates the need for fuel reformation
- Uses fuel in the vapor phase

Fumes to Fuel Project Status to Date

- System Fluidizes and is Ready to Receive Process Air in <20 Minutes</p>
- System Run in Automatic Mode for Days without interruption
- Stirling Engine Dual Fuel Train a Success
- Stirling Engine Run on 100% Captured Solvent, 0% Captured Solvent (ie. Natural Gas), Full Range of the Blend

Thank You for your time and interest!

Questions & Discussion

Upcoming Web Conferences

July 11 – Leveraging ENERGY STAR Change A Light

July 18 – Saving Energy with Water Efficiency

August 8 – Energy Auditing

September 19 – Retro-commissioning

Download past web conference presentations at: www.energystar.gov/index.cfm?c=networking.bus_networking

Questions or comments? Contact: tunnessen.walt@epa.gov

Thank You!