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In many places in this report, but especially in Chapter 
2, trends have been calculated, either based directly on 
some climatic variable of interest (e.g., hurricane or 
cyclone counts) or from some index of extreme climate 
events. Statistical methods are used in determining the 
form of a trend, estimating the trend itself along with 
some measure of uncertainty (e.g., a standard error), and 
in determining the statistical significance of a trend. 
A broad-based introduction to these concepts has been 
given by Wigley (2006). The present review extends 
Wigley’s by introducing some of the more advanced 
statistical methods that involve time series analysis. 

Some initial comments are appropriate about the 
purpose, and also the limitations, of statistical trend es-
timation. Real data rarely conform exactly to any statis-
tical model, such as a normal distribution. Where there 
are trends, they may take many forms. For example, a 
trend may appear to follow a quadratic or exponential 
curve rather than a straight line, or it may appear to be 
superimposed on some cyclic behavior, or there may 
be sudden jumps (also called changepoints) as well or 
instead of a steadily increasing or decreasing trend. In 
these cases, assuming a simple linear trend (equation 
(1) below) may be misleading. However, the slope of a 
linear trend can still represent the most compact and 
convenient method of describing the overall change in 
some data over a given period of time. 

In this appendix, we first outline some of the modern 
methods of trend estimation that involve estimating a 
linear or nonlinear trend in a correlated time series. 
Then, the methods are illustrated on a number of 
examples related to climate and weather extremes.

The basic statistical model for a linear trend can be 
represented by the equation 

(1)  yt = b0 + b1 t + ut

where t represents the year, yt is the data value of 
interest (e.g., temperature or some climate index in 

Statistical Trend Analysis

Coordinating Lead Author:  Richard L. Smith, Univ. N.C., Chapel Hill

year t), b0 and b1 are the intercept and slope of the linear 
regression, and ut represents a random error component. 
The simplest case is when ut are uncorrelated error 
terms with mean 0 and a common variance, in which 
case we typically apply the standard ordinary least 
squares (OLS) formulas to estimate the intercept and 
slope, together with their standard errors. Usually the 
slope (b1) is interpreted as a trend, so this is the primary 
quantity of interest.

The principal complication with this analysis in the 
case of climate data is usually that the data are autocor-
related; in other words, the terms cannot be taken as 
independent. This brings us within the field of statistics 
known as time series analysis, see e.g., the book by 
Brockwell and Davis (2002). One common way to deal 
with this is to assume the values form an autoregres-
sive, moving average process (ARMA for short). The 
standard ARMA(p,q) process is of the form 

(2)  ut -φ1ut -1-…-φp ut-p = εt+θ1εt-1+…+θqεt-q

where φ1…φp are the autoregressive coefficients, θ1…θq 
are the moving average coefficients, and the εt terms are 
independent with mean 0 and common variance. The 
orders p and q are sometimes determined empirically, 
or sometimes through more formal model-determina-
tion techniques such as the Akaike Information Crite-
rion (AIC) or the Bias-Corrected Akaike Information 
Criterion (AICC). The autoregressive and moving 
average coefficients may be determined by one of 
several estimation algorithms (including maximum 
likelihood), and the regression coefficients b0 and b1 
by the algorithm of generalized least squares (GLS). 
Typically, the GLS estimates are not very different 
from the OLS estimates that arise when autocorrela-
tion is ignored, but the standard errors can be very 
different. It is quite common that a trend that appears 
to be statistically significant when estimated under 
OLS regression is not statistically significant under 
GLS regression, because of the larger standard error 
that is usually though not invariably associated with 
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GLS. This is the main reason why it is important to take 
autocorrelation into account.

An alternative model which is an extension of (1) is

(3)  yt = b0 + b1 xt1+…+ bk xtk + ut

where xt1…xtk are k regression variables (covariates) and 
b1…bk are the associated coefficients. A simple example is 
polynomial regression, where xtj=tj for j=1,…,k. However, 
a polynomial trend, when used to represent a nonlinear 
trend in a climatic dataset, often has the disadvantage that it 
behaves unstably at the endpoints, so alternative representa-
tions such as cubic splines are usually preferred. These can 
also be represented in the form of (3) with suitable xt1…xtk. 
As with (1), the ut terms can be taken as uncorrelated with 
mean 0 and common variance, in which case OLS regression 
is again appropriate, but it is also common to consider the 
ut as autocorrelated.

There are, by now, several algorithms available that fit these 
models in a semiautomatic fashion. The book by Davis and 
Brockwell (2002) includes a CD containing a time series 
program, ITSM, that among many other features, will fit 
a model of the form (1) or (3) in which the ut terms follow 
an ARMA model as in (2). The orders p and q may be 
specified by the user or selected automatically via AICC. 
Alternatively, the statistical language R (R Development 
Core Team, 2007) contains a function “arima” which allows 
for fitting these models by exact maximum likelihood. The 
inputs to the arima function include the time series, the 
covariates, and the orders p and q. The program calculates 
maximum likelihood/GLS estimates of the ARMA and 
regression parameters, together with their standard errors, 
and various other statistics including AIC. Although R does 
not contain an automated model selection procedure, it is 
straightforward to write a short subroutine that fits the time 
series model for various values of p and q (for example, all 
values of p and q between 0 and 10), and then identifies the 
model with minimum AIC. This method has been routinely 
used for several of the following analyses.

However, it is not always necessary to search through a large 
set of ARMA models. In very many cases, the AR(1) model 
in which p=1, q=0, captures almost all of the autocorrelation, 
in which case this would be the preferred approach. 

In other cases, it may be found that there is cyclic behavior 
in the data corresponding to large-scale circulation indexes 
such as the Southern Oscillation Index (SOI – often taken 
as an indicator of El Niño) or the Atlantic Multidecadal 
Oscillation (AMO) or the Pacific Decadal Oscillation (PDO). 
In such cases, an alternative to searching for a high-order 

ARMA model may be to include SOI, AMO or PDO directly 
as one of the covariates in (2).

Two other practical features should be noted before we 
discuss specific examples. First, the methodology we have 
discussed assumes the observations are normally distributed 
with constant variances (homoscedastic). Sometimes it is 
necessary to make some transformation to improve the fit of 
these assumptions. Common transformations include taking 
logarithms or square roots. With data in the form of counts 
(such as hurricanes), a square root transformation is often 
made because count data are frequently represented by a 
Poisson distribution, and for that distribution, a square root 
transformation is a so-called variance-stabilizing transfor-
mation, making the data approximately homoscedastic. 

The other practical feature that occurs quite frequently is 
that the same linear trend may not be apparent through all 
parts of the data. In that case, it is tempting to select the 
start and finish points of the time series and recalculate the 
trend just for that portion of the series. There is a danger in 
doing this, because in formally testing for the presence of a 
trend, the calculation of significance levels typically does 
not allow for the selection of a start and finish point. Thus, 
the procedure may end up selecting a spurious trend. On the 
other hand, it is sometimes possible to correct for this effect, 
for example, by using a Bonferroni correction procedure. 
An example of this is given in our analysis of the heatwave 
index dataset below.

Example 1: Cold Index Data 
(Section 2.2.1)

The data consist of the “cold index,” 1895-2005. A density 
plot of the data shows that the original data are highly right-
skewed, but a cube-root transformation leads to a much more 
symmetric distribution (Figure A.1).

We therefore proceed to look for trends in the cube root 
data.

A simple OLS linear regression yields a trend of -.00125 per 
year, standard error .00068, for which the 2-sided p-value is 
.067. Recomputing using the minimum-AIC ARMA model 
yields the optimal values p=q=3, trend -.00118, standard 
error .00064, p-value .066. In this case, fitting an ARMA 
model makes very little difference to the result compared 
with OLS. By the usual criterion of a .05 significance level, 
this is not a statistically significant result, but it is close 
enough that we are justified in concluding there is still some 
evidence of a downward linear trend. Figure A.2 illustrates 
the fitted linear trend on the cube root data.
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Example 2: Heat Wave Index Data 
(Section 2.2.1 and Fig. 2.3(a))

This example is more complicated to analyze because of 
the presence of several outlying values in the 1930s which 
frustrate any attempt to fit a linear trend to the whole series. 
However, a density plot of the raw data show that they are 
very right-skewed, whereas taking natural logarithms makes 
the data look much more normal (Figure A.3). Therefore, for 
the rest of this analysis we work with the natural logarithms 
of the heat wave index.

In this case, there is no obvious evidence of a linear trend 
either upwards or downwards. However, nonlinear trend fits 
suggest an oscillating pattern up to about 1960, followed by 
a steadier upward drift in the last four decades. For example, 
the solid curve in Figure A.4, which is based on a cubic 
spline fit with 8 degrees of freedom, fitted by ordinary linear 
regression, is of this form.

Motivated by this, a linear trend has been 
fitted by time series regression to the 
data from 1960-2005 (dashed straight 
line, Figure A.4). In this case, searching 
for the best ARMA model by the AIC 
criterion led to the ARMA(1,1) model 
being selected. Under this model, the fitted 
linear trend has a slope of 0.031 per year 
and a standard error of .0035. This is very 
highly statistically significant. Assuming 
normally distributed errors, the prob-
ability that such a result could have been 
reached by chance, if there were no trend, 
is of the order 10-18.

We should comment a little about the 
justification for choosing the endpoints 
of the linear trend (in this case, 1960 and 

2005) in order to give the best fit to a straight line. The 
potential objection to this is that it creates a bias associated 
with multiple testing. Suppose, as an artificial example, we 
were to conduct 100 hypothesis tests based on some sample 
of data, with significance level .05. This means that if there 
were in fact no trend present at all, each of the tests would 
have a .05 probability of incorrectly concluding that there 
was a trend. In 100 such tests, we would typically expect 
about 5 of the tests to lead to the conclusion that there was 
a trend.

A standard way to deal with this issue is the Bonferroni cor-
rection. Suppose we still conducted 100 tests, but adjusted 
the significance level of each test to .05/100=.0005.
Then even if no trend were present, the probability that at 
least one of the tests led to rejecting the null hypothesis 
would be no more than 100 times .0005, or .05. In other 
words, with the Bonferroni correction, .05 is still an upper 
bound on the overall probability that one of the tests falsely 
rejects the null hypothesis.

Figure A.1  Density plot for the cold index data (left), and for the cube roots of the same data (right).

Figure A.2  Cube root of cold wave index with fitted linear trend.
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In the case under discussion, if we allow for all possible 
combinations of start and finish dates, given a 111-year 
series, that makes for 111x110/2=6105 tests. To apply the 
Bonferroni correction in this case, we should therefore 
adjust the significance level of the individual tests to 
.05/6105=.0000082. However, this is still very much larger 
than 10-18. The conclusion is that the statistically significant 
result cannot be explained away as merely the result of 
selecting the endpoints of the trend.

This application of the Bonferroni correction is somewhat 
unusual. It is rare for a trend to be so highly significant that 
selection effects can be explained away completely, as has 
been shown here. Usually, we have to make a somewhat 
more subjective judgment about what are suitable starting 
and finishing points of the analysis.

Example 3: 1-day Heavy 
Precipitation Frequencies (Section 
2.1.2.2)

In this example, we considered the time series of 1-day 
heavy precipitation frequencies for a 20-year return value. 
In this case, the density plot for the raw data is not as badly 
skewed as in the earlier examples (Figure A.5, left plot), but 
is still improved by taking square roots (Figure A.5, right 
plot). Therefore, we take square roots in the subsequent 
analysis.

Looking for linear trends in the whole series from 1895-
2005, the overall trend is positive but not statistically 
significant (Figure A.6). Based on simple linear regression, 
the estimated slope is .00023 with a standard error of .00012, 
which just fails to be significant at the 5% level. However, 
time series analysis identifies an ARMA (5, 3) model, when 

the estimated slope is still .00023, the 
standard error rises to .00014, which is 
again not statistically significant.

However, a similar exploratory analy-
sis to that in Example 2 suggested that 
a better linear trend could be obtained 
starting around 1935. To be specific, 
we have considered the data from 
1934-2005. Over this period, time se-
ries analysis identifies an ARMA(1,2) 
model, for which the estimated slope 
is .00067, standard error .00007, 
under which a formal test rejects the 
null hypothesis of no slope with a 
significance level of the order of 10-20 
under normal theory assumptions. As 
with Example 2, an argument based 
on the Bonferroni correction shows 
that this is a clearly significant result 

Figure A.3  Density plot for the heat index data (left), and for the natural logarithms of the same data (right).

Figure A.4  Trends fitted to natural logarithms of heat index. Solid curve: nonlinear 
spline with 8 degrees of freedom fitted to the whole series. Dashed line: linear trend 
fitted to data from 1960-2005.
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even allowing for the subjective selection of start and finish 
points of the trend.

Therefore, our conclusion in this case is that there is an 
overall positive but not statistically significant trend over 
the whole series, but the trend post-1934 is much steeper 
and clearly significant.

Example 4: 90-day Heavy 
Precipitation Frequencies (Section 
2.1.2.3 and Fig. 2.9)

This is a similar example based on the time series of 90-day 
heavy precipitation frequencies for a 20-year return value. 
Once again, density plots suggest a square root transforma-
tion (the plots look rather similar to Figure A.5 and are not 
shown here).

After taking square roots, simple 
linear regression leads to an esti-
mated slope of .00044, standard 
error .00019, based on the whole 
data set. Fitting ARMA models 
with linear trend leads us to iden-
tify the ARMA(3,1) as the best 
model under AIC: in that case, 
the estimated slope becomes 
.00046 and the standard error 
actually goes down, to .00009. 
Therefore, we conclude that the 
linear trend is highly significant 
in this case (Figure A.7).

Example 5: Tropical cyclones in 
the North Atlantic (Section 2.1.3.1)

This analysis is based on historical reconstructions of 
tropical cyclone counts described in the recent paper of 
Vecchi and Knutson (2008). We consider two slightly 
different reconstructions of the data: the “one-encounter” 
reconstruction in which only one intersection of a ship and 
storm is required for a storm to be counted as seen, and the 
“two-encounter” reconstruction that requires two intersec-
tions before a storm is counted. We focus particularly on the 
contrast between trends over the 1878-2005 and 1900-2005 
time periods, since before the start of the present analysis, 
Vecchi and Knutson had identified these two periods as of 
particular interest.

Figure A.5  Density plot for 1-day heavy precipitation frequencies for a 20-year return value (left), and for square roots of the 
same data (right).
 

Figure A.6  Trend analysis for the square roots of 1-day heavy precipitation frequencies for a 
20-year return value, showing estimated linear trends over 1895-2005 and 1934-2005.
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For 1878-2005, using the one-encounter dataset, we find 
by ordinary least squares a linear trend of .017 (storms per 
year), standard error .009, which is not statistically signifi-
cant. Selecting a time series model by AIC, we identify an 
ARMA(9,2) model as best (an unusually large order of a 
time series model in this kind of analysis), which leads to a 
linear trend estimate of .022, standard error .022, which is 
clearly not significant.

When the same analysis is repeated from 1900-2005, we 
find by linear regression a slope of .047, standard error .012, 
which is significant. Time series analysis now identifies the 
ARMA(5,3) model as optimal, with a slope of .048, standard 
error .015–very clearly significant. Thus, the evidence is 
that there is a statistically significant trend over 1900-2005, 
though not over 1878-2005.

A comment here is that if the density of the data is plotted 
as in several earlier examples, this suggests a square root 
transformation to remove skewness. Of course the numerical 
values of the slopes are quite different if a linear regression 
is fitted to square root cyclones counts instead of the raw 
values, but qualitatively, the results are quite similar to 
those just cited–significant for 1900-2005, not significant 
for 1878-2005–after fitting a time series model. We omit 
the details of this.

The second part of the analysis uses the “two-encounter” 
data set. In this case, fitting an ordinary least-squares linear 
trend to the data 1878-2005 yields an estimated slope .014
storms per year, standard error .009, not significant. The 
time series model (again ARMA(9,2)) leads to estimated 
slope .018, standard error .021, not significant.

When repeated for 1900-2005, 
ordinary least-squares regression 
leads to a slope of .042, standard 
error .012. The same analysis 
based on a time series model 
(ARMA(9,2)) leads to a slope of 
.045 and a standard error of .021. 
Although the standard error is 
much bigger under the time series 
model, this is still significant with 
a p-value of about .03.

Example 6: U.S. 
Landfalling 
Hurricanes 
(Section 2.1.3.1)

The final example is a time series 
of U.S. landfalling hurricanes for 
1851-2006 taken from the website 
http://www.aoml.noaa.gov/hrd/

hurdat/ushurrlist18512005-gt.txt. The data consist of annual 
counts and are all between 0 and 7. In such cases a square 
root transformation is often performed because this is a vari-
ance stabilizing transformation for the Poisson distribution. 
Therefore, square roots have been taken here.

A linear trend was fitted to the full series and also for the 
following subseries: 1861-2006, 1871-2006, and so on up 
to 1921-2006. As in preceding examples, the model fitted 
was ARMA (p,q) with linear trend, with p and q identified 
by AIC.

For 1871-2006, the optimal model was AR(4), for which 
the slope was -.00229, standard error .00089, significant 
at p=.01.

For 1881-2006, the optimal model was AR(4), for which 
the slope was -.00212, standard error .00100, significant 
at p=.03.

For all other cases, the estimated trend was negative, but not 
statistically significant.

 
 

Figure A.7  Trend analysis for the square roots of 90-day heavy precipitation frequen-
cies. 


