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(1) Why do We need sTATisTics?

Statistical methods are required to ensure that data are 
interpreted correctly and that apparent relationships are 
meaningful (or “significant”) and not simply chance 
occurrences.

A “statistic” is a numerical value that describes some 
property of a data set. The most commonly used 
statistics are the average (or “mean”) value, and the 
“standard deviation,” which is a measure of the vari-
ability within a data set around the mean value. The 
“variance” is the square of the standard deviation. The 
linear trend is another example of a data “statistic.”

Two important concepts in statistics are the “popula-
tion” and the “sample.” The population is a theoretical 
concept, an idealized representation of the set of all 
possible values of some measured quantity. An exam-
ple would be if we were able to measure temperatures 
continuously at a single site for all time – the set of all 
values (which would be infinite in size in this case) 
would be the population of temperatures for that site. 
A sample is what we actually see and can measure: i.e., 
what we have available for statistical analysis, and a 
necessarily limited subset of the population. In the real 
world, all we ever have is limited samples, from which 
we try to estimate the properties of the population. 
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Abstract
The purpose of this Appendix is to explain the statistical terms and methods used in this Report. We begin by 
introducing a number of terms: mean, standard deviation, variance, linear trend, sample, population, signal, and 
noise. Examples are given of linear trends in surface, tropospheric, and stratospheric temperatures. The least 
squares method for calculating a best- fit linear trend is described. The method for quantifying the statistical 
uncertainty in a linear trend is explained, introducing the concepts of standard error, confidence intervals, and 
significance testing. A method to account for the effects of temporal autocorrelation on confidence intervals 
and significance tests is described. The issue of comparing two data sets to decide whether differences in their 
trends could have occurred by chance is discussed. The analysis of trends in state-of-the-art climate model 
results is a special case because we frequently have an ensemble of simulations for a particular forcing case. 
The effect of ensemble averaging on confidence intervals is illustrated. Finally, the issue of practical versus 
statistical significance is discussed. In practice, it is important to consider construction uncertainties as well 
as statistical uncertainties. An example is given showing that these two sources of trend uncertainty can be of 
comparable magnitude. 

As an analogy, the population might be an infinite jar 
of marbles, a certain proportion of which (say 60%) 
is blue and the rest (40%) are red. We can only draw 
off a finite number of these marbles (a sample) at a 
time; and, when we measure the numbers of blue and 
red marbles in the sample, they need not be in the 
precise ratio 60:40. The ratio we measure is called a 
“sample statistic.” It is an estimate of some hypotheti-
cal underlying population value (the corresponding 
“population parameter”). The techniques of statistical 
science allow us to make optimum use of the sample 
statistic and obtain a best estimate of the population 
parameter. Statistical science also allows us to quantify 
the uncertainty in this estimate.

(2) definiTion of A LineAR 
TRend

If data show underlying smooth changes with time, we 
refer to these changes as a trend. The simplest type of 
change is a linear (or straight line) trend, a continuous 
increase or decrease over time. For example, the net 
effect of increasing greenhouse-gas concentrations 
and other human-induced factors is expected to cause 
warming at the surface and in the troposphere and 
cooling in the stratosphere (see Figure 1). Warming 
corresponds to a positive (or increasing) linear trend, 
while cooling corresponds to a negative (or decreasing) 
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trend. Over the present study period (1958 onwards), the 
expected changes due to “anthropogenic” (human-induced) 
effects are expected to be approximately linear. In some 
cases, natural factors have caused substantial deviations 
from linearity (see, e.g., the lower stratospheric changes in 
Figure 1B), but the linear trend still provides a simple way 
of characterizing the overall change and of quantifying its 
magnitude.

Alternatively, there may be some physical process that 
causes a rapid switch or change from one mode of behavior 
to another. In such a case the overall behavior might best be 
described as a linear trend to the change-point, a step change 
at this point, followed by a second linear trend portion. 
Tropospheric temperatures from radiosondes show this type 
of behavior, with an apparent step increase in temperature 
occurring around 1976 (see Chapter 3, Figure 3.2a, or Figure 
1 in the Executive Summary). 

Step changes can lead to apparently contradictory results. 
For example, a data set that shows an initial cooling trend, 
followed by a large upward step, followed by a renewed 
cooling trend could have an overall warming trend. To state 
simply that the data showed overall warming would mis-

represent the true underlying 
behavior. 

A linear trend may there-
fore be deceptive if the trend 
number is given in isolation, 
removed from the original 
data. Nevertheless, used ap-
propriately, linear trends pro-
vide the simplest and most 
convenient way to describe 
the overall change over time 
in a data set, and are widely 
used.

Linear temperature trends 
are usually quantified as the 
temperature change per year 
or per decade (even when the 
data are available on a month 
by month basis). For example, 
the trend for the surface tem-
perature data shown in Figure 
1 is 0.169ºC per decade. (Note 
that 3 decimals are given 
here purely for mathematical 
convenience. The accuracy of 
these trends is much less, as 
is shown by the confidence 

intervals given in the Figure and in the Tables in Chapter 
3. Precision should not be confused with accuracy.) Giving 
trends per decade is a more convenient representation than 
the trend per month, which, in this case, would be 0.169/120 
= 0.00141ºC per month, a very small number. An alternative 
method is to use the “total change” over the full data period 
– i.e., the total change for the fitted linear trend line from the 
start to the end of the record (see Figure 2 in the Executive 
Summary). In Figure 1 here, the data shown span January 
1979 through December 2004 (312 months or 2.6 decades). 
The total change is therefore 0.169x2.6 = 0.439ºC. 
 
(3) exPecTed TemPeRATuRe 
chAnges: signAL And noise

Different physical processes generally cause different spatial 
and temporal patterns of change. For example, anthropo-
genic emissions of halocarbons at the surface have led to a 
reduction in stratospheric ozone and a contribution to strato-
spheric cooling over the past three or four decades. Now that 
these chemicals are controlled under the Montreal Protocol, 
the concentrations of the controlled species are decreasing 
and there is a trend towards a recovery of the ozone layer. 
The eventual long-term effect on stratospheric temperatures 

figure 1: Examples of temperature time series with best-fit (least squares) linear trends: A, 
global-mean surface temperature from the UKMO Hadley Centre/Climatic Research Unit data 
set (HadCRUT2v); and B, global-mean MSU channel 4 data (T4) for the lower stratosphere 
from the University of Alabama at Huntsville (UAH). Note the much larger temperature scale 
on the lower panel. Temperature changes are expressed as anomalies relative to the 1979 to 
1999 mean (252 months). Dates for the eruptions of El Chichón and Mt. Pinatubo are shown by 
vertical lines. El Niños are shown by the shaded areas. The trend values are as given in Chapter 
3, Table 3.3. The ± values define the 95% confidence intervals for the trends, also from Chapter 
3, Table 3.3. The smaller confidence interval for the surface data shows that the straight line fit 
in this case is better than the straight line fit to the stratospheric data.
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is expected to be non-linear: a cooling up until the late 1990s 
followed by a warming as the ozone layer recovers. 

This is not the only process affecting stratospheric tempera-
tures. Increasing concentrations of greenhouse gases lead 
to stratospheric cooling; and explosive volcanic eruptions 
cause sharp, but relatively short-lived stratospheric warm-
ings (see Figure 1)1. There are also natural variations, most 
notably those associated with the Quasi-Bienniel Oscillation 
(QBO)2. Stratospheric temperature changes (indeed, changes 
at all levels of the atmosphere) are therefore the combined 
results of a number of different processes acting across all 
space and time scales. 

In climate science, a primary goal is to identify changes 
associated with specific physical processes (causal factors) 
or combinations of processes. Such changes are referred to 
as “signals.” Identification of signals in the climate record 
is referred to as the “detection and attribution” (D&A) prob-
lem. “Detection” is the identification of an unusual change, 
through the use of statistical techniques like significance 
testing (see below). “Attribution” is the association of a 
specific cause or causes with the detected changes in a sta-
tistically rigorous way. 

The reason why D&A is a difficult and challenging statisti-
cal problem is because climate signals do not occur in isola-
tion. In addition to these signals, temperature fluctuations 
in all parts of the atmosphere occur even in the absence of 
external driving forces. These internally generated fluctua-
tions represent the “noise” against which we seek to identify 
specific externally forced signals. All climate records, there-
fore, are “noisy,” with the noise of this natural variability 
tending to obscure the externally driven changes. Figure 1 
illustrates this. At the surface, a primary noise component is 
the variability associated with ENSO (the El Niño/Southern 

�  Figure 1 shows a number of interesting features. In the strato-
sphere, the warmings following the eruptions of El Chichón (April 
1982) and Mt Pinatubo (June 1991) are pronounced. For El Chichón, 
the warming appears to start before the eruption, but this is just a 
chance natural fluctuation. The overall cooling trend is what is ex-
pected to occur due to anthropogenic influences. At the surface, on 
short time scales, there is a complex combination of effects. There 
is no clear cooling after El Chichón, primarily because this was 
offset by the very strong 1982/83 El Niño. Cooling after Pinatubo 
is more apparent, but this was also partly offset by the El Niño 
around 1992/93 (which was much weaker than that of 1982/83). El 
Niño events, characterized by warm temperatures in the tropical 
Pacific, have a noticeable effect on global-mean temperature, but 
the effect lags behind the Pacific warming by 3-7 months. This is 
very clear in the surface temperature changes at and immediately 
after the 1986/87 and 1997/98 El Niños, also very large events. The 
most recent El Niños were weak and have no clear signature in the 
surface temperatures.   

�  The QBO is a quasi-periodic reversal in winds in the tropical strato-
sphere that leads to alternating warm and cold tropical stratospheric 
temperatures with a periodicity of 18 to 30 months.

Oscillation phenomenon), while, in the stratosphere, if our 
concern is to identify anthropogenic influences, the warm-
ings after the eruptions of El Chichón and Mt. Pinatubo 
constitute noise. 

If the underlying response to external forcing is small rela-
tive to the noise, then, by chance, we may see a trend in the 
data due to random fluctuations purely as a result of the 
noise. The science of statistics provides methods through 
which we can decide whether the trend we observe is “real” 
(i.e., a signal associated with some causal factor) or simply 
a random fluctuation (i.e., noise).  

(4) deRiving TRend sTATisTics

There are a number of different ways to quantify linear 
trends. Before doing anything, however, we should always 
inspect the data visually to see whether a linear trend 
model is appropriate. For example, in Figure 1, the linear 
warming trend appears to be a reasonable description for 
the surface data (top panel), but it is clear that a linear 
cooling model for the lower stratosphere (lower panel) 
fails to capture some of the more complex changes that 
are evident in these data. Nevertheless, the cooling trend 
line does give a good idea of the magnitude of the overall 
change.

There are different ways to fit a straight line to the data. Most 
frequently, a “best-fit” straight line is defined by finding the 
particular line that minimizes the sum, over all data points, 
of the squares of deviations about the line (these deviations 
are generally referred to as “residuals” or “errors”). This is 
an example of a more general procedure called least squares 
regression. 

In linear regression analysis, a predictand (Y) is expressed 
as a linear combination of one or more predictors (Xi):

          ….. (1)           
    
Where the subscript “est” is used to indicate that this is the 
estimate of Y that is given by the fitted relationship. Dif-
ferences between the actual and estimated values of Y, the 
residuals, are defined by

    ….. (2)  
  
For linear trend analysis of temperature data (T) there is a 
single predictor, time (t; t = 1,2,3, …). The time points are 
almost always evenly spaced, month-by-month, year-by-
year, etc. – but this is not a necessary restriction. In the linear 
trend case, the regression equation becomes:
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    ….. (3)  

In equation (3), “b” is the slope of the fitted line – i.e., the 
linear trend value. This is a sample statistic, i.e., it is an esti-
mate of the corresponding underlying population parameter. 
To distinguish the population parameter from the sample 
value, the population trend value is denoted ß. 

The formula for b is:

  ….. (4)

Where  denotes the mean value, and the summation is over 
t = 1,2,3, … n (i.e., the sample size is n).  Tt denotes the 
value of temperature, T, at time “t”. Equation (4) produces 
an unbiased estimate3 of population trend, ß. 

For the usual case of evenly spaced time points,  = (n+1)/2, 
and

   ….. (5) 

When we are examining deviations from the fitted line 
the sign of the deviation is not important. This is why we 
consider the squares of the residuals in least squares regres-
sion. An important and desirable characteristic of the least 
squares method is that the average of the residuals is zero. 

Estimates of the linear trend are sensitive to points at the 
start or end of the data set. For example, if the last point, by 
chance, happened to be unusually high, then the fitted trend 
might place undue weight on this single value and lead to 
an estimate of the trend that was too high. This is more of a 
problem with small sample sizes (i.e., for trends over short 
time periods). For example, if we considered tropospheric 
data over 1979 through 1998, because of the unusual warmth 
in 1998 (associated with the strong 1997/98 El Niño; see 
Figure 1), the calculated trend may be an overestimate of 
the true underlying trend.

There are alternative ways to estimate the linear trend that 
are less sensitive to endpoints. Although we recognize this 
problem, for the data used in this Report tests using different 
trend estimators give results that are virtually the same as 
those based on the standard least-squares trend estimator.   

�  An unbiased estimator is one where, if the same experiment were 
to be performed over and over again under identical conditions, then 
the long-run average of the estimator will be equal to the parameter 
that we are trying to estimate. In contrast, in a biased estimator, there 
will always be some slight difference between the long-run average 
and the true parameter value that does not tend to zero no matter 
how many times the experiment is repeated. Since our goal is to 
estimate population parameters, it is clear that unbiased estimators 
are preferred.

(5) TRend unceRTAinTies

Some examples of fitted linear trend lines are shown in 
Figure 1. This Figure shows monthly temperature data for 
the surface and for the lower stratosphere (MSU channel 
4) over 1979 through 2004 (312 months). In both cases 
there is a clear trend, but the fit is better for the surface 
data. The trend values (i.e., the slopes of the best fit 
straight lines that are shown superimposed on monthly 
data) are +0.17ºC/decade for the surface and –0.45ºC/
decade for the stratosphere. For the stratosphere, although 
there is a pronounced overall cooling trend, as noted 
above, describing the change simply as a linear cooling 
considerably oversimplifies the behavior of the data1.

A measure of how well the straight line fits the data (i.e., 
the “goodness of fit”) is the average value of the squares of 
the residuals. The smaller this is, the better is the fit. The 
simplest way to define this average would be to divide the 
sum of the squares of the residuals by the sample size (i.e., 
the number of data points, n). In fact, it is usually considered 
more correct to divide by n – 2 rather than n, because some 
information is lost as a result of the fitting process and this 
loss of information must be accounted for. Dividing by n – 2 
is required in order to produce an unbiased estimator3.

The population parameter we are trying to estimate here is 
the standard deviation of the trend estimate, or its square, the 
variance of the distribution of  b, which we denote Var(b). 
The larger the value of Var(b), the more uncertain is b as an 
estimate of the population value, ß. 

The formula for Var(b) is …

   ….. (6)  
     
where σ2 is the population value for the variance of the 
residuals. Unfortunately, we do not in general know what 
σ2 is, so we must use an unbiased sample estimate of σ2. 
This estimate is known as the Mean Square Error (MSE), 
defined by …

   ….. (7)

Hence, equation (6) becomes

  ….. (8)  
         
where SE, the square root of Var(b), is called the “standard 
error” of the trend estimate. The smaller the value of the 
standard error, the better the fit of the data to the linear 
change description and the smaller the uncertainty in the 
sample trend as an estimate of the underlying population 
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trend value. The standard error is the primary measure of 
trend uncertainty. The standard error will be large if the 
MSE is large, and the MSE will be large if the data points 
show large scatter about the fitted line.

There are assumptions made in going from equation (6) to 
(8): viz. that the residuals have mean zero and common vari-
ance, that they are Normally (or “Gaussian”) distributed4, 
and that they are uncorrelated or statistically independent. 
In climatological applications, the first two assumptions are 
generally valid. The third assumption, however, is often not 
justified. We return to this below.

(6) confidence inTeRvALs And 
significAnce TesTing

In statistics we try to decide whether a trend is an indication 
of some underlying cause, or merely a chance fluctuation. 
Even purely random data may show periods of noticeable 
upward or downward trends, so how do we identify these 
cases? 

There are two common approaches to this problem, through 
significance testing and by defining confidence intervals. 
The basis of both methods is the determination of the “sam-
pling distribution” of the trend, i.e., the distribution of trend 
estimates that would occur if we analyzed data that were 
randomly scattered about a given straight line with slope 
ß. This distribution is approximately Gaussian with a mean 
value equal to ß and a variance (standard deviation squared) 
given by equation (8). More correctly, the distribution to use 
is Student’s “t” distribution, named after the pseudonym 
“Student” used by the statistician William Gosset. For large 
samples, however (n more than about 30), the distribution is 
very nearly Gaussian. 
   
confidence intervals
The larger the standard error of the trend, the more uncertain 
is the slope of the fitted line. We express this uncertainty 
probabilistically by defining confidence intervals for the 
trend associated with different probabilities. If the distribu-
tion of trend values were strictly Gaussian, then the range b 
– SE to b + SE would represent the 68% confidence interval 
(C.I.) because the probability of a value lying in that range for 
a Gaussian distribution is 0.68. The range b – 1.645(SE) to b 
+ 1.645(SE) would give the 90% C.I.; the range b – 1.96(SE) 
to b + 1.96(SE) would give the 95% C.I.; and so on. Quite 
often, for simplicity, we use b – 2(SE) to b + 2(SE) to repre-

�  The “Gaussian” distribution (often called the “Normal” distribu-
tion) is the most well-known probability distribution. This has a 
characteristic symmetrical “bell” shape, and has the property that 
values near the center (or mean value) of the distribution are much 
more likely than values far from the center.

sent (to a good approximation) the 95% confidence interval. 
(This is often called the “two-sigma” confidence interval.) 
Examples of 95% confidence intervals are given in Figure 
1. Here, the smaller value for the surface data compared 
with the stratospheric data shows that a straight line fits the 
surface data better than it does the stratospheric data.

Because of the way C.I.s are usually represented graphically, 
as a bar centered on the best-fit estimate, they are often 
referred to as “error bars.” Confidence intervals may be 
expressed in two ways, either (as above) as a range, or as a 
signed error magnitude. The approximate 95% confidence 
interval, therefore, may be expressed as b ± 2(SE), with ap-
propriate numerical values inserted for b and SE.
 
As will be explained further below, showing confidence 
interval for linear temperature trends may be deceptive, be-
cause the purely statistical uncertainties that they represent 
are not the only sources of uncertainty. Such confidence 
intervals quantify only one aspect of trend uncertainty, that 
arising from statistical noise in the data set. There are many 
other sources of uncertainty within any given temperature 
data set and these may be as or more important than statisti-
cal uncertainty. Showing just the statistical uncertainty may 
therefore provide a false sense of accuracy in the calculated 
trend.

significance Testing
An alternative method for assessing trends is hypothesis 
testing. In practice, it is much easier to disprove rather than 
prove a hypothesis. Thus, the standard statistical procedure 
in significance testing is to set up a hypothesis that we 
would like to disprove; we call this a “null hypothesis.” In 
the linear trend case, we are often interested in trying to 
decide whether an observed data trend that is noticeably 
different from zero is sufficiently different that it could 
not have occurred by chance – or, at least, that the prob-
ability that it could have occurred by chance is very small. 
The appropriate null hypothesis in this case would be that 
there was no underlying trend (ß = 0). If we disprove (i.e., 
“reject”) the null hypothesis, then we say that the observed 
trend is “statistically significant” at some level of confidence 
and we must accept some alternate hypothesis. The usual 
alternate hypothesis in temperature analyses is that the data 
show a real, externally forced warming (or cooling) trend. 
(In cases like this, the statistical analysis is predicated on 
the assumption that the observed data are reliable, which is 
not always the case. If a trend were found to be statistically 
significant, then an alternative possibility might be that the 
observed data were flawed.) 
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An alternative null hypothesis that often arises is when we 
are comparing an observed trend with some model expecta-
tion. Here, the null hypothesis is that the observed trend is 
equal to the model value. If our results led us to reject this 
null hypothesis, then (assuming again that the observed data 
are reliable) we would have to infer that the model result 
was flawed – either because the external forcing applied to 
the model was incorrect and/or because of deficiencies in 
the model itself.

An important factor in significance testing is whether we 
are concerned about deviations from some hypothesized 
value in any direction or only in one direction. This leads 
to two types of significance test, referred to as “one-tailed” 
(or “one-sided”) and “two-tailed” tests. A one-tailed test 
arises when we expect a trend in a specific direction (such 
as warming in the troposphere due to increasing green-
house-gas concentrations). Two-tailed tests arise when we 
are concerned only with whether the trend is different from 
zero, with no specification of whether the trend should be 
positive or negative. In temperature trend analyses we gener-
ally know the sign of the expected trend, so one-tailed tests 
are more common. 
    
The approach we use in significance testing is to determine 
the probability that the observed trend could have occurred 
by chance. As with the calculation of confidence intervals, 
this involves calculating the uncertainty in the fitted trend 
arising from the scatter of points about the trend line, deter-
mined by the standard error of the trend estimate (equation 
[8]). It is the ratio of the trend to the standard error (b/SE) 
that determines the probability that a null hypothesis is true 
or false. A large ratio (greater than 2, for example) would 
mean that (except for very small samples) the 95% C.I. did 
not include the zero trend value. In this case, the null hy-
pothesis is unlikely to be true, because the zero trend value, 
the value assumed under the null hypothesis, lies outside 
the range of trend values that are likely to have occurred 
purely by chance. 

If the probability that the null hypothesis is true is small, 
and less than a predetermined threshold level such as 0.05 
(5%) or 0.01 (1%), then the null hypothesis is unlikely to be 
correct. Such a low probability would mean that the observed 
trend could only have occurred by chance one time in 20 (or 
one time in 100), a highly unusual and therefore “signifi-
cant” result. In technical terms we would say that “the null 
hypothesis is rejected at the prescribed significance level”, 
and declare the result “significant at the 5% (or 1%) level.” 
We would then accept the alternate hypothesis that there 
was a real deterministic trend and, hence, some underlying 
causal factor.

Even with rigorous statistical testing, there is always a 
small probability that we might be wrong in rejecting a 
null hypothesis. The reverse is also true – we might accept 
a null hypothesis of no trend even when there is a real trend 
in the data. This is more likely to happen when the sample 
size is small. If the real trend is small and the magnitude 
of variability about the trend is large, it may require a very 
large sample in order to identify the trend above the back-
ground noise.

For the null hypothesis of zero trend, the distribution of 
trend values has mean zero and standard deviation equal to 
the standard error. Knowing this, we can calculate the prob-
ability that the actual trend value could have exceeded the 
observed value by chance if the null hypotheses were true 
(or, if we were using a two-tailed test, the probability that 
the magnitude of the actual trend value exceeded the mag-
nitude of the observed value). This probability is called the 
“p-value.” For example, a p-value of 0.03 would be judged 
significant at the 5% level (since 0.03<0.05), but not at the 
1% level (since 0.03>0.01).

Since both the calculation of confidence intervals and sig-
nificance testing employ information about the distribution 
of trend values, there is a clear link between confidence 
intervals and significance testing. 

A complication:  
The effect of Autocorrelation
The significance of a trend, and its confidence intervals, 
depend on the standard error of the trend estimate. The 
formula given above for this standard error (equation [8]) 
is, however, only correct if the individual data points are 
unrelated, or statistically independent. This is not the case 
for most temperature data, where a value at a particular 
time usually depends on values at previous times; i.e., if 
it is warm today, then, on average, it is more likely to be 
warm tomorrow than cold. This dependence is referred to 
as “temporal autocorrelation” or “serial correlation.” When 
data are auto-correlated (i.e., when successive values are not 
independent of each other), many statistics behave as if the 
sample size was less than the number of data points, n.

One way to deal with this is to determine an “effective 
sample size,” which is less than n, and use it instead of n 
in statistical formulae and calculations. The extent of this 
reduction from n to an effective sample size depends on 
how strong the autocorrelation is. Strong autocorrelation 
means that individual values in the sample are far from 
being independent, so the effective number of independent 
values must be much smaller than the sample size. Strong 
autocorrelation is common in temperature time series. This 
is accounted for by reducing the divisor “n – 2” in the mean 
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square error term (equation [7]) that is crucial in determining 
the standard error of the trend (equation [8]). 

There are a number of ways that this autocorrelation effect 
may be quantified. A common and relatively simple method 
is described in Santer et al. (2000). This method makes the 
assumption that the autocorrelation structure of the tem-
perature data may be adequately described by a “first-order 
autoregressive” process, an assumption that is a good ap-
proximation for most climate data. The lag-1 autocorrelation 
coefficient (r1) is calculated from the observed data5, and the 
effective sample size is determined by

   ….. (9)

There are more sophisticated methods than this, but testing 
on observed data shows that this method gives results that 
are very similar to those obtained by more sophisticated 
methods. 

If the effective sample size is noticeably smaller than n, then, 
from equations (7) and (8) it can be seen that the standard 
error of the trend estimate may be much larger than one 
would otherwise expect. Since the width of any confidence 
interval depends directly on 
this standard error (larger SE 
leading to wider confidence 
intervals), then the effect of 
autocorrelation is to produce 
wider confidence intervals 
and greater uncertainty in 
the trend estimate. A corol-
lary of this is that results 
that may show a significant 
trend if autocorrelation is 
ignored are frequently found 
to be non-significant when 
autocorrelation is accounted 
for.

(7) comPARing 
TRends in TWo  
dATA seTs

Assessing the magnitude 
and confidence interval for 
the linear trend in a given 
data set is standard proce-
dure in climate data analy-
sis. Frequently, however, we 
want to compare two data 

�	    From the time series of residuals about the fitted line.

sets and decide whether differences in their trends could 
have occurred by chance. Some examples are: 

(a) comparing data sets that purport to represent the same 
variable (such as two versions of a satellite data set) – an 
example is given in Figure 2; 

(b)  comparing the same variable at different levels in the 
atmosphere (such as surface and tropospheric data); or 

(c) comparing models and observations.

In the first case (Figure 2), we know that the data sets being 
compared are attempts to measure precisely the same thing, 
so that differences can arise only as a result of differences 
in the methods used to create the final data sets from the 
same “raw” original data. Here, there is a pitfall that some 
practitioners fall prey to by using what, at first thought, 
seems to be a reasonable approach. In this naive method, one 
would first construct C.I.s for the individual trend estimates 
by applying the single sample methods described above. If 
the two C.I.s overlapped, then we would conclude that there 
was no significant difference between the two trends. This 
approach, however, is seriously flawed. 

figure 2: Three estimates of global-mean temperature changes for MSU channel 2 (T2), expressed 
as anomalies relative to the 1979 to 1999 mean. Data are from: A, the University of Alabama in 
Huntsville (UAH); B, Remote Sensing Systems (RSS); and C, the University of Maryland (UMd) The 
estimates employ the same “raw” satellite data, but make different choices for the adjustments 
required to merge the various satellite records and to correct for instrument biases. The statisti-
cal uncertainty is virtually the same for all three series. Differences between the series give some 
idea of the magnitude of structural uncertainties. Volcano eruption and El Niño information are 
as in Figure 1. The trend values are as given in Chapter 3, Table 3.3. The ± values define the 95% 
confidence intervals for the trends, also from Chapter 3, Table 3.3.
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An analogous problem, com-
paring two means rather than 
two trends, discussed by 
Lanzante (2005), gives some 
insights. In this case, it is nec-
essary to determine the stan-
dard error for the difference 
between two means. If this 
standard error is denoted “s”, 
and the individual standard 
errors are s1 and s2, then

 …..(10)

The new standard error is of-
ten called the pooled standard 
error, and the pooling method 
is sometimes called “com-
bining standard errors in 
quadrature.” In some cases, 
when the trends come from 
data series that are unrelated 
(as when model and observed 
data are compared; case (c) 
above) a similar method may be applied to trends. If the data 
series are correlated with each other, however (cases (a) and 
(b)), this procedure is not correct. Here, the correct method 
is to produce a difference time series by subtracting the first 
data point in series 1 from the first data point in series 2, 
the second data points, the third data points, etc. The result 
of doing this with the microwave sounding unit channel 2 
(MSU T2) data shown in Figure 2 is shown in Figure 3. To 
assess the significance of trend differences we then apply 
the same methods used for trend assessment in a single data 
series to the difference series. 

Analyzing differences removes the variability that is com-
mon to both data sets and isolates those differences that 
may be due to differences in data set production methods, 
temperature measurement methods (as in comparing satellite 
and radiosonde data), differences in spatial coverage, etc. 

Figures 2 and 3 provide a striking example of this. Here, 
the three series in Figure 2 have very similar volcanic and 
ENSO signatures. In the individual series, these aspects are 
noise that obscures the underlying linear trend and inflates 
the standard error and the trend uncertainty. Since this 
noise is common to each series, differencing has the effect 
of canceling out a large fraction of the noise. This is clear 
from Figure 3, where the variability about the trend lines 
is substantially reduced. Figure 4 shows the effects on the 
trend confidence intervals (taking due account of autocor-
relation effects). Even though the individual series look very 

similar in Figure 2, this is largely an artifact of similarities 
in the noise. It is clear from Figures 3 and 4 that there are, 
in fact, very significant differences in the trends, reflecting 
differences in the methods of construction used for the three 
MSU T2 data sets.

Comparing model and observed data for a single variable, 
such as surface temperature, tropospheric temperature, 
etc., is a different problem. Here, when using data from a 
state-of-the-art climate model (a coupled Atmosphere/Ocean 
General Circulation Model6, or “AOGCM”), there is no rea-
son to expect the background variability to be common to 
both the model and observations. AOGCMs generate their 
own internal variability entirely independently of what is 
going on in the real world. In this case, standard errors for 
the individual trends can be combined in quadrature (equa-
tion [10]). (There are some model/observed data comparison 
cases where an examination of the difference series may still 
be appropriate, such as in experiments where an atmospheric 
GCM is forced by observed sea surface temperature varia-

�  An AOGCM interactively couples together a three-dimensional 
Ocean General Circulation Model (OGCM) and an Atmospheric 
GCM (AGCM). The components are free to interact with one another 
and they are able to generate their own internal variability in much 
the same way that the real-world climate system generates its inter-
nal variability (internal variability is variability that is unrelated to 
external forcing). This differs from some other types of model (e.g., 
an AGCM) where there can be no component of variability arising 
from the ocean. An AGCM, therefore, cannot generate variability 
arising from ENSO, which depends on interactions between the 
atmosphere and ocean. 

figure 3: Difference series for the global-mean MSU T2 series shown in Figure 2. Variability about 
the trend line is least for the UAH minus RSS series indicating closer correspondence between these 
two series than between UMd and either UAH or RSS. The trend values are consistent with results 
given in Chapter 3, Table 3.3, with greater precision given purely for mathematical convenience. 
The ± values define the 95% confidence intervals for the trends (see also Figure 4).
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tions so that ocean-related variability should be common to 
both the observations and the model.) 

For other comparisons, the appropriate test will depend on 
the degree of similarity between the data sets expected for 
perfect data. For example, a comparison between MSU T2 
and MSU T2LT produced by a single group should use the 
difference test – although interpretation of the results may be 
tricky because differences may arise either from construc-
tion methods or may represent real physical differences aris-
ing from the different vertical weighting profiles, or both.

There is an important implication of this comparison issue. 
While it may be common practice to use error bars to il-
lustrate C.I.s for trends of individual time series, when the 
primary concern (as it is in many parts of this Report) is the 
comparison of trends, individual C.I.s can be misleading. A 
clear example of this is given in Figure 4 (based on informa-
tion in Figures 2 and 3). Individual C.I.s for the three MSU 
T2 series overlap, but the C.I.s for the difference series show 
that there are highly significant differences between the 
three data sets. Because of this, in some cases in this Report, 
where it might seem that error bars should be given, we con-
sider the disadvantage of their possible misinterpretation to 
outweigh their potential usefulness. Individual C.I.s for all 
trends are, however, given in Tables 3.2, 3.3, 3.4 and 3.5 of 
Chapter 3; and we also express individual trend uncertainties 
through the use of significance levels. As noted in Section 

(9) below, there are other reasons why 
error bars can be misleading.    

(8) muLTiPLe Aogcm 
simuLATions

Both models and the real world show 
weather variability and other sources 
of internal variability that are mani-
fest on all time scales, from daily 
up to multi-decadal. With AOGCM 
simulations driven by historical forc-
ing spanning the late-19th and 20th 
centuries, therefore, a single run with 
a particular model will show not only 
the externally forced signal, but also, 
superimposed on this, underlying 
internally generated variability that 
is similar to the variability we see in 
the real world. In contrast to the real 
world, however, in the model world 
we can perturb the model’s initial 
conditions and re-run the same forcing 
experiment. This will give an entirely 
different realization of the model’s 

internal variability. In each case, the output from the model 
is a combination of signal (the response to the forcing) and 
noise (the internally generated component). Since the noise 
parts of each run are unrelated, averaging over a number 
of realizations will tend to cancel out the noise and, hence, 
enhance the visibility of the signal. It is common practice, 
therefore, for any particular forcing experiment with an 
AOGCM, to run multiple realizations of the experiment  (i.e., 
an ensemble of realizations). An example is given in Figure 
5, which shows four separate realizations and their ensemble 
average for a simulation using realistic 20th century forcing 
(both natural and anthropogenic). 

This provides us with two different ways to assess the un-
certainties in model results, such as in the model-simulated 
temperature trend over recent decades. One method is to 
express uncertainties using the spread of trends across the 
ensemble members (see, e.g., Figures 3 and 4 in the Execu-
tive Summary). Alternatively, the temperature series from 
the individual ensemble members may be averaged and the 
trend and its uncertainty calculated using these average 
data.

Ensemble averaging, however, need not reduce the width of 
the trend confidence interval compared with an individual 
realization. This is because of compensating factors: the time 
series variability will be reduced by the averaging process 
(as is clear in Figure 5), but, because averaging can inflate 

figure 4: 95% confidence intervals for the three global-mean MSU T2 series shown 
in Figure 2 (see Table 3.3 in Chapter 3), and for the three difference series shown in 
Figure 3.
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the level of autocorrelation, there may be a compensating 
increase in uncertainty due to a reduction in the effective 
sample size. This is illustrated in Figure 6.

Averaging across ensemble members, however, does pro-
duce a net gain. Although the width of the C.I. about the 
mean trend may not be reduced relative to 
individual trend C.I.s, averaging leaves just 
a single best-fit trend rather than a spread of 
best-fit trend values.

(9) PRAcTicAL veRsus 
sTATisTicAL significAnce

The Sections above have been concerned pri-
marily with statistical uncertainty, uncertainty 
arising from random noise in climatological 
time series – i.e., the uncertainty in how well 
a data set fits a particular “model” (a straight 
line in the linear trend case). Statistical noise, 
however, is not the only source of uncertainty 
in assessing trends. Indeed, as amply illustrated 
in this Report, other sources of uncertainty may 
be more important. 

The other sources of uncertainty are the in-
f luences of non-climatic factors. These are 
referred to in this Report as “construction 
uncertainties.” When we construct climate data 

records that are going to be used for 
trend (or other statistical) analyses, 
we attempt to minimize construc-
tion uncertainties by removing, as 
far as possible, non-climatic biases 
that might vary over time and so 
impart a spurious trend or trend 
component – a process referred to 
as “homogenization.” 

The need for homogenization arises 
in part because most observations 
are made to serve the short-term 
needs of weather forecasting (where 
the long-term stability of the observ-
ing system is rarely an important 
consideration). Most records there-
fore contain the effects of changes 
in instrumentation, instrument 
exposure, and observing practices 
made for a variety of reasons. Such 
changes generally introduce spuri-
ous non-climatic changes into data 

records that, if not accounted for, can mask (or possibly be 
mistaken for) an underlying climate signal. 

An added problem arises because temperatures are not al-
ways measured directly, but through some quantity related to 
temperature. Adjustments must therefore be made to obtain 

figure 5: Four separate realizations of model realizations of global-mean MSU channel 
2 (T2) temperature changes, and their ensemble average, for a simulation using realistic 
20th Century forcing (both natural and anthropogenic) carried out with one of the Na-
tional Centre for Atmospheric Research’s AOGCMs, the Parallel Climate Model (PCM). 
The cooling events around 1982/3 and 1991/2 are the result of imposed forcing from the 
eruptions of El Chichón (1982) and Mt. Pinatubo (1991). Note that the El Chichón cooling 
in these model simulations is more obvious than in the observed data shown in Figure 1. In 
the real world, a strong El Niño warming event occurred at the same time as the volcanic 
cooling, largely masking this cooling. In the four model worlds shown here, the sequences 
of El Niño events, which necessarily occurred at different times in each simulation, never 
overlapped with the El Chichón cooling. 

figure 6: 95% confidence intervals for individual model realizations of global-
mean MSU T2 temperature changes (as shown in Figure 5), compared with the 
95% confidence interval for the four-member ensemble average.
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temperature information. The satellite-based microwave 
sounding unit (MSU) data sets provide an important ex-
ample. For MSU temperature records, the quantity actually 
measured is the upwelling emission of microwave radiation 
from oxygen atoms in the atmosphere. MSU data are also 
affected by numerous changes in instrumentation and instru-
ment exposure associated with the progression of satellites 
used to make these measurements. 

Thorne et al. (2005) divide construction uncertainty into 
two components: “structural uncertainty” and “parametric 
uncertainty.” Structural uncertainty arises because different 
investigators may make different plausible choices for the 
method (or “model”) that they apply to make corrections 
or “adjustments” to the raw data. Differences in the choice 
of adjustment model and its structure lead to structural 
uncertainties. Parametric uncertainties arise because, once 
an adjustment model has been chosen, the values of the 
parameters in the model still have to be quantified. Since 
these values must be determined from a finite amount of 
data, they will be subject to statistical uncertainties. 

Sensitivity studies using different parameter choices may 
allow us to quantify parametric uncertainty, but this is not 
always done. Quantifying structural uncertainty is very 
difficult because it involves consideration of a number 
of fundamentally different (but all plausible) approaches 
to data set homogenization, rather than simple parameter 
“tweaking.” Differences between results from different in-
vestigators give us some idea of the magnitude of structural 
uncertainty, but this is a relatively weak constraint. There are 
a large number of conceivable approaches to homogenization 
of any particular data set, from which we are able only to 
consider a small sample – and this may lead to an under-es-
timation of structural uncertainty. Equally, if some current 
homogenization techniques are flawed then the resulting 
uncertainty estimate will be too large.

An example is given above in Figure 2, showing three 
different MSU T2 records with trends of 0.044ºC/decade, 
0.129ºC/decade, and 0.199ºC/decade over 1979 through 
2004. These differences, ranging from 0.070ºC/decade to 
0.155ºC/decade (Figure 3), represent a considerable degree 
of construction uncertainty. For comparison, the statistical 
uncertainty in the individual data series, as quantified by 
the 95% confidence intervals, ranges between ±0.066 and 
±0.078ºC/decade; so uncertainties from these two sources 
are of similar magnitude.

An important implication of this comparison is that sta-
tistical and construction uncertainties may be of similar 
magnitude. For this reason, showing, through confidence 
intervals, information about statistical uncertainty alone, 

without giving any information about construction uncer-
tainty, can be misleading.  
 
  
 


