text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 99-001
Serendipity: Cell Structure Study Uncovers Taxol's Secrets

January 7, 1999

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Scientists funded by the National Science Foundation (NSF) have learned exactly how the anti-cancer drug Taxol kills tumor cells. Their new insight into Taxol, happened upon during a study of molecular structures related to cell division, may aid researchers in developing more advanced cancer-fighting drugs.

Biophysicist Lee Makowski of Florida State University (FSU), in collaboration with researchers led by Bonnie Wallace of the University of London's Birkbeck College, published his findings on Taxol in the January 8th issue of the Journal of Molecular Biology.

Makowski and his research group at FSU were studying the structure of microtubules, the molecular cables that pull two cells apart during cell division, when their research led them to examine how Taxol triggers apoptosis, a natural mechanism that kills malfunctioning cells as part of the body's defense against cancer.

For more 25 years, researchers have known that Taxol targets microtubules and prevents cells from dividing, which then triggers apoptosis, a cellular mechanism also referred to as programmed cell death. Makowski's group, however, found that Taxol also attacks a second target in cancer cells--one that may make it easier for researchers to develop more efficient anti-cancer drugs.

In order to find which other parts of a cell Taxol could bind, the Florida State researchers created a huge library of bacterial viruses, each genetically engineered to exhibit a fragment of a different cellular protein. They then screened the library to find which bacterial viruses bind to Taxol.

In addition to microtubules, they found that Taxol also binds to a protein called Bcl-2, a molecule first discovered in human B-cell leukemias. Bcl-2 is an important component in the mechanisms that cause apoptosis, acting as a safeguard to block the cell from completing the process of cell death. By attaching to Bcl-2, Taxol stops the protein from working and allows apoptosis to continue.

"It's a two-pronged attack against cancer cells," said Makowski, currently an NSF program manager in the division of biological infrastructure. "Taxol keeps cells from dividing, which halts cell growth, but then it also binds to molecules of the Bcl-2 protein, which causes cell death."

As effective as Taxol is against certain types of cancer, researchers need to know more about how it works in order to improve it.

"Using these complicated, yet elegant laboratory techniques, we've provided a model through which researchers can imitate protein targets in the human body. Researchers can then refine drugs more easily, leading to more effective therapies with fewer side effects," said Makowski.

-NSF-

Media Contacts
Greg Lester, NFS (703) 292-8070 glester@nsf.gov

Program Contacts
Lee Makowski, NSF (703) 292-8470 lmakosk@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
May 25, 2007
Text Only


Last Updated: May 25, 2007