text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Geosciences (GEO)
 
Geosciences (GEO)
design element
GEO Home
About GEO
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
GEO Education Program
GEO Diversity Program
See Additional GEO Resources
View GEO Staff
GEO Organizations
Atmospheric Sciences (ATM)
Earth Sciences (EAR)
Ocean Sciences (OCE)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional GEO Resources
GEO Education & Diversity Program
GEO Data Policies
Merit Review Broader Impacts Criterion: Representative Activities
GEO 2000
Facilities to Empower Geosciences Discovery 2004-2008
U.S. Global Change Research Program
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments


Press Release 08-125
Scientists Test System to Forecast Flash Floods along Colorado's Front Range

People near vulnerable creeks, streams, rivers may soon have advance notice

Photo of a flash flood.

Communities may soon have advance warning of flash floods.
Credit and Larger Version

July 22, 2008

People living near vulnerable creeks and rivers along Colorado's Front Range may soon get advance notice of potentially deadly floods, thanks to a new forecasting system being tested this summer by the National Center for Atmospheric Research (NCAR) in Boulder, Colo.

Known as the NCAR Front Range Flash Flood Prediction System, it combines detailed atmospheric conditions with information about stream flows to predict floods along specific streams and catchments.

"The goal is to provide improved guidance about the likelihood of a flash flood event many minutes out to an hour or two before the waters start rising," says NCAR scientist David Gochis, one of the developers of the new forecasting system. "We want to increase the lead time of a forecast, while decreasing the uncertainty about whether a flood will occur."

Funding to create the system came from the National Science Foundation (NSF), which is NCAR's sponsor, as well as the National Oceanic and Atmospheric Administration.

"This project is an excellent example of using basic research findings to improve forecasts important to saving lives," said Cliff Jacobs, program director in NSF's Division of Atmospheric Sciences. 

The Front Range, because of its steep topography and intense summer storms, is unusually vulnerable to summertime flash floods. Such floods have claimed the lives of hundreds of people and accounted for hundreds of millions of dollars in damages throughout the region's history.

Flash floods are difficult to predict because they happen suddenly, often the result of heavy cloudbursts that may stall over a particular watershed.

Forecasters can give a few hours' notice that weather conditions might lead to flooding, and radars can detect heavy rain within minutes.

But whether a flood hits a specific river or creek also depends on soil, topographic, and hydrologic conditions that are characteristic to particular watersheds. Thus, emergency managers may not know that a flash flood is imminent until the waters begin to rise.

The goal of the NCAR system is to provide officials at least 30 minutes warning of flash flooding in specific watersheds, and possibly as much as an hour or two.

It is designed to pinpoint whether a particular stream is likely to overflow, as well as forecast the likelihood of flash floods producing events across a larger region.

Scientists will monitor the system's performance each day, tracking potential flood events from Colorado Springs in the south to Fort Collins in the north.

After this summer's test of the system, researchers will evaluate its performance and make improvements as needed.

"This summer is a proof-of-concept test," Gochis says. "If we can show that our system has some reasonable skill in predicting floods, we think officials may become more interested in using it along with their existing suites of tools."

To predict weather events, the system utilizes National Weather Service radar observations of current conditions and short-term computerized weather forecasts.  The weather forecasts are generated by NCAR's Weather Research and Forecasting (WRF) model, which produces highly detailed simulations of the local atmosphere.

The system integrates the weather information with datasets about hydrology and terrain. These datasets incorporate information about land surface conditions, such as terrain slope, soil composition and surface vegetation. They also include information on stream flow and channel conditions.

By combining information about the land and the atmosphere, the system can project whether an intense storm is likely to stall over a specific area of the Front Range and how that may impact the flow of water on the ground.

"This new system is unique in that it provides a detailed forecast of the location and duration of a severe storm, as well as the watershed's likely response to the heavy rain," explains NCAR scientist David Yates.

"Since flash floods are complex and fast-moving events, we need to know about both weather and ground conditions in order to predict them."

-NSF-

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
David Hosansky, NCAR (303) 497-8611 hosansky@ucar.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $6.06 billion. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Photo of a house inundated by flooding.
Scientists are testing a new, high-tech system that will better forecast flash floods.
Credit and Larger Version



Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation Geosciences (GEO)
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
July 22, 2008
Text Only


Last Updated: July 22, 2008