1	CCSP Synthesis and Assessment Product 1.2
2	Past Climate Variability and Change in the Arctic and at High
3	Latitudes
4	
5	Chapter 5 — Past Rates of Climate Change in the Arctic
6	
7	Chapter Lead Authors
8	James W.C. White, University of Colorado, Boulder, CO
9	Richard B. Alley, Pennsylvania State University, University Park, PA
10	Contributing Authors
11	Anne Jennings, University of Colorado, Boulder, CO
12	Sigfus Johnsen, University of Copenhagen, DK
13	Gifford H. Miller, University of Colorado, Boulder, CO
14	Steven Nerem, University of Colorado, Boulder, CO
15	

15 ABSTRACT

16

17 Climate has changed on numerous time scales for various reasons and has always 18 done so. In general, longer lived changes are somewhat larger but much slower to occur 19 than shorter lived changes. Processes linked with continental drift have affected 20 atmospheric and oceanic currents and the composition of the atmosphere over tens of 21 millions of years; in the Arctic, a global cooling trend has altered conditions near sea 22 level from ice-free year-round to icy. Within the icy times, variations in Arctic sunshine 23 over tens of thousands of years in response to features of Earth's orbit caused regular 24 cycles of warming and cooling that were roughly half the size of the continental-drift-25 linked changes. This "glacial-interglacial" cycling has been amplified by colder times 26 bringing reduced greenhouse gases and greater reflection of sunlight especially from 27 more-extended ice. This glacial-interglacial cycling has been punctuated by sharp-onset, 28 sharp-end (in some instances less than 10 years) millennial oscillations, which near the 29 *North Atlantic* were roughly half as large as the glacial-interglacial cycles but which were 30 much smaller Arctic-wide and beyond. The current warm period of the glacial-31 interglacial cycle has been influenced by cooling events from single volcanic eruptions, 32 slower but longer lasting changes from random fluctuations in frequency of volcanic 33 eruptions and from weak solar variability, and perhaps by other classes of events. It is 34 highly probable that recent anthropogenically forced changes are larger in terms of 35 overall size and rate of change than natural climate change over the past 1000 years. 36 However, substantially different climatic conditions appear to have permitted even larger 37 changes than in the more distant past.

Chapter 5 Past Rates of Change

38

39 **5.1. Introduction**

40

41 Climate change, as opposed to change in the weather (the distinction is defined 42 below), occurs on all time scales, ranging from several years to billions of years. The rate 43 of change, typically measured in degrees Celsius (°C) per unit of time (years, decades, 44 centuries, or millennia, for example, if climate is being considered) is a key determinant 45 of the effect of the change on living things such as plants and animals; collections and 46 webs of living things, such as ecosystems; and humans and human societies. Consider, 47 for example, a 10°C change in annual average temperature, roughly the equivalent to 48 going from Birmingham, Alabama, to Bangor, Maine. If such a change took place during 49 thousands of years, as happens when the Earth's orbit varies and portions of the planet 50 receive more or less energy from the Sun, ecosystems and aspects of the environment, 51 such as sea level, would change, but the slow change would allow time for human 52 societies to adapt. A 10°C change that appears in 50 years or less, however, is 53 fundamentally different (National Research Council, 2002). Ecosystems would be able to 54 complete only very limited adaptation because trees, for example, typically are unable to 55 spread that fast by seed dispersal. Human adaptation would be limited as well, and 56 widespread challenges would face agriculture, industry, and public utilities in response to 57 changing patterns of precipitation, severe weather, and other events. Such abrupt climate 58 changes on regional scales are well documented in the paleoclimate record (National 59 Research Council, 2002; Alley et al., 2003). This rate of change is about 100 times as fast 60 as the warming of the last century.

Chapter 5 Past Rates of Change

61	Not all parts of the climate system can change this rapidly. Global temperature
62	change is slowed by the heat capacity of the oceans, for example (e.g., Hegerl et al.,
63	2007). Local changes, particularly in continental interiors or where sea-ice changes
64	modify the interaction between ocean and atmosphere, can be faster and larger. Changes
65	in atmospheric circulation are potentially faster than changes in ocean circulation, owing
66	to the difference in mass and thus inertia of these two circulating systems. This
67	difference, in turn, influences important climate properties that depend on oceanic or
68	atmospheric circulation. The concentration of carbon dioxide in the atmosphere, for
69	example, depends in part on ocean circulation, and thus it does not naturally vary rapidly
70	(e.g., Monnin et al., 2001). Methane concentration in the atmosphere, on the other hand,
71	has increased by more than 50% within decades (Severinghaus et al., 1998), as this gas is
72	more dependent on the distribution of wetlands, which in turn depend on atmospheric
73	circulation to bring rains.

In the following pages we examine past rates of environmental change observed in Arctic paleoclimatic records. We begin with some basic definitions and clarification of concepts. Climate change can be evaluated absolutely, using numerical values such as those for temperature or rainfall, or they can be evaluated relative to the effects they produce (National Research Council, 2002). Different groups often have differing views on what constitutes "important." Hence, we begin with a common vocabulary.

80

81 **5.2.** Variability Versus Change; Definitions and Clarification of Usage

- 82
- 83

Climate scientists and weather forecasters are familiar with opposite sides of very

84	common questions. Does this hot day (or month, or year) prove that global warming is
85	occurring? or does this cold day (or month, or year) prove that global warming is not
86	occurring? Does global warming mean that tomorrow (or next month, or next year) will
87	be hot? or does the latest argument against global warming mean that tomorrow (or next
88	month, or next year) will be cold? Has the climate changed? When will we know that the
89	climate has changed? To people accustomed to seven-day weather forecasts, in which the
90	forecast beyond the first few days is not very accurate, the answers are often not very
91	satisfying. The next sections briefly discuss some of the issues involved.
92	
93	5.2.1 Weather Versus Climate
94	The globally averaged temperature difference between an ice age and an
95	interglacial is about 5°–6°C (Cuffey and Brook, 2000; Jansen et al., 2007). The 12-hour
96	temperature change between peak daytime and minimum nighttime temperatures at a
97	given place, or the 24-hour change, or the seasonal change, may be much larger than that
98	glacial-interglacial change (e.g., Trenberth et al., 2007). In assessing the "importance" of
99	a climate change, it is generally accepted that a single change has greater effect on
100	ecosystems and economies, and thus is more "important," if that change is less expected,
101	arrives more rapidly, and stays longer (National Research Council, 2002). In addition, a
102	step change that then persists for millennia might become less important than similar-
103	sized changes that occurred repeatedly in opposite directions at random times.
104	Historically, climate has been taken as a running average of weather conditions at
105	a place or throughout a region. The average is taken for a long enough time interval to
106	largely remove fluctuations caused by "weather." Thirty years is often used for

Chapter 5 Past Rates of Change

107 averaging.

108 Weather, to most observers, implies day-to-day occurrences, which are 109 predictable for only about two weeks. Looking further ahead than that is limited by the 110 chaotic nature of the atmospheric system; that is, by the sensitivity of the system to initial 111 conditions (e.g., Lorenz, 1963; Le Treut et al., 2007), as described next. All thermometers 112 have uncertainties, even if only a fraction of a degree, and all measurements by 113 thermometers are taken at particular places and not in between. All temperature estimates 114 at and between thermometers are thus subject to some uncertainty. A weather-forecasting 115 model can correctly be started from a range of possible starting conditions that differ by 116 an amount equal to or less than the measurement uncertainties. For short times of hours 117 or even days, the different starting conditions provided by the modern observational 118 system typically have little effect on the prediction of future weather; vary the starting 119 data within the known uncertainties, and the output of the model will not be affected 120 much out in time for a day or two. However, if the model is run for times beyond a few 121 days to perhaps a couple of weeks, the different starting conditions produce very different 122 weather weather forecasts. The forecasts are "bounded"—they do not produce blizzards 123 in the tropics or tropical temperatures in the Arctic wintertime, for example; and they do 124 produce "forecasts" recognizably possible for all regions covered—but the forecasts 125 differ greatly in the details of where and when convective thunderstorms or frontal 126 systems occur and how much precipitation will be produced during what time period. To 127 many observers, "weather" refers to those features of Earth's coupled atmosphere-ocean 128 system that are theoretically predictable to two weeks or so but not beyond. 129 For many climatologists, however, somewhat longer term events are often lumped

Chapter 5 Past Rates of Change

130 under the general heading of "weather." The year-to-year temperature variability in 131 global average temperature associated with the El Nino–La Nina phenomenon may be a 132 few tenths of a degree Celsius (e.g., Trenberth et al., 2002), and similar or slightly larger 133 variability can be caused by volcanic eruptions (e.g., Yang and Schlesinger, 2002). The 134 influences of such phenomena are short lived compared with a 30-year average, but they 135 are long lived compared with the two-week interval described just above. Volcanic 136 eruptions may someday prove to be predictable beyond two weeks (U.S. Geological 137 Survey scientists successfully predicted one of the Mt. St. Helens eruptions more than 138 two weeks in advance (Tilling et al., 1990)), and the effects following an eruption 139 certainly are predictable for longer times. El Ninos are predictable beyond two weeks. 140 However, if one is interested in the climatic conditions at a particular place, a proper 141 estimate would include the average behavior of volcanoes and El Ninos, but it would not 142 be influenced by the accident that the starting and ending points of the 30-year averaging 143 period happened to sample a higher or lower number of these events than would be found 144 in an average 30-year period.

145 The issues of the length of time considered and the starting time chosen are 146 illustrated in Figure 5.1. Annual temperatures for the continental United States since 147 1960 are shown. The variability shown is linked to El Nino, volcanic eruptions, and 148 other factors. If we use a 4-year window to illustrate the issue, it is apparent that for any 149 given 4-year period, the temperature can appear to warm, to cool, or to stay flat. Also 150 shown are the 3-, 7-, 11-, 15-, and 19-year linear trends centered on 1990. Depending on 151 the number of years chosen, the trend can be strongly warming to strongly cooling. The 152 warm El Nino years of 1987 and 1988, and the cooling trend in 1992 and 1993 caused by

Chapter 5 Past Rates of Change

153	the eruption of Mt. Pinatubo, affect our perception of the time trend, or climate. Notice
154	that of the 45 four-year regression lines possible between 1960 and 2007 (17 are shown
155	in Figure 5.1) only one meets the usual statistical criterion of having a slope different
156	from zero with at least 95% confidence. Climate is often considered as a 30-year average,
157	and all 30-year regression lines that can be placed on Figure 5.1 (years 1960–1989,
158	1961–1990,, 1978–2007) have a positive slope (warming) with greater than 95%
159	confidence. Thus, all of the short-time-interval lines shown on Figure 5.1 are part of a
160	warming climate over a 30 year interval but clearly reflect weather as well.
161	
162	FIGURE 5.1 NEAR HERE
163	
164	5.2.2 Style of Change
165	In some situations a 30-year climatology appears inappropriate. As recorded in
166	Greenland ice cores, local temperatures fell many degrees Celsius within a few decades
167	about 13 ka during the Younger Dryas time, a larger change than the interannual
168	variability. The temperature remained low for more than a millennium, and then it
169	jumped up about 10°C in about a decade, and it has remained substantially elevated since
170	(Clow, 1997; Severinghaus et al., 1998; Cuffey and Alley, 2000). It is difficult to imagine
171	any observer choosing the temperature average of a 30-year period that included that
172	10°C jump and then arguing that this average was a useful representation of the climate.
173	The jump is perhaps the best-known and most-representative example of abrupt climate
174	change (National Research Council, 2002; Alley et al., 2003), and the change is ascribed
175	to what is now known colloquially as a "tipping point." Tipping points occur when a slow

Chapter 5 Past Rates of Change

process reaches a threshold that "tips" the climate system into a new mode of operation
(e.g., Alley, 2007). Analogy to a canoe tipping over suddenly in response to the slowly
increasing lean of a paddler is appropriate.

Tipping behavior is readily described sufficiently long after the event, although it is much less evident that a climate scientist could have predicted the event just before it occurred, or that a scientist experiencing the event could have stated with confidence that conditions had tipped. Research on this topic is advancing, and quantitative statements can be made about detection of events, but timely detection may remain difficult (Keller and McInerney, 2007).

185

186 **5.2.3 How to Talk About Rates of Change**

187 The term "abrupt climate change" has been defined with some authority in the 188 report of the National Research Council (2002). However, many additional terms such as 189 "tipping point" remain colloquial, although arguably they can be related to well-accepted 190 definitions. For the purposes of this report, preference will be given to common English 191 words whenever possible, with explanations of what is meant, without relying on new 192 definitions of words or on poorly defined words.

193

194**5.2.4 Spatial Characteristics of Change**

The Younger Dryas cold event, introduced above in section 5.2.2, led to
prominent cooling around the North Atlantic, weaker cooling around much of the
Northern Hemisphere, and weak warming in the far south; uncertainty remains about
changes in many places, and the globally averaged effect probably was minor (reviewed

Chapter 5 Past Rates of Change

by Alley, 2007). The most commonly cited records of the Younger Dryas are those that show large signals. Informal discussions by many investigators with people outside our field indicate that the strong local signals are at least occasionally misinterpreted as global signals. It is essential to recognize the geographic as well as time limitations of climate events and their paleoclimatic records.

204 Further complicating this discussion is the possibility that an event may start in 205 one region and then require some climatically notable time interval to propagate to other 206 regions. Limited data supported by our basic understanding of how climate processes 207 work suggest that the Younger Dryas cold event began and ended in the north, that the response was delayed by decades or longer in the far south, and that it was transmitted 208 209 there through the ocean (Steig and Alley, 2003; Stocker and Johnsen, 2003). Cross-dating 210 climate records around the world to the precision and accuracy needed to confirm that 211 relative timing is a daunting task. The mere act of relating records from different areas 212 then becomes difficult; an understanding of the processes involved is almost certainly 213 required to support the interpretation.

214

5.3 Issues Concerning Reconstruction of Rates of Change from Paleoclimatic

- 216 Indicators
- 217

In an ideal world, a chapter on rates of change would not be needed. If climate records were available from all places and all times, with accurate and precise dates, then rate of change would be immediately evident from inspection of those records. However, as suggested in the previous section, such a simple interpretation is seldom possible.

Chapter 5 Past Rates of Change

222	Consider a hypothetical example. A group of tree trunks, bulldozed by a glacier
223	and incorporated into glacial sediments, is now exposed at a coastal site. Many trees were
224	killed at approximately the same time. The patterns of thick and thin rings, dense and
225	less-dense wood, and isotopic variation of the wood layers contain climatic information
226	(e.g., White et al., 1994). The climatic fluctuations that controlled the tree-ring
227	characteristics can be dated precisely relative to each other-for example, this isotopic
228	event occurred 7 years after that one. However, the precise age of the start and end of that
229	climate record may not be available.

230 If much additional wood of various ages is available nearby, and if a large effort 231 is expended, it may be possible to use the patterns of thick and thin rings and other 232 features to match overlapping trees of different ages and thus to tie the record to still-233 living trees and provide a continuous record absolutely dated to the nearest year. If this is 234 not possible, but the trees grew within the time span for which radiocarbon can be used, it 235 may be possible to learn the age of the record to within a few decades or centuries, but no 236 better. If the record is older than can be dated using radiocarbon, and other dating 237 techniques are not available, even larger errors may be attached to estimates of the time 238 interval occupied by the record.

Uncertainties are always associated with reconstructed climate changes (were the thick and thin rings controlled primarily by temperature changes or by moisture changes? for example), but once temperatures or rainfall amounts are estimated for each year, calculation of the rate of change from year to year will involve no additional error because each year is accurately identified. However, learning the spatial pattern of climate change may not be possible, because it will not be possible to relate the events

Chapter 5 Past Rates of Change

recorded by the tree rings to events in records from other places with their own datingdifficulties.

247 Sometimes, however, it is possible to learn the spatial pattern of the climate 248 change and to learn how the rate of change at one place compared with the rate of change 249 elsewhere. Volcanic eruptions are discrete events, and major eruptions typically are short 250 lived (hours to days), so that the layer produced by a single eruption in various lake and 251 marine sediments and glaciers is almost exactly the same age in all. If the same pattern of 252 volcanic fallout is found in many cores of lake or ocean sediment or ice, then it is 253 possible to compare the rate of change at those different sites. The uncertainties in 254 knowing the time interval between two volcanic layers may be small or large, but 255 whatever the time interval is, it will be the same in all cores containing those two layers. 256 These and additional considerations motivate the additional discussion of rates of 257 climate change provided here.

258

259

5.3.1 Measurement of Rates of Change in Marine Records

260 In Arctic and subarctic marine sediments, radiocarbon dating remains the standard 261 technique for obtaining well-dated records during the last 40,000 to 50,000 years. 262 Radiocarbon dating is relatively inexpensive, procedures are well developed, and 263 materials that can be dated usually are more common than is true for other techniques. 264 Radiocarbon dating is now conventionally calibrated against other techniques such as 265 tree-ring or uranium-series-disequilibrium techniques, which are more accurate but less 266 widely applicable. The calibration continues to improve (e.g., Stuiver et al., 1998; 267 Hughen et al., 2000; 2004). Instruments also improve. In particular, the accelerator mass

Chapter 5 Past Rates of Change

268 spectrometer (AMS) radiocarbon analysis allows dating of milligram quantities of 269 foraminifers, mollusks and other biogenic materials. A single seed or tiny shell can be 270 dated, and this analysis of smaller samples than was possible with previous techniques in 271 turn allows finer time resolution in a single core. Taken together, these advances have 272 greatly improved our ability to generate well-constrained age models for high-latitude 273 marine sediment cores. In addition, coring systems such as the Calypso corer have been 274 deployed in the Arctic to recover much longer (10–60 m) sediment cores. This corer 275 allows sampling of relatively long time intervals even in sites where sediment has 276 accumulated rapidly. Sites with faster sediment accumulation allow easier "reading" of 277 the history of short-lived events, so higher resolution paleoenvironmental records can 278 now be generated from high-latitude continental-margin and deep-sea sites. Where dates 279 can be obtained from many levels in a core, it is feasible to evaluate centennial and even 280 multidecadal variability from these archives (e.g., Ellison et al., 2006; Stoner et al., 281 2007).

282 However, in the Arctic, particularly along eastern margins of oceans where cold 283 polar and Arctic water masses influence the environment, little carbonate that can be 284 dated by radiocarbon techniques is produced, and much of the carbonate produced 285 commonly dissolves after the producing organism dies. In addition, the carbon used in 286 growing the shells is commonly "old" (that is, the carbon entered the ocean some decades 287 or centuries before being used by the creature in growing its shell; the date obtained is 288 approximately the time when the carbon entered the ocean, and it must be corrected for 289 the time interval between the carbon entering the ocean and being incorporated into the 290 shell). This marine reservoir correction is often more uncertain in the Arctic than

Chapter 5 Past Rates of Change

elsewhere (e.g., Björck et al., 2003) in part because of the strong but time-varying effect
of sea ice, which blocks exchange between atmosphere and ocean. This uncertainty
continues to hamper development of highly constrained chronologies. Some important
regions, such as near the eastern side of *Baffin Island*, have received little study since
radiocarbon dating by accelerator mass spectrometry was introduced, so the chronology
and Holocene climate evolution of this important margin are still poorly known.

297 As researchers attempt to develop centennial to multidecadal climate records from 298 marine cores and to correlate between records at sub-millennial resolution, the limits of 299 the dating method are often reached, hampering our ability to determine whether high-300 frequency variability is synchronous or asynchronous between sites. Resource limitations 301 generally restrict radiocarbon dating to samples no closer together than about 500-year 302 intervals. In marine areas with rapid biological production where sufficient biogenic 303 carbonate is available to obtain highly accurate dates, the instrumental error on individual 304 radiocarbon dates may be as small as ± 20 years. But, in many Arctic archives, it is not 305 possible to obtain enough carbonate material to achieve that accuracy, and many dates are 306 obtained with standard deviations (one sigma) errors of ± 80 years to a couple of 307 centuries.

A new approach that uses a combination of paleomagnetic secular variation (PSV) records and radiocarbon dating has improved relative correlation and chronology well above the accuracy that each of these methods can achieve on its own (Stoner et al., 2007). Earth's magnetic field varies in strength and direction with time, and the field affects the magnetization of sediments deposited. Gross features in the field (reversals of direction) have been used for decades in the interpretation of geologic history, but much

Chapter 5 Past Rates of Change

shorter lived, smaller features are now being used that allow correlation among differentrecords by matching the features.

316 This technique was applied to two high-accumulation-rate Holocene cores from 317 shelf basins on opposite sides of the Denmark Strait. The large number of tie points 318 between cores provided by the paleomagnetic secular-variation records and by numerous 319 radiocarbon dates allowed matching of these cores at the centennial scale (Stoner et al., 320 2007). In addition, the study has supported development of a well-dated Holocene 321 paleomagnetic secular-variation record for this region (Fig. 5.2), which can be used to aid 322 in the dating of nearby lacustrine cores and for synchronization of marine and terrestrial 323 records. Traditionally, volcanic layers such as the Saksunarvatn tephra have been used as 324 time markers for correlation, but they can be used only at the times of major eruptions 325 and not between, whereas the new magnetic technique is continuous. The technique was 326 tested by its ability to independently achieve the same correlations as the volcanic layer, 327 and it functioned very well. 328 329 FIGURE 5.2 NEAR HERE 330 331 As noted above, tephra layers are an important source of chronological control in 332 Arctic marine sediments. Explosive volcanic eruptions from Icelandic and Alaskan 333 volcanoes have deposited widespread, geochemically distinct, tephra layers, each of 334 which marks a unique time. Where the geochemistry of these events is documented, they 335 provide isochrones that can be used to date and synchronize paleoclimate archives (e.g., 336 marine, lacustrine, and ice-cores) and to evaluate leads and lags in the climate system.

Chapter 5 Past Rates of Change

337	Where radiocarbon dates can be obtained at the same depth in a core as tephra layers,
338	deviations of calibrated ages from the known age of a tephra can be used to determine the
339	marine-reservoir age at that location and time (Eiriksson et al., 2004; Kristjansdottir,
340	2005, Jennings et al., 2006). An example is the Vedde Ash, a widely dispersed explosive
341	Icelandic tephra that provides a 12,000-year-old constant-time horizon (an isochron)
342	during the Younger Dryas cold period, when marine reservoir ages are poorly constrained
343	and very different from today's. On the North Iceland shelf, changes in the marine
344	reservoir age are associated with shifts in the Arctic and polar fronts, which have
345	important climatic implications (Eiriksson et al., 2004; Kristjansdottir, 2005). As many as
346	22 tephra layers have been identified in Holocene marine cores off north Iceland
347	(Kristjansdottir et al., 2007). Eiriksson et al. (2004) recovered 10 known-age tephra
348	layers of Holocene age. Some of the Icelandic tephras have wide geographic distributions
349	either because they were ejected by very large explosive eruptions or because tephra
350	particles were transported on sea ice whereas, nearer to their source, the tephra layers are
351	more numerous and locally distributed. Transport on sea ice may spread the deposition
352	time of a layer to months or years, but the layer will still remain a very short-interval time
353	marker.

354

355 **5.3.2 Measurement of Rates of Change in Terrestrial Records**

Terrestrial archives across the Arctic have been tapped to evaluate changes in the climate system in prehistoric times, with particular emphasis on changes in summer temperature, although moisture balance has been addressed in some studies. With sufficient age control, environmental proxies extracted from these archives can be used to

Chapter 5 Past Rates of Change

360 evaluate rates of change. Archives that accumulate sediment in a regular and continuous pattern have the highest potential for reconstructing rates of change. The most promising 361 362 archives are lake sediments and tree rings, both of which add material incrementally over 363 time. Long-lived trees reach only to the fringes of the Arctic, so most reconstructions rely 364 on climate proxies preserved in the sediments that accumulate in lake basins. Trees do 365 extend to relatively high latitudes in *Alaska* and portions of the *Eurasian Arctic*, where 366 they contribute high-resolution, usually annually resolved, paleoclimate records of the 367 past several centuries, but they rarely exceed 400 years duration (Overpeck et al., 1997). 368 The steady accumulation of calcium carbonate precipitates in caves may also provide a 369 continuous paleoenvironmental record (Lauritzen and Lundberg, 2004), although these 370 archives are relatively rare in the Arctic. This overview focuses on how well we can 371 reconstruct times of rapid change in terrestrial sediment archives from the Arctic, 372 focusing on changes that occurred on time scales of decades to centuries during the past 373 150,000 years or so, the late Quaternary.

374 Much of the terrestrial Arctic was covered by continental ice sheets during the last 375 glacial maximum (until about 15 ka), and large areas outside the ice sheet margins were 376 too cold for lake sediment to accumulate. Consequently, most lake records span the time 377 since deglaciation, typically the past 10,000 to 15,000 years. In a few Arctic regions, 378 longer, continuous lacustrine records more than 100,000 years long have been recovered, 379 and these rare records provide essential information about past environments and about 380 rates of change in the more distant past (e.g., (Lozhkin and Anderson, 1995; Brubaker et 381 al., 2005; Hu et al., 2006; Brigham-Grette et al., 2007). In addition to these continuous 382 records, discontinuous lake-sediment archives are found in formerly glaciated regions.

Chapter 5 Past Rates of Change

383	These sites provide continuous records spanning several millennia through past warm
384	times. In special settings, usually where the over-riding ice was very cold, slow-moving,
385	and relatively thin, lake basins have preserved past sediment accumulations intact,
386	despite subsequent over-riding by ice sheets during glacial periods (Miller et al., 1999;
387	Briner et al., 2007).
388	The rarity of terrestrial archives that span the last glaciation hampers our ability to
389	evaluate how rapid, high-magnitude changes seen in ice-core records (Dansgaard-
390	Oeschger, or D-O events) and marine sediment cores (Heinrich, or H events) are
391	manifested in the terrestrial arctic environment.
392	
393	5.3.2a Climate indicators and ages
394	Deciphering rates of change from lake sediment, or any other geological archive,
395	requires a reliable environmental proxy and a secure geochronology.
396	Climate and environmental proxies: Most high-latitude biological proxies record
397	peak or average summer air temperatures. The most commonly employed
398	paleoenvironmental proxies are biological remains, particularly pollen grains and the
399	siliceous cell walls (frustules) of microscopic, unicellular algae called diatoms, which
400	preserve well and are very abundant in lake sediment. In a summary of the timing and
401	magnitude of peak summer warmth during the Holocene across the North American
402	Arctic, Kaufman et al. (2004) noted that most records rely on pollen and plant
403	macrofossils to infer growing-season temperature of terrestrial vegetation. Diatom
404	assemblages primarily reflect changes in water chemistry, which also carries a strong
405	environmental signal. More recently, biological proxies have expanded to include larval

Chapter 5 Past Rates of Change

406	head capsules of non-biting midges (chironomids) that are well preserved in lake
407	sediment. The distribution of the larval stages of chironomid taxa exhibit a strong
408	summer-temperature dependence in the modern environment (Walker et al., 1997), which
409	allows fossil assemblages to be interpreted in terms of past summer temperatures.
410	In addition to biological proxies that provide information about past
411	environmental conditions, a wide range of physical and geochemical tracers also provide
412	information about past environments. Biogenic silica (mostly produced by diatoms),
413	organic carbon (mostly derived from the decay of aquatic organisms), and the isotopes of
414	carbon and nitrogen in the organic carbon residues can be readily measured on small
415	volumes of sediment, allowing the generation of closely spaced data—a key requirement
416	for detecting rapid environmental change. Some lakes have sufficiently high levels of
417	calcium and carbonate ions that calcium carbonate precipitates in the sediment. The
418	isotopes of carbon and oxygen extracted from calcium carbonate deposits in lake
419	sediment offer proxies of past temperatures and precipitation, and they have been used to
420	reconstruct times of rapid climate change at high latitudes (e.g., Hu et al., 1999b).
421	Promising new developments in molecular biomarkers (Hu et al., 1999a; Sauer et
422	al., 2001; Huang et al., 2004; D'Andrea and Huang, 2005) offer the potential of a wide
423	suite of new climate proxies that might be measured at relatively high resolution as
424	instrumentation becomes increasingly automated.
425	Dating lake sediment: In addition to the extraction of paleoenvironmental proxies
426	at sufficient resolution to identify rapid environmental changes in the past, a secure
427	geochronology also must be developed for the sedimentary archive. Methods for
428	developing a secure depth-age relationship generally falls into one of three categories:

Chapter 5 Past Rates of Change

429	direct dating, identification of key stratigraphic markers dated independently at other
430	sites, and dating by correlation with an established record elsewhere. Much similarity
431	exists between the techniques applied in lakes and in marine environments, although
432	some differences do exist.
433	Direct dating: The strengths and weaknesses of various dating methods applied to
434	Arctic terrestrial archives have been reviewed recently (Abbott and Stafford, 1996;
435	Oswald et al., 2005; Wolfe et al., 2005). Radiocarbon is the primary dating method for
436	archives dating from the past 15,000 years and sometimes beyond, although conditions
437	endemic to the Arctic (and described next) commonly prevent application of the
438	technique back as far as 40,000 to 50,000 years, the limit achieved elsewhere. The
439	primary challenge to accuracy of radiocarbon dates in Arctic lakes is the low primary
440	productivity of both terrestrial and aquatic vegetation throughout most of the Arctic,
441	coupled with the low rate at which organic matter decomposes on land. These two factors
442	work together so that dissolved organic carbon incorporated into lake sediment contains a
443	considerable proportion of material that grew on land, was stored on land for long times,
444	and was then washed into the lake. The carbon in this terrestrial in-wash is much older
445	than the sediment in which it is deposited, and it produces dissolved-organic-carbon ages
446	that are anomalously old by centuries to millennia (Wolfe et al., 2005). Dissolved organic
447	carbon contains many compounds, including humic acids; these acids tend to have the
448	lowest reservoir ages among the compounds and so are most often targeted when no other
449	options are available.
450	The large and variable reservoir age of dissolved organic carbon has led most

451 researchers to avoid it for dating, and instead they concentrate on sufficiently large,

Chapter 5 Past Rates of Change

452 identifiable organic remains such as seeds, shells, leaves, or other materials, typically 453 called macrofossils. Macrofossils of things living on land, such as land plants, almost 454 always yield accurate radiocarbon ages because the carbon in the plant was fully and 455 recently exchanged (equilibrated) with the atmosphere. Similarly, aquatic plants are 456 equilibrated with the carbon in the lake water, which for most lakes is equilibrated with 457 the atmosphere. However, some lakes contain sufficient calcium carbonate, which typically contains old carbon not equilibrated with the atmosphere, such that the ${}^{14}C$ 458 459 activity of the lake water is not in equilibrium with the atmosphere, a fundamental 460 assumption for accurate radiocarbon dating. In these settings, known as hard-water lakes, 461 macrofossils of terrestrial origin are targeted for dating. In lakes without this hard-water 462 effect, either terrestrial or aquatic macrofossils may be targeted. Although macrofossil 463 dates have been shown to be more reliable than bulk-carbon dates in Arctic lakes, in 464 many instances terrestrial macrofossils washed into lake basins are derived from stored 465 reservoirs (older rocks or sediments) in the landscape and have radiocarbon ages 466 hundreds of years older than the deposition of the enclosing lake sediments.

For young sediment (20th century), the best dating methods are ²¹⁰Pb (age range of about 100–150 years) and identification of the atmospheric nuclear testing spike of the early 1960s, usually either with peak abundances of ¹³⁷Cs, ^{239,240}Pu or ²⁴¹Am. These methods usually provide high-precision age control for sediments deposited within the past century.

472 Some lakes preserve annual laminations, owing to strong seasonality in either
473 biological or physical parameters. If laminations can be shown to be annual, chronologies
474 can be derived by counting the number of annual laminations, or varves (Francus et al.,

Chapter 5 Past Rates of Change

475 2002; Hughen et al., 1996; Snowball et al., 2002).

476 For late Quaternary sediments beyond the range of radiocarbon dating, dating 477 methods include optically stimulated luminescence (OSL) dating, amino acid 478 racemization (AAR) dating, cosmogenic radionuclide (CRN) dating, uranium-series 479 disequilibrium (U-series) dating and, for volcanic sediment, potassium-argon or argonargon (K-Ar or ^{40/39}Ar) dating (e.g., Bradley, 1999; Cronin, 1999). With the exception of 480 481 U-series dating, none of these methods has the precision to accurately date the timing of 482 rapid changes directly. But these methods are capable of defining the time range of a 483 sediment package and, if reasonable assumptions can be made about sedimentation rates, then the rate at which measured proxies changed can be derived within reasonable 484 485 uncertainties. U-series dating has stringent depositional-system requirements that must be 486 met to be applicable. For the terrestrial realm, calcium carbonate accumulations 487 precipitated in a regular fashion in caves (flowstones, stalagmites, stalactites) offer the 488 optimal materials. In these instances, high-precision ages can be derived for the entire 489 Late Quaternary time period. 490

490 <u>Stratigraphic markers</u>: As noted in the previous subsection, the Arctic includes 491 major centers of volcanism in the North Atlantic (*Iceland*) and the North Pacific (*Alaska* 492 and Kamchatka) sectors. Explosive volcanism from both regions can produce large 493 volumes of source- and time-diagnostic tephra distributed extensively across the Arctic. 494 These tephra layers provide time-synchronous marker horizons that can be used to 495 constrain the geochronology of lacustrine sediment records. The tephra layers can also 496 serve to precisely synchronize records derived from lacustrine, marine, and ice-sheet 497 archives, thereby allowing a better assessment of leads and lags in the climate system and

Chapter 5 Past Rates of Change

498	the phasing of abrupt changes identified in different archives. Most tephras have
499	diagnostic geochemical signatures that allow them to be securely identified with a source
500	and, with modest age constraints, to a given eruptive event. If that event is well dated in
501	regions near the source, such tephras then become dating tools in a technique known as
502	tephrachronology.
503	As indicated in section 5.3.1, systematic centennial to millennial changes in
504	Earth's magnetic field (paleomagnetic secular variation) (Fig. 5.2) have been used to
505	correlate between several high-latitude lacustrine sedimentary archives and between
506	marine and lacustrine records in the same region (Snowball et al., 2007; Stoner et al.,
507	2007). Lacustrine records of paleomagnetic secular variation calibrated with varved
508	sediments have been used for dating in Scandinavia (Saarinen, 1999; Ojala and Tiljander,
509	2003; Snowball and Sandgren, 2004)]. Recent work on marine sediments suggests that
510	paleomagnetic secular variation can provide a useful means of correlating marine and
511	terrestrial records.
512	"Wiggle matching": In some instances, very high resolution down-core analytical
513	profiles from sedimentary archives with only moderate age constraints can be
514	conclusively correlated with a well-dated high-resolution record at a distant locality, such
515	as Greenland ice core records, with little uncertainty. Although the best examples of such
516	correlations are not from the Arctic (e.g., Hughen et al., 2004a), this method remains a
517	potential tool for providing age control for Arctic lake sediment records.
518	
519	5.3.2b Potential for reconstructing rates of environmental change in the
520	terrestrial Arctic

Chapter 5 Past Rates of Change

A goal of paleoclimate research is to understand rapid changes on human time scales of decades to centuries. The major challenges in meeting this goal for the Arctic include uncertainties in the time scales of terrestrial archives and in the interpretation of various environmental proxies. Although uncertainties are widespread in both aspects, neither presents a fundamental impediment to the primary goal, quantifying rates of change.

527 Precision versus accuracy: Many Arctic lake archives are dated with high 528 precision, but with greater uncertainty in their accuracy. One can say, for example, that a 529 particular climate change recorded in a section of core occurred within a 500-year 530 interval with little uncertainty, but the exact age of the start and end of that 500-year 531 interval are much less certain. This uncertainty is due to systematic errors in the 532 proportion of old carbon incorporated into the humic acid fraction of the dissolved 533 organic carbon used to date the lake sediment. Although this fraction, or "reservoir age," 534 varies through the Holocene, changes in the reservoir age occur relatively slowly. 535 Figure 5.3 shows a segment of a sediment core from the eastern *Canadian Arctic*, 536 for which six humic acid dates define an age-depth relation with an uncertainty of only 537 ± 65 years, but the humic acid ages are systematically 500–600 years too old. In this 538 situation, rates of change for decades to centuries can be calculated with confidence, 539 although determining whether a rapid change at this site correlated with a rapid change 540 elsewhere is much less certain owing to the large uncertainty in the accuracy of the humic 541 acid dates. 542

543

FIGURE 5.3 NEAR HERE

544	
545	Figure 5.4 similarly provides an example of rapid change in an environmental
546	proxy in an Arctic lake sediment core, for which the rate of change can be estimated with
547	certainty, but the timing of the change is less certain.
548	
549	FIGURE 5.4 NEAR HERE
550	
551	5.3.3 Measurement of Rates of Change in Ice-Core Records
552	Ice-core records have figured especially prominently in the discussion of rates of
553	change during the time interval for which such records are available. One special
554	advantage of ice cores is that they collect climate indicators from many different regions.
555	In central Greenland, for example, the dust trapped in ice cores has been isotopically and
556	chemically fingerprinted: it comes from central Asia (Biscaye et al., 1997), the methane
557	has widespread sources in Arctic and in low latitudes (e.g., Harder et al., 2007), and the
558	snowfall rate and temperature are primarily local indicators (see review by Alley, 2000).
559	This aspect of ice-core records allows one to learn whether climate in widespread regions
560	changed at the same time or different times and to obtain much better time resolution
561	than is available by comparing individual records and accounting for the associated
562	uncertainties in their dating.
563	Ice cores also exhibit very high time resolution. In many Greenland cores,
564	individual years are recognized so that sub-annual dating is possible. Some care is needed
565	in the interpretation. For example, the template for the history of temperature change in
566	an ice core is typically the stable-isotope composition of the ice. (The calibration of this

Chapter 5 Past Rates of Change

567	template to actual temperature is achieved in various ways, as discussed in Chapter 6, but
568	the major changes in the isotopic ratios correlate with major changes in temperature with
569	very high confidence, as discussed there.) However, owing to post-depositional processes
570	such as diffusion in firn and ice (Johnsen, 1977; Whillans and Grootes, 1985; Cuffey and
571	Steig, 1998; Johnsen et al., 2000), the resolution of the isotope records does decrease with
572	increasing age and depth. Initially the decrease is due to processes in the porous firn, and
573	later it is due to more rapid diffusion in the warmer ice close to the bottom of the ice
574	sheet. The isotopic resolution may reveal individual storms shortly after deposition but be
575	smeared into several years in ice tens of thousands of years old. Normally in Greenland,
576	accumulation rates of less than about 0.2 m/yr of ice are insufficient to preserve annual
577	cycles for more than a few decades; higher accumulation rates allow the annual layers to
578	survive the transformation of low-density snow to high-density ice, and the cycles then
579	survive for millennia before being gradually smoothed.
580	Records of dust concentration appear to be almost unaffected by smoothing
581	processes, but some chemical constituents seem to be somewhat mobile and thus to have
582	their records smoothed over a few years in older samples (Steffensen et al., 1997;
583	Steffensen and Dahl-Jensen, 1997). Unfortunately, despite important recent progress
584	(Rempel and Wettlaufer, 2003), the processes of chemical diffusion are not as well
585	understood as are isotopic ratios, so confident modeling of the chemical diffusion is not
586	possible and the degree of smoothing is not as well quantified as one would like.
587	Persistence of relatively sharp steps in old ice that is still in normal stratigraphic order
588	demonstrates that the diffusion is not extensive. The high-resolution features of the dust
589	and chemistry records have been used to date the glacial part of the GISP2 core by using

Chapter 5 Past Rates of Change

590	mainly annual cycles of dust (Meese et al., 1997) and the NGRIP core by using annual
591	layers in different ionic constituents together with the visible dust layers (cloudy bands;
592	Fig. 5.5) back to 42 ka (Andersen et al., 2006, Svensson et al., 2006). Figure 5.5 shows
593	the visible cloudy bands in a 72 ka section of the NGRIP core. The cloudy bands are
594	generally assumed to be due to tiny gas bubbles that form on dust particles as the core is
595	brought to surface. During storage of core in the laboratory, these bands fade somewhat.
596	However, the very sharp nature of the bands when the core is recovered suggests that
597	diffusive smoothing has not been important, and that high-time-resolution data are
598	preserved.
599	
600	FIGURE 5.5 NEAR HERE
601	
602	5.4 Classes of Changes and Their Rates
603	
604	The day-to-night and summer-to-winter changes are typically larger—but have
605	less persistent effect on the climate-than long-lived features such as ice ages. This
606	observation suggests that it is wise to separate rates of change on the basis of persistence.
607	As discussed in section 3.2 on forcings, effects from the aging of the Sun can be
608	discounted on "short" time scales of 100 m.y. or less, but many other forcings must be
609	considered. Several are discussed below. For the last ice-age cycle, special reliance is
610	placed on Greenland ice-core records because of their high time resolution and confident
611	paleothermometery. But Greenland is only a small part of the whole Arctic, and this
612	limitation should be borne in mind.

Chapter 5 Past Rates of Change

613

614 **5.4.1 Tectonic Time Scales**

As discussed in section 3.2 on forcings, drifting continents and related slow shifts 615 616 in global biogeochemical cycling, together with evolving life forms, can have profound 617 local and global effects on climate during tens of millions of years. If a continent moves 618 from equator to pole, the climate of that continent will change greatly. In addition, by 619 affecting ocean currents, ability to grow ice sheets, cloud patterns, and more, the moving 620 continent may have an effect on global and regional climates as well, although this effect 621 will in general be much more subtle than the effect on the continent's own climate (e.g., 622 Donnadieu et al., 2006).

623 Within the last tens of millions of years, the primary direct effect of drifting 624 continents on the Arctic probably has been to modify the degree to which the Arctic 625 Ocean connects with the lower latitudes, by altering the "gateways" between land masses. 626 The Arctic Ocean, primarily surrounded by land masses, has persisted throughout that 627 time (Moran et al., 2006). Much attention has been directed to the possibility that the 628 warmth of the Arctic during certain times, such as the Eocene (which began about 50 629 Ma), was linked to increased transport of ocean heat as compared with other, colder 630 times. However, both models and data indicate that this possibility appears unlikely (e.g., 631 Bice et al., 2000). The late Eocene Arctic Ocean appears to have supported a dense 632 growth of pond weed (Azola), which is understood to grow in brackish waters (those 633 notably fresher than full marine salinity) (Moran et al., 2006). A more-vigorous ocean 634 circulation then would have introduced fully marine waters and would have transported 635 the pond weed away. A great range of studies indicates that larger atmospheric carbon-

Chapter 5 Past Rates of Change

636	dioxide concentrations during that earlier time were important in causing the warmth
637	(Royer et al., 2007, Vandermark et al, 2007, and Tarduno et al, 1998.).
638	The Arctic of about 50 Ma appears to have been ice free, at least near sea level,
639	and thus minimum wintertime temperatures must have been above freezing. Section 6.3.1
640	includes some indications of temperatures in that time, with perhaps 20°C a useful
641	benchmark for Arctic-wide average annual temperature. Recent values are closer to
642	-15°C, which would indicate a cooling of roughly 35°C within about 50 m.y. The implied
643	rate is then in the neighborhood of 0.7°C/million years or 0.0000007°C/yr. One could
644	pick time intervals during which little or no change occurred, and intervals within the last
645	50 m.y. during which the rate of change was somewhat larger; a rough "tectonic" value
646	of about 1°C/million years or less may be useful.
647	

648 **5.4.2 Orbital Time Scales**

649 As described in section 3.2 on forcings, features of Earth's orbit cause very small 650 changes in globally averaged incoming solar radiation (insolation) but large changes 651 (more than 10%) in local sunshine. These orbital changes serve primarily to move 652 sunshine from north to south and back or from poles to equator and back, depending on 653 which of the orbital features is considered. The leading interpretation (e.g., Imbrie et al., 654 1993) is that ice sheets grow and the world enters an ice age when reduced summer 655 sunshine at high northern latitudes allows survival of snow without melting; ice sheets 656 melt, and the world exits an ice age, when greater summer sunshine at high northern 657 latitudes melts snow there. Because the globally averaged forcing is nearly zero but the 658 globally averaged response is large (e.g., Jansen et al., 2007), the Earth system must have

Chapter 5 Past Rates of Change

659	strong amplifying processes (feedbacks). Changes in greenhouse-gas concentrations
660	(especially carbon dioxide), how much of the Sun's energy is reflected (ice-albedo
661	feedback, plus some changes in vegetation), and blocking of the Sun by dust are
662	prominent in interpretations, and all appear to be required to explain the size and pattern
663	of the reconstructed changes (Jansen et al., 2007).

The globally averaged change from ice-age to interglacial is typically estimated as $5^{\circ}-6^{\circ}C$ (e.g., Jansen et al., 2007). Changes in the Arctic clearly were larger. In central *Greenland*, typical glacial and interglacial temperatures differed by about 15°C, and the maximum warming from the most-recent ice age was about 23°C (Cuffey et al., 1995). Very large changes occurred where ice sheets grew during the ice age and melted during the subsequent warming, related to the cooling effect of the higher elevation of the ice sheets, but the elevation change is not the same as a climatic effect.

In central *Greenland*, the coldest time of the ice age was about 24 ka, although as
discussed in Chapter 6, some records place the extreme value of the most recent ice age
slightly more recently. Kaufman et al. (2004) analyzed the timing of the peak warmth of
the Holocene throughout broad regions of the Arctic; near the melting ice sheet on North
America, peak warmth was delayed until most of the ice was gone, whereas far from the
ice sheet peak warmth was reached before 8 ka, in some regions by a few millennia.
A useful order-of-magnitude estimate may be that the temperature change

associated with the end of the ice age was about 15° C in about 15 thousand years (k.y.) or

about 1°C/k.y.) or 0.001°C/yr, and peak rates were perhaps twice that. The ice-age cycle

680 of the last few hundred thousand years is often described as consisting of about 90 k.y. of

681 cooling followed by about 10 k.y. of warming, or something similar, implying faster

Chapter 5 Past Rates of Change

682	warming than cooling (see Fig. 6.9). Thus, rates notably slower than $1^{\circ}-2^{\circ}C/ka$ are
683	clearly observed at times.

684	Kaufman et al. (2004) indicated that the warmest times of the current or Holocene
685	interglacial (MIS 1) in the western-hemisphere part of the Arctic were, for average land,
686	$1.6 \pm 0.8^{\circ}$ C above mean 20th-century values. Warmth peaked before 12 ka in western
687	Alaska but after 3 ka in some places near Hudson Bay; a typical value is near 7-8 ka.
688	Thus, the orbital signal during the Holocene has been less than or equal to approximately
689	0.2°C/ka, or 0.0002°C/yr.
690	
691	5.4.3 Millenial or Abrupt Climate Changes
692	Exceptional attention has been focused on the abrupt climate changes recorded in
693	Greenland ice-cores and in many other records from the most recent ice age and earlier
694	(see National Research Council, 2002; Alley et al., 2003; Alley, 2007).
695	The more recent of these changes has been well known for decades from many
696	studies primarily in Europe that worked with lake and bog sediments and the moraines
697	left by retreating ice sheets. However, most research focused on the slower ice-age
698	cycles, which were easier to study in paleoclimatic archives.
699	The first deep ice core through the Greenland Ice Sheet, at Camp Century in
700	1966, produced a δ^{18} O isotope profile that showed unexpectedly rapid and strong climatic
701	shifts through the entire last glacial period (Dansgaard et al., 1969; 1971; Johnsen et al.,
702	1972). The fastest observed sharp transitions from cold to warm seemed to have been on
703	the time scale of centuries, clearly much faster than Milankovitch time scales.

Chapter 5 Past Rates of Change

704	These results did not stimulate much additional research immediately; the record
705	lay close to the glacier bed, and it may be that many investigators suspected that the
706	records had been altered by ice-flow processes. There were, however, data from quite
707	different archives pointing to the same possibility of large and rapid climate change. For
708	example, the Grand Pile pollen profile (Woillard, 1978; Woillard, 1979) showed that the
709	last interglacial (MIS 5) ended rapidly during an interval estimated at 150 ± 75 yrs,
710	comparable to the Camp Century findings. The Grand Pile pollen data also pointed to
711	many sharp warming events during the last ice age.
712	The next deep core in <i>Greenland</i> at the <i>Dye-3</i> radar station was drilled by the
713	United States, Danish, and Swiss members of the Greenland Ice Sheet Program
714	(Dansgaard et al., 1982). The violent climatic changes, as Willi Dansgaard termed them,
715	matched the often-ignored Camp Century results. The cause for these strong climatic
716	oscillations had already been hinted at by Ruddiman and Glover (1975) and Ruddiman
717	and McIntyre (1981), who studied oceanic evidence for the large climatic oscillations
718	involving strong warming into the Bolling interval, cooling into the Younger Dryas, and
719	warming into the Preboreal. They assigned the cause for these strong climatic anomalies
720	to thermohaline circulation changes combined with strong zonal winds partly driving the
721	surface currents in the north Atlantic; these forces drove sharp north-south shifts of the
722	polar front. In light of the ice core data, the oscillations around the Younger Dryas were
723	part of a long row of similar events, which Dansgaard et al. (1984) and Oeschger et al.
724	(1984) likewise assigned to circulation changes in the north Atlantic. Broecker et al.
725	(1985) argued for bi-stable North Atlantic circulation as the cause for the Greenland
726	climatic jumps.

Chapter 5 Past Rates of Change

727	The results of the <i>Dye-3</i> core went a long way toward settling the issue of the
728	existence of abrupt climate change. Further results from year-by-year ice sampling during
729	the Younger Dryas warming from this same core pushed the definition of "abrupt" from
730	the century time scale to the decadal and nearly annual scale (Dansgaard et al., 1989).
731	Alley et al. (1993) suggested the possibility that much of an abrupt change was
732	completed in a single year for at least one climatic variable (snow accumulation at the
733	GISP2 site).

734 In addition to the GISP2, GRIP, and DYE-3 cores, ice core evidence has been 735 strengthened by new deep ice cores at Siple Dome in West Antarctica and North-GRIP in 736 northern Greenland. New high-resolution measurement techniques have provided 737 subannual resolution for several parameters, and these data have been used for the North-738 *GRIP* core to provide absolute dating, the GICC05 chronology, back to 60 ka (Svensson 739 et al., 2005; Rasmussen et al., 2006; Vinther et al., 2006). The GISP2 and GRIP ice cores 740 have also been synchronized with the North-GRIP core through MIS 2 (Rasmussen et al., 741 2006; in press).

742 The temperature shifts into the warm intervals in the millennial climate changes, 743 which are called interstadials (Johnsen et al., 1992; Dansgaard et al., 1993), have been 744 found to vary from 10° to 16°C on the basis of borehole thermometry (Cuffey et al., 745 1995; Johnsen et al., 1995; Jouzel et al., 1997) and of studies of the isotopic effect of 746 thermal **firn** diffusion on gas isotopes (Severinghaus et al., 1998; Lang et al., 1999; Leuenberger et al., 1999; Landais et al., 2004; Huber et al., 2006).

748 The North-GRIP core, the most recent of the Greenland deep cores and the one 749 on which the most effort was expended in counting annual layers, shows that typically

Chapter 5 Past Rates of Change

747

750

751	year averages of isotopic values during MIS 2 and MIS 3; this information indicates
752	temperature changes of 0.5°C/yr or faster.
753	In the Holocene period, the approximately 160-year-long cold event about 8.2 ka,
754	which produced 4°–5°C cooling in <i>Greenland</i> (Leuenberger et al., 1999), began in less
755	than 20 years, and perhaps much less. The cooling is believed to have been caused by the
756	emptying of Lake Agassiz (reviewed by Alley and Agustsdottir, 2005), and the rapid
757	transitions found bear witness to the dynamic nature of the North Atlantic circulation in
758	jumping to a new mode.
759	The Younger Dryas and the 8.2 ka cold event (section 6.3.5a) are well known in
760	Europe and in Arctic regions, but they appear to have been much weaker or absent in
761	other Arctic regions (see reviews by Alley and Agustsdottir (2005) and Alley (2007);
762	note that strong signals of these events are found in some but not all lower-latitude
763	regions). The signal of the Younger Dryas did extend across the Arctic to Alaska (see
764	Peteet, 1995a,b; Hajdas et al., 1998). Lake sediment records from the eastern Canadian
765	Arctic contain evidence for both excursions (Miller et al., 2005).
766	The 8.2 ka event is recorded at two sites as a notable readvance of cirque glaciers
767	and outlet glaciers of local ice caps at $8,200 \pm 100$ years (Miller et al., 2005). In some
768	lakes not dominated by runoff of meltwater from glaciers, a reduction in primary
769	productivity is apparent at the same time. These records suggest that colder summers
770	during the event without a dramatic reduction in precipitation produced positive mass
771	balances and glacier re-advances. For most local glaciers, this readvance was the last
772	important one before they receded behind their Little Ice Age margins. Organic carbon

the rapid warmings into interstadials are recorded as increases in only 20 years in the 20-

Chapter 5 Past Rates of Change

accumulation in a West *Greenland* lake sediment record suggests a decrease in biotic

productivity synchronous with the negative δ^{18} O excursion in the GRIP ice core

775 (Willemse and Törnqvist, 1999).

776 Few Arctic lakes contain records that extend through Younger Dryas time. And 777 despite the strong signal indicative of rapid, dramatic Younger Dryas cooling in 778 Greenland ice cores, no definitive records document or refute accompanying glacier 779 expansion or cold around the edge of the *Greenland Ice Sheet* (Funder and Hansen, 1996; 780 Björck et al., 2002) (discussed in Chapter 6), near Svalbard (Svendson and Mangerud, 781 1992), or in Arctic Canada (Miller et al., 2005). These observations are consistent with 782 the joint observations that the events primarily occurred in wintertime, whereas most 783 paleoclimatic indicators are more sensitive to summertime conditions. Moreover, the events manifested primarily in the North Atlantic and surroundings, and their amplitude 784 785 was reduced away from the North Atlantic (Denton et al., 2005; Alley, 2007; also see 786 Björck et al., 2002). This means in turn that the rate of climate change associated with 787 these events, although truly spectacular in the north Atlantic, was much smaller 788 elsewhere (poorly constrained, but perhaps only one-tenth as large in many parts of the 789 Arctic, and a region of zero temperature change somewhere on the planet separated the 790 northern regions of cooling from the southern regions of weak warming). The globally 791 averaged signal in temperature change was weak, although in some regions rainfall seems 792 to have changed very markedly (e.g., Cai et al., 2008).

793

794 **5.4.4** Higher-Frequency Events Especially in the Holocene

The Holocene record, although showing greatly muted fluctuations in temperature

Chapter 5 Past Rates of Change

as compared with earlier times, is not entirely without variations. As noted above, a slow variation during the Holocene is linked with orbital forcing and decay of the great ice sheets. Riding on the back of this variation are oscillations of roughly 1°C or less, at various temporal spacings. Great effort has been expended in determining what is signal versus noise in these records, because the signals are so small, and issues of whether events are broadly synchronous or not become important.

A few rather straightforward conclusions can be stated with some confidence. Icecore records from *Greenland* show the forcing and response of individual volcanic eruptions. A large explosive eruption caused a cooling of roughly 1°C in *Greenland*, and the cooling and then warming each lasted roughly 1 year (Grootes and Stuiver, 1997; Stuiver et al., 1997), although a cool "tail" lasted longer. Thus, the temperature changes associated with volcanic eruptions are strong, 1°C/year, but not sustained. Because

808 volcanic eruptions are essentially random in time, accidental clustering in time can

809 influence longer term trends stochastically.

810 The possible role of solar variability in Holocene changes (and in older changes;

811 e.g., Braun et al., 2005) is of considerable interest. Ice-core records are prominent in

812 reconstruction of solar forcing (e.g., Bard et al., 2007; Muscheler et al., 2007).

813 Identification of climate variability correlated with solar variability then allows

814 assessment of the solar influence and the rates of change caused by the solar variability.

Much study has focused on the role of the Sun in the oscillations within the interval from the so-called Medieval Climate Anomaly through the Little Ice Age and the subsequent warming to recent conditions. The reader is especially referred to Hegerl et al. (2007). In *Greenland*, the Little Ice Age–Medieval Climate Anomaly oscillation had an

Chapter 5 Past Rates of Change

819 amplitude of roughly 1°C. Attribution exercises show that much of this amplitude can be 820 explained by volcanic forcing in response to the changing frequency of large eruptions 821 (Hegerl et al., 2007). In addition, some of this temperature change might reflect oceanic 822 changes (Broecker, 2000; Renssen et al., 2006), but some fraction is probably attributable 823 to solar forcing (Hegerl et al., 2007). Human influences on the environment were 824 measurable at this time, and thus such as changes in land cover and small changes to 825 greenhouse gases such as methane, may have also played a role. Although the time from 826 Medieval Climate Anomaly to Little Ice Age to recent warmth is about 1 millennium, 827 there are warmings and coolings in that interval that suggest that the changes involved 828 are probably closer to 1°C/century; some fraction of that change is attributable to solar 829 forcing and some to volcanic and perhaps to oceanic processes. Because recent studies 830 tend to indicate greater importance for volcanic forcing than for solar forcing (Hegerl et 831 al., 2007), changes of 0.3° C/century may be a reasonable estimate of an upper limit for 832 the solar forcing observed (but with notable uncertainty). Weak variations of the ice-core 833 isotopic ratios that correlate with the sunspot cycles and other inferred solar periodicities 834 similarly indicate a weak solar influence (Stuiver et al., 1997; Grootes and Stuiver, 1997). 835 Whether a weak solar influence acting on millennial time scales is evident in poorly 836 quantified paleoclimatic indicators (Bond et al., 2001) remains a hotly debated topic. The 837 ability to explain the Medieval Climate Anomaly–Little Ice Age oscillation without 838 appeal to such a periodicity and the evidently very small role of any solar forcing in those 839 events largely exclude a major role for such millennial oscillations in the Holocene. 840 The warming from the Little Ice Age extends into the instrumental record, 841 generally consistent with the considerations above. In the instrumental data (Parker et al.,

Chapter 5 Past Rates of Change

842	1994; also see Delworth and Knutson, 2000), the Arctic sections, particularly the North
843	Atlantic sector, show warming of roughly 1°C in the first half of the 20th century (and
844	with peak warming rates of twice that average). The warming likely arose from some
845	combination of volcanic, solar, and human (McConnell et al., 2007) forcing, and perhaps
846	some oceanic forcing. The warming was followed by weak cooling and then a similar
847	warming in the latter 20th century (roughly 1°C per 30 years) primarily attributable to
848	human forcing with little and perhaps opposing natural forcing (Hegerl et al., 2007).
849	As noted in section 3.2 on forcings (see above; also see Bard and Delaguye,
850	2008), the lack of correlation between indicators of climate and indicators of past
851	magnetic-field strength, or between indicators of climate and indicators of in-fall rate of
852	extraterrestrial materials, means that any role of these possible forcings must be minor
853	and perhaps truly zero.

854

855 **5.5 Summary**

856

857 The discussion in the previous section produced estimates of peak rates of climate 858 change associated with different causes. These estimates are plotted in a summary 859 fashion in Figure 5.6. As one goes to longer times, the total size of changes increases, 860 but the rate of change decreases. Such behavior is unsurprising; a sprinter changes 861 position very rapidly but does not sustain the rate, so that in a few hours the marathon 862 runner covers more ground. To illustrate this concept, regression lines were added 863 through the tectonic, ice-age, volcano, volcanoes, and solar points; abrupt climate 864 changes and human-caused changes were omitted from this regression because of

Chapter 5 Past Rates of Change

865	difficulty in estimating an Arctic-wide value.
866	
867	FIGURE 5.6 NEAR HERE
868	
869	The local effects of the abrupt climate changes in the North Atlantic are clearly
870	anomalous compared with the general trend of the regression lines, and changes were
871	both large and rapid. These events have commanded much scientific attention for
872	precisely this reason. However, globally averaged, these events are unimpressive: they
873	fall well below the regression lines, thus demonstrating clearly the difference between
874	global and regional behavior. An Arctic-wide assessment of abrupt climate changes
875	would yield rates of change that would plot closer to the regression lines than do either
876	the local Greenland or global values.
877	Thus far, human influence does not stand out relative to other, natural causes of
878	climate change. However, the projected changes can easily rise above those trends,
879	especially if human influence continues for more than a hundred years and rises above
880	the IPCC "mid-range" A1B scenario. No generally accepted way exists to formally assess
881	the effects or importance of size versus rate of climate change, so no strong conclusions
882	should be drawn from the observations here.
883	The data clearly show that strong natural variability has been characteristic of the
884	Arctic at all time scales considered. The data suggest the twin hypotheses that the human
885	influence on rate and size of climate change thus far does not stand out strongly from
886	other causes of climate change, but that projected human changes in the future may do so.
887	The report here relied much more heavily on ice-core data from Greenland than is

Chapter 5 Past Rates of Change

- 888 ideal in assessing Arctic-wide changes. Great opportunities exist for generation and
- synthesis of other data sets to improve and extend the results here, using the techniques
- 890 described in this chapter. If widely applied, such research could remove the over-reliance
- 891 on *Greenland* data.
- 892

892

893

895 Figure 5.1. A "Weather" versus "climate," in annual temperatures for the 896 continental United States, 1960-2007. Red lines, trends for 4-year 897 segments that show how the time period affects whether the trend appears 898 to depict warming, cooling, or no change. Various lines show averages of 899 different number of years, all centered on 1990: Dark blue dash, 3 years; 900 dark blue, 7 years; light blue dash, 11 years; light blue, 15 years; and 901 green, 19 years. The perceived trend can be warming, cooling, or no 902 change depending on the length of time considered. Climate is normally 903 taken as a 30-year average; all 30-year-long intervals (1960–1989 through

904	1978–2007) warmed significantly (greater than 95% confidence), whereas
905	only 1 of the 45 possible trend-lines (17 are shown) has a slope that is
906	markedly different from zero with more than 95% confidence. Thus, a
907	climate-scale interpretation of these data indicates warming, whereas
908	shorter-term ("weather") interpretations lead to variable but insignificant
909	trends. Data from United States Historical Climatology Network,
910	$http://www.ncdc.noaa.gov/oa/climate/research/cag3/cag3.html \ (Easterling$
911	et al., 1996).
912	

- 914 **Figure 5.2** Paleomagnetic secular variations records (left), tephrochronology records (right), and calibrated radiocarbon ages for
- 915 cores MD99-2269 and -2322 (center) provide a template for Holocene stratigraphy of the Denmark Straits region (after Stoner et al.,
- 916 2007, and Kirstjansdottir et al., 2007). Solid lines, tephra horizons in core 2269.

- 918
- 919

920 Figure 5.3 Precision versus accuracy in radiocarbon dates. Blue circle, accelerated mass spectrometry (AMS) ¹⁴C date on the humic acid (HA) fraction of the total dissolved 921 922 organic carbon (DOC) extracted from a sediment core from the eastern Canadian Arctic. Red circle, AMS ¹⁴C date on macrofossil of aquatic moss from 75.6 cm, the same 923 924 stratigraphic depth as a HA-DOC date. Dashed line is the best estimate of the age-depth 925 model for the core. Samples taken 1–2 cm apart for HA-DOC dates show a systematic 926 down-core trend suggesting that the precision is within the uncertainty of the 927 measurements (± 40 to ± 80 years), whereas the discrepancy between macrofossil and HA-928 DOC dates from the same stratigraphic depth demonstrates an uncertainty in the accuracy 929 of the HA-DOC ages of nearly 600 years. Data from Miller et al. (1999).

930

931 932

933 **Figure 5.4** Down-core changes in organic carbon (measured as loss-on-ignition (LOI))

934 in a lake sediment core from the eastern Canadian Arctic. At the base of the record,

- organic carbon increased sharply from about 2% to greater than 20% in less than 100
- 936 years, but the age of the rapid change has an uncertainty of 500 years. Data are from
- 937 Briner et al. (2006).

- **Figure 5.5**. A mescan image of NGRIP ice core interval 2528.55–2530.0 m depth. Gray layers, annual cloudy bands; annual layers
- 947 are about 1.5 cm thick. Age of this interval is about 72 ka, which corresponds with *Greenland* Interstadial 19. (Svensson et al., 2005)

949

950 Figure 5.6. Summary of estimated peak rates of change and sizes of changes associated with 951 various classes of cause. Error bars are not provided because of difficulty of quantifying them, 952 but high precision is not implied. Both panels have logarithmic scales on both axes (log-log 953 plots) to allow the huge range of behavior to be shown in a single figure. The natural changes 954 during the Little Ice Age-Medieval Climate Anomaly have been somewhat arbitrarily partitioned 955 as 0.6°C for changes in volcanic-eruption frequency (labeled "volcanoes" to differentiate from 956 the effects of a single eruption, labeled "volcano"), and 0.3°C for solar forcing to provide an 957 upper limit on solar causes; a larger volcanic role and smaller solar role would be easy to defend 958 (Hegerl et al., 2007), but a larger solar role is precluded by available data and interpretations. 959 The abrupt climate changes are shown for local *Greenland* values and for a poorly constrained 960 global estimate of 0.1°C. These numbers are intended to reperesent the Arctic as a whole, but 961 much *Greenland* ice-core data have been used in determinations. The instrumental record has 962 been used to assess human effects (see Delworth and Knutson, 2000 and Hegerl et al., 2007). 963 The "human" contribution may have been overestimated and natural fluctuations may have

964 contributed to the late-20th-century change, but one also cannot exclude the possibility that the 965 "human" contribution was larger than shown here and that natural variability offset some of the 966 change. The ability of climate models to explain widespread changes in climate primarily on the 967 basis of human forcing, and the evidence that there is little natural forcing during the latter 20th 968 century (Hegerl et al., 2007), motivate the plot as shown. Also included for scaling is the 969 projection for the next century (from 1980–1999 to 2080–2099 means) for the IPCC SRES A1B 970 emissions scenario (one often termed "middle of the road") scaled from Figure 10.7 of Meehl et 971 al. (2007); see also Chapman and Walsh (2007). This scenario is shown as the black square 972 labeled A1B; a different symbol shows the fundamental difference of this scenario-based 973 projection from data-based interpretations for the other results on the figure. Human changes 974 could be smaller or larger than shown as A1B, and they may continue to possibly much larger 975 values further into the future. There is no guarantee that human disturbance will end before the 976 end of the 21st century, as plotted here. The regression lines pass through tectonic, ice-age, solar, 977 volcano, and volcanoes; they are included solely to guide the eye and not to imply mechanisms. 978

979	Chapter 5 References Cited
980	
981	Abbott, M.B. and T.W.J. Stafford, 1996: Radiocarbon geochemistry of modern and ancient
982	arctic lake systems, Baffin Island, Canada. Quaternary Research, 45, 300-311.
983	
984	Alley, R.B., 2000: The Younger Dryas cold interval as viewed from central Greenland.
985	Quaternary Science Reviews, 19, 213-226.
986	
987	Alley, R.B., 2007: Wally was right: Predictive ability of the North Atlantic "conveyor belt"
988	hypothesis for abrupt climate change. Annual Review of Earth and Planetary Sciences,
989	35 , 241-272.
990	
991	Alley, R.B. and A.M. Agustsdottir, 2005: The 8k event: Cause and consequences of a major
992	Holocene abrupt climate change, Quaternary Science Reviews, 24, 1123 -1149.
993	
994	Alley, R.B., J. Marotzke, W.D. Nordhaus, J.T. Overpeck, D.M. Peteet, R.A. Pielke, Jr., R.T.
995	Pierrehumbert, P.B. Rhines, T.F. Stocker, L.D. Talley, and J.M. Wallace, 2003: Abrupt
996	climate change. Science, 299, 2005-2010.
997	
998	Alley, R.B., D.A. Meese, C.A. Shuman, A.J. Gow, K.C. Taylor, P.M. Grootes, J.W.C. White, M.
999	Ram, E.D. Waddington, P.A. Mayewski, and G.A. Zielinski, 1993: Abrupt increase in
1000	snow accumulation at the end of the Younger Dryas event. <i>Nature</i> , 362 , 527-529.
1001	
1002	Andersen, K.K., A. Svensson, S.O. Rasmussen, J.P. Steffensen, S.J. Johnsen, M. Bigler, R.
1003	Röthlisberger, U. Ruth, ML. Siggaard-Andersen, D. Dahl-Jensen, B.M. Vinther, and
1004	H.B. Clausen, 2006: The Greenland ice core chronology 2005, 15-42 ka. Part 1:
1005	Constructing the time scale. Quaternary Science Reviews, 25(23-24), 3246-3257.
1006	
1007	Bard, E. and G. Delaygue, 2008: Comment on - "Are there connections between the Earth's
1008	magnetic field and climate?" Earth and Planetary Science Letters, 265, 302-307.

1009	
1010	Bard, E., G.M. Raisbeck, F. Yiou, and J. Jouzel, 2007: Comment – Solar activity during the last
1011	1000 yr inferred from radionuclide records. Quaternary Science Reviews, 26, 2301-2304.
1012	
1013	Bice, K.L., C.R. Scotese, D. Seidov, and E.J. Barron, 2000: Quantifying the role of geographic
1014	change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models.
1015	Palaeogeography Palaeoclimatology Palaeoecology, 161, 295-310.
1016	
1017	Biscaye, P.E., F.E. Grousset, M. Revel, S. VanderGaast, G.A. Zielinski, A. Vaars, and G. Kukla,
1018	1997: Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice
1019	Core, Summit, Greenland. Journal of Geophysical Research – Oceans, 102(C12), 26765-
1020	26781.
1021	
1022	Björck, S., O. Bennike, P. Rose, C.S. Andreson, S., Bohncke, E. Kaas, and D. Conley, 2002:
1023	Anomalously mild Younger Dryas summer conditions in southern Greenland. Geology,
1024	30, 427-430.
1025	
1026	Björck, S., N. Koç, and G. Skot, 2003: Consistently large marine reservoir ages in the
1027	Norwegian Sea during the last deglaciation. Quaternary Science Reviews, 22, 429-435.
1028	
1029	Bond, G., B. Kromer, J. Beer, R. Muscheler, M.N. Evans, W. Showers, S. Hoffman, R. Lotti-
1030	Bond, I. Hajdas, and G. Bonani, 2001: Persistent solar influence on North Atlantic
1031	climate during the Holocene. Science, 294, 2130-2136.
1032	
1033	Bradley, R.S., 1999: Paleoclimatology: Reconstructing Climate of the Quaternary. Academic
1034	Press, San Diego, 613 pp.
1035	
1036	Braun, H., L.M. Christ, S. Rahmstorf, A. Ganopolski, A.Mangini, C. Kubatzki, K. Roth, and B.
1037	Kromer, 2005: Possible solar origin of the 1,470-year glacial climate cycle demonstrated
1038	in a coupled model. <i>Nature</i> , 438 , 208-211.
1039	

1040	Brigham-Grette, J., M. Melles, P. Minyuk, and Scientific Party, 2007: Overview and
1041	significance of a 250 ka paleoclimate record from El'gygytgyn Crater Lake, NE Russia.
1042	Journal of Paleolimnology, 37(1) , 1-16.
1043	
1044	Briner, J.P., Y. Axford, S.L. Forman, G.H. Miller, and A.P. Wolfe, 2007: Multiple generations
1045	of interglacial lake sediment preserved beneath the Laurentide Ice Sheet. Geology, 35,
1046	887-890.
1047	
1048	Briner, J.P., N. Michelutti, D.R. Francis, G.H. Miller, Y. Axford, M.J. Wooller, and A.P. Wolfe,
1049	2006: A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin
1050	Island, Arctic Canada. Quaternary Research, 65, 431-442.
1051	
1052	Broecker, W.S., 2000: Was a change in thermohaline circulation responsible for the Little Ice
1053	Age? Proceedings of the National Academy of Sciences of the United States of America,
1054	97 , 1339-1342
1055	
1056	Broecker, W.S., D.M. Peteet, and D. Rind, 1985: Does the ocean-atmosphere system have more
1057	than one stable mode of operation? Nature, 315 , 21-26.
1058	
1059	Brubaker, L.B., P.M. Anderson, M.E. Edwards, and A.V. Lozhkin, 2005: Beringia as a glacial
1060	refugium for boreal trees and shrubs—New perspectives from mapped pollen data.
1061	Journal of Biogeography, 32 , 833-848.
1062	
1063	Cai, B.G., R.L. Edwards, H. Cheng, M. Tan, X. Wang, and T.S. Liu, 2008: A dry episode during
1064	the Younger Dryas and centennial-scale weak monsoon events during the early
1065	Holocene—A high-resolution stalagmite record from southeast of the Loess Plateau,
1066	China. Geophysical Research Letters, 35(2), Article L02705
1067	
1068	Chapman, W.L., and J.E. Walsh, 2007: Simulations of Arctic Temperature and Pressure by
1069	Global Coupled Models. J. Climate, 20, 609-632.
1070	

1071	
1072	Cronin, T.M., 1999: Principles of Paleoclimatology. Columbia University Press, New York, 560
1073	pp.
1074	
1075	Cuffey, K.M. and E.J. Brook, 2000: Ice sheets and the ice-core record of climate change. In:
1076	Earth system science—From biogeochemical cycles to global change [Jacobson, M.C.,
1077	R.J. Charlson, H. Rodhe and G.H. Orians (eds.)], Academic Press, Burlington, MA, pp.
1078	459 -497.
1079	
1080	Cuffey, K.M., G.D. Clow, R.B. Alley, M. Stuiver, E.D. Waddington, and R.W. Saltus, 1995:
1081	Large arctic temperature change at the Wisconsin-Holocene glacial transition. Science,
1082	270(5235) , 455-458.
1083	
1084	Cuffey, K.M. and G.D. Clow, 1997: Temperature, accumulation, and ice sheet elevation in
1085	central Greenland through the last deglacial transition. Journal of Geophysical Research,
1086	102(C12) , 26,383-26,396.
1087	
1088	Cuffey, K.M. and E.J. Steig, 1998: Isotopic diffusion in polar firn—Implications for
1089	interpretation of seasonal climate parameters in ice-core records, with emphasis on
1090	central Greenland. Journal of Glaciology, 44(147), 273-284.
1091	
1092	D'Andrea, W.J. and Y. Huang, 2005: Long-chain alkenones in Greenland lake sediments-Low
1093	δ13C values and exceptional abundance. Organic Geochemistry, 36 , 1234-1241.
1094	
1095	Dansgaard, W., H.B. Clausen, N. Gundestrup, C.U. Hammer, S.J. Johnsen, P.M. Kristinsdottir,
1096	and N. Reeh, 1982: A new Greenland deep ice core. Science, 218(4579), 1273-1277.
1097	
1098	Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N.S. Gundestrup, C.U. Hammer,
1099	C.S. Hvidberg, J.P. Steffensen, A.E. Sveinbjörnsdottir, J. Jouzel, and G. Bond, 1993:
1100	Evidence for general instability of past climate from a 250-kyr ice-core record. Nature,
1101	364(6434) , 218-220.

Chapter 6 Past Rates of Change in the Arctic

1102	
1103	Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N. Gundestrup, C.U. Hammer, and
1104	H. Oeschger, 1984: North Atlantic climatic oscillations revealed by deep Greenland ice
1105	cores. In: Climatic Processes and Climate Sensitivity [Hansen, J.E. and T. Takahashi
1106	(eds.)]. Geophysical Monograph Series 29, American Geophysical Union, Washington,
1107	DC, pp. 288-298.
1108	
1109	Dansgaard, W., S.J. Johnsen, H.B. Clausen, and C.C. Langway, Jr., 1971: Climatic record
1110	revealed by the Camp Century ice core. In: The Late Cenozoic Glacial Ages, [Turekian,
1111	K.K. (ed.)]. Yale University Press, USA, pp. 37-56.
1112	
1113	Dansgaard, W., S.J. Johnsen, J. Møller, and C.C. Langway, Jr., 1969: One thousand centuries of
1114	climatic record from Camp Century on the Greenland Ice Sheet. Science, 166(3903), 377-
1115	381.
1116	
1117	Dansgaard, W., J.W.C. White, and S.J. Johnsen, 1989: The abrupt termination of the Younger
1118	Dryas climate event. Nature, 339 , 532-534.
1119	
1120	Denton, G. H., R.B. Alley, G.C. Comer, and W.S. Broecker, 2005: The role of seasonality in
1121	abrupt climate change. Quaternary Science Reviews, 24, 1159-1182.
1122	
1123	Delworth, T.L. and T.R. Knutson, 2000: Simulation of early 20 th century global warming.
1124	<i>Science</i> , 287 , 2246.
1125	
1126	Donnadieu, Y., R. Pierrehumbert, R. Jacob, and F. Fluteau, 2006: Modelling the primary control
1127	of paleogeography on Cretaceous climate. Earth and Planetary Science Letters, 248, 426-
1128	437.
1129	
1130	Easterling, D.R., T.R. Karl, E.H. Mason, P.Y. Hughes, and D.P. Bowman, 1996: United States
1131	Historical Climatology Network (U.S. HCN) Monthly Temperature and Precipitation

1132	Data. ORNL/CDIAC-87, NDP-019/R3. Carbon Dioxide Information Analysis Center,
1133	Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.
1134	
1135	Eiriksson, J., G. Larsen, K.L. Knudsen, J. Heinemeier, and L.A. Simonarson, 2004: Marine
1136	reservoir age variability and water mass distribution in the Iceland Sea. Quaternary
1137	Science Reviews, 23 , 2247-2268.
1138	
1139	Ellison, C.R.W., M.R. Chapman, and I.R. Hall, 2006: Surface and deep ocean interactions
1140	during the cold climate event 8200 years ago. Science, 312, 1929-1932.
1141	
1142	Francus, P., R. Bradley, M. Abbott, F. Keimig, and W. Patridge, 2002: Paleoclimate studies of
1143	minerogenic sediments using annually resolved textural parameters. Geophysical
1144	<i>Research Letters</i> , 29 , 59-1 to 59-4.
1145	
1146	Funder, S. and L. Hansen, 1996: The Greenland Ice Sheet—A model for its culmination and
1147	decay during and after the last glacial maximum. Bulletin of the Geological Society of
1148	Denmark, 42 , 137-152.
1149	
1150	Grootes, P.M. and M. Stuiver, 1997: Oxygen 18/16 variability in Greenland snow and ice with
1151	10(-3)- to 10(5)-year time resolution. Journal of Geophysical Research–Oceans,
1152	102(C12) , 26,455-26,470.
1153	
1154	Hajdas, I., G. Bonani, P. Boden, D.M. Peteet, and D.H. Mann, 1998: Cold reversal on Kodiak
1155	Island, Alaska, correlated with the European Younger Dryas by using variations of
1156	atmospheric C-14 content. Geology, 26(11), 1047-1050.
1157	
1158	Harder, S.L., D.T. Shindell, G.A. Schmidt, and E.J. Brook, 2007: A global climate model study
1159	of CH ₄ emissions during the Holocene and glacial-interglacial transitions constrained by
1160	ice core data. Global Biogeochemical Cycles, 21, GB1011.
1161	
1162	Hegerl, G.C., F.W. Zwiers, P. Braconnot, N.P. Gillett, Y. Luo, J.A. Marengo Orsini, N.

1163	Nicholls, J.E. Penner, and P.A. Stott, 2007: Understanding and Attributing Climate
1164	Change. In: Climate Change 2007—The Physical Science Basis. Contribution of Working
1165	Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
1166	Change, [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.
1167	Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United
1168	Kingdom and New York, pp. 663-745.
1169	
1170	Hu, F.S., J.I. Hedges, E.S. Gorden, and L.B. Brubaker, 1999a: Lignin biomarkers and pollen in
1171	postglacial sediments of an Alaskan lake. Geochimica Cosmochimica Acta, 63, 1421-
1172	1430.
1173	
1174	Hu, F.S., D.M. Nelson, G.H. Clarke, K.M. Ruhland, Y. Huang, D.S. Kaufman, and J.P. Smol,
1175	2006: Abrupt climatic events during the last glacial-interglacial transition in Alaska.
1176	Geophysical Research Letters, 33, L18708, doi:10.1029/2006GL027261.
1177	
1178	Hu, F.S., D. Slawinski, H.E.J. Wright, E. Ito, R.G. Johnson, K.R. Kelts, R.F. McEwan, and A.
1179	Boedigheimer, 1999b: Abrupt changes in North American climate during early Holocene
1180	times. <i>Nature</i> , 400 , 437-440.
1181	
1182	Huang, Y., B. Shuman, Y. Wang, and T. Webb, III, 2004: Hydrogen isotope ratios of individual
1183	lipids in lake sediments as novel tracers of climatic and environmental change—A
1184	surface sediment test. Journal Paleolimnology, 31, 363-375.
1185	
1186	Huber, C., M. Leuenberger, R. Spahni, J. Flückiger, J. Schwander, T.F. Stocker, S. Johnsen, A.
1187	Landais, and J. Jouzel, 2006: Isotope calibrated Greenland temperature record over
1188	Marine Isotope Stage 3 and its relation to CH ₄ . Earth and Planetary Science Letters,
1189	243 (3-4), 504-519.
1190	
1191	Hughen, H.A., J.R. Southon, S.J. Lehman, and J.T. Overpeck, 2000: Synchronous radiocarbon
1192	and climate shifts during the last deglaciation. Science, 290, 1951-1954.
1193	

1194	Hughen, K.A., M.G.L. Baillie, E. Bard, A. Bayliss, J.W. Beck, C. Bertrand, P.G. Blackwell,
1195	C.E. Buck, G. Burr, K.B. Cutler, P.E. Damon, R.L. Edwards, R.G. Fairbanks, M.
1196	Friedrich, T.P. Guilderson, B. Kromer, F.G. McCormac, S. Manning, C. Bronk Ramsey,
1197	P.J. Reimer, R.W. Reimer, S. Remmele, J.R. Southon, M. Stuiver, S. Talamo, F.W.
1198	Taylor, J. van der Plicht, and C.E. Weyhenmeyer, 2004a: Marine04 marine radiocarbon
1199	age calibration, 0-26 Cal Kyr BP. Radiocarbon, 46, 1059-1086.
1200	
1201	Hughen, K., S. Lehman, J. Southon, J. Overpeck, O. Marchal, C. Herring, and J. Turnbull,
1202	2004b: ¹⁴ C Activity and global carbon cycle changes over the past 50,000 years. Science,
1203	303 , 202-207.
1204	
1205	Hughen, K., J. Overpeck, R.F. Anderson, and K.M. Williams, 1996: The potential for
1206	palaeoclimate records from varved Arctic lake sediments: Baffin Island, Eastern
1207	Canadian Arctic. In: Lacustrine Environments. Palaeoclimatology and
1208	Palaeoceanography from Laminated Sediments, [Kemp, A.E.S. (ed.)], Geological
1209	Society, London, Special Publications 116, pp. 57-71.
1210	
1211	Imbrie, J., A. Berger, E.A. Boyle, S.C. Clemens, A. Duffy, W.R. Howard, G. Kukla, J.
1212	Kutzbach, D.G. Martinson, A. McIntyre, A.C. Mix, B. Molfino, J.J. Morley, L.C.
1213	Peterson, N.G. Pisias, W.L. Prell, M.E. Raymo, N.J. Shackleton, and J.R. Toggweiler,
1214	1993:. On the structure and origin of major glaciation cycles .2. the 100,000-year cycle.
1215	Paleoceanography, 8(6) 699-735.
1216	
1217	Jansen, E., J. Overpeck, K.R. Briffa, JC. Duplessy, F. Joos, V. Masson-Delmotte, D. Olago, B.
1218	Otto-Bliesner, W.R. Peltier, S. Rahmstorf, R. Ramesh, D. Raynaud, D. Rind, O.
1219	Solomina, R. Villalba and D. Zhang. 2007. Palaeoclimate. In: Climate Change 2007-
1220	The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
1221	Report of the Intergovernmental Panel on Climate Change, [Solomon, S., D. Qin, M.
1222	Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)].
1223	Cambridge University Press, Cambridge, United Kingdom and New York, pp. 434-497.
1224	

1225	Jennings, A.E., Hald, M., Smith, M., Andrews, J.T., 2006: Freshwater forcing from the
1226	Greenland Ice Sheet during the Younger Dryas: Evidence from southeastern Greenland
1227	shelf cores. Quaternary Science Reviews 25: 282-298.
1228	
1229	Johnsen, S.J., 1977: Stable isotope homogenization of polar firn and ice. In: Isotopes and
1230	Impurities in Snow and Ice. Proceedings of International Union of Geodesy and
1231	Geophysics symposium XVI, General Assembly, Grenoble, France, August and
1232	September 1975, pp. 210-219. IAHS-AISH Publication 118, Washington, DC
1233	
1234	Johnsen, S.J., H.B. Clausen, K.M. Cuffey, G. Hoffmann, J. Schwander, and T. Creyts, 2000:
1235	Diffusion of stable isotopes in polar firn and ice—The isotope effect in firn diffusion. In:
1236	Physics of Ice Core Records [Hondoh, T. (ed.)]. Hokkaido University Press, Sapporo, pp.
1237	121-140.
1238	
1239	Johnsen, S.J., H.B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C.U. Hammer, P.
1240	Iversen, J.P. Steffensen, J. Jouzel, and B. Stauffer, 1992: Irregular glacial interstadials
1241	recorded in a new Greenland ice core. Nature, 359(6393), 311-313.
1242	
1243	Johnsen, S., D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup, 1995: Greenland
1244	palaeotemperatures derived from GRIP bore hole temperature and ice core isotope
1245	profiles. Tellus B, 47(5), 624-629.
1246	
1247	Johnsen, S.J., W. Dansgaard, H.B. Clausen, and C.C. Langway, Jr., 1972: Oxygen isotope
1248	profiles through the Antarctic and Greenland Ice Sheets. Nature, 235(5339), 429-434.
1249	
1250	Jouzel, J., R.B. Alley, K.M. Cuffey, W. Dansgaard, P. Grootes, G. Hoffmann, S.J. Johnsen, R.D.
1251	Koster, D. Peel, C.A. Shuman, M. Stievenard, M. Stuiver, and J. White, 1997: Validity of
1252	the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical
1253	Research, 102(C12), 26,471-26,487.
1254	

1255	Kaufman, D.S., T.A. Ager, N.J. Anderson, P.M. Anderson, J.T. Andrews, P.J. Bartlein, L.B.
1256	Brubaker, L.L. Coats, L.C. Cwynar, M.L. Duvall, A.S. Dyke, M.E. Edwards, W.R.
1257	Eisner, K. Gajewski, A. Geirsdóttir, F.S. Hu, A.E. Jennings, M.R. Kaplan, M.W. Kerwin,
1258	A.V. Lozhkin, G.M. MacDonald, G.H. Miller, C.J. Mock, W.W. Oswald, B.L. Otto-
1259	Bliesner, D.F. Porinchu, K. Rühland, J.P. Smol, E.J. Steig, and B.B. Wolfe, 2004:
1260	Holocene thermal maximum in the western Arctic (0-180°W). Quaternary Science
1261	<i>Reviews</i> , 23 , 529-560.
1262	
1263	Keller, K. and D. McInerney, 2007. The dynamics of learning about a climate threshold. Climate
1264	Dynamics, 30, 321-332, doi:10.1007/s00382-007-0290-5.
1265	
1266	Kristjansdottir, G.B., 2005: Holocene climatic and environmental changes on the Iceland
1267	shelf—δ18O, Mg/Ca, and tephrachronology of core MD99-2269. PhD dissertation,
1268	Department of Geological Sciences, University of Colorado, Boulder, 423 pp.
1269	
1270	Kristjansdottir, G.B., J.S. Stoner, A.E. Jennings, J.T. Andrews, and K. Gronvold, 2007:
1271	Geochemistry of Holocene cryptotephras from the North Iceland Shelf (MD99-2269)—
1272	Intercalibration with radiocarbon and paleomagnetic chronostratigraphies. The Holocene,
1273	17(2) : 155-176.
1274	
1275	Landais, A., J.M. Barnola, V. Masson-Delmotte, J. Jouzel, J. Chappellaz, N. Caillon, C. Huber,
1276	M. Leuenberger, and S.J. Johnsen, 2004: A continuous record of temperature evolution
1277	over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76 to 62
1278	kyr BP). Geophysical Research Letters, 31 , L22211, doi:22210.21029/22004GL021193.
1279	
1280	Lang, C., M. Leuenberger, J. Schwander, and S. Johnsen, 1999: 16°C rapid temperature
1281	variation in central Greenland 70,000 years ago. Science, 286(5441), 934-937.
1282	
1283	Lauritzen, SE. and J. Lundberg, 2004: Isotope Stage 11, the "Super-Interglacial," from a north
1284	Norwegian speleothem. In: Studies of Cave Sediments: Physical and Chemical Records
1285	of Paleoclimate, [Sasowsky, I.D. and J. Mylroie (eds.)]. Kluwer Academic, New York,

1286	pp. 257-272.
1287	
1288	Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and
1289	M. Prather, 2007: Historical Overview of Climate Change. In: Climate Change 2007-
1290	The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
1291	Report of the Intergovernmental Panel on Climate Change, [Solomon, S., D. Qin, M.
1292	Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)].
1293	Cambridge University Press, Cambridge, United Kingdom and New York, pp. 93-127.
1294	
1295	Leuenberger, M., C. Lang, and J. Schwander, 1999: Delta ¹⁵ N measurements as a calibration
1296	tool for the paleothermometer and gas-ice age differences—A case study for the 8200
1297	B.P. event on GRIP ice. Journal of Geophysical Research, 104(D18), 22,163-22,170.
1298	
1299	Lorenz, E.N., 1963: Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences,
1300	20 (2),130-141.
1301	
1302	Lozhkin, A.V. and P.M. Anderson, 1995: The last interglaciation of northeast Siberia.
1303	Quaternary Research, 43 , 147-158.
1304	
1305	McConnell, J.R., R. Edwards, G.L. Kok, M.G. Flanner, C.S. Zender, E.S. Saltzman, J.R. Banta,
1306	D.R. Pasteris, M.M. Carter, and J.D.W. Kahl, 2007: 20th-century industrial black carbon
1307	emissions altered arctic climate forcing. Science, 317, 1381-1384.
1308	
1309	Meese, D.A., A.J. Gow, R.B. Alley, G.A. Zielinski, P.M. Grootes, M. Ram, K.C. Taylor, P.A.
1310	Mayewski, and J.F. Bolzan, 1997: The Greenland Ice Sheet Project 2 depth-age scale—
1311	Methods and results. Journal of Geophysical Research, 102(C12), 26,411-26,423.
1312	
1313	Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh,
1314	R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and ZC.
1315	Zhao, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science
1316	Basis. Contribution of Working Group I to the Fourth Assessment Report of the

Chapter 6 Past Rates of Change in the Arctic

1317	Intergovernmental Panel on Climate Change, [Solomon, S.,D. Qin, M. Manning, Z.
1318	Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge
1319	University Press, Cambridge, United Kingdom and New York, pp. 747-845.
1320	
1321	Miller, G.H., W.N. Mode, A.P. Wolfe, P.E. Sauer, O. Bennike, S.L. Forman, S.K. Short, and
1322	T.W.J. Stafford, 1999: Stratified interglacial lacustrine sediments from Baffin Island,
1323	Arctic Canada—Chronology and paleoenvironmental implications. Quaternary Science
1324	<i>Reviews</i> , 18 , 789-810.
1325	
1326	Miller, G.H., A.P. Wolfe, J.P. Briner, P.E. Sauer, and A. Nesje, 2005: Holocene glaciation and
1327	climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews, 24,
1328	1703-1721.
1329	
1330	Monnin, E., A. Indermuhle, A. Dallenbach, J. Fluckiger, B. Stauffer, T.F. Stocker, D. Raynaud,
1331	and J.M. Barnola, 2001: Atmospheric CO2 concentrations over the last glacial
1332	termination. Science, 291(5501) 112-114.
1333	
1334	Moran, K., J. Backman, H. Brinkhuis, S.C. Clemens, T. Cronin, G.R. Dickens, F. Eynaud, J.
1335	Gattacceca, M. Jakobsson, R.W. Jordan, M. Kaminski, J. King, N. Koc, A. Krylov, N.
1336	Martinez, J. Matthiessen, D. McInroy, T.C. Moore, J. Onodera, M. O'Regan, H. Palike,
1337	B. Rea, D. Rio, T. Sakamoto, D.C. Smith, R. Stein, K. St. John, I. Suto, N. Suzuki, K.
1338	Takahashi, M. Watanabe, M. Yamamoto, J. Farrell, M. Frank, P. Kubik, W. Jokat and Y.
1339	Kristoffersen, 2006: The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441,
1340	601-605.
1341	
1342	Muscheler, R., F. Joos, J. Beer, S.A. Miller, M. Vonmoos, and I. Snowball, 2007: Solar activity
1343	during the last 1000 yr inferred from radionuclide records. Quaternary Science Reviews,
1344	26 , 82-97.
1345	
1346	National Research Council, 2002: Abrupt Climate Change, Inevitable Surprises. National
1347	Academy Press, Washington, DC, 230 pp.

1348	
1349	Oeschger, H., J. Beer, U. Siegenthaler, B. Stauffer, W. Dansgaard, and C.C. Langway, Jr., 1984:
1350	Late glacial climate history from ice cores. In: Climate Processes and Climate Sensitivity,
1351	[Hansen, J.E. and T. Takahashi, (eds.)]. Geophysical Monograph Series 29, American
1352	Geophysical Union, Washington, DC, pp. 299-306.
1353	
1354	Ojala, A.E.K. and M. Tiljander, 2003: Testing the fidelity of sediment chronology-Comparison
1355	of varve and paleomagnetic results from Holocene lake sediments from central Finland.
1356	Quaternary Science Reviews, 22, 1787-1803.
1357	
1358	Oswald, W.W., P.M. Anderson, T.A. Brown, L.B. Brubaker, F.S. Hu, A.V. Lozhkin, W. Tinner,
1359	and P. Kaltenrieder, 2005: Effects of sample mass and macrofossil type on radiocarbon
1360	dating of arctic and boreal lake sediments. The Holocene, 15, 758-767.
1361	
1362	Overpeck, J., K. Hughen, D. Hardy, R. Bradley, R. Case, M. Douglas, B. Finney, K. Gajewski,
1363	G. Jacoby, A. Jennings, S. Lamoureux, A. Lasca, G. MacDonald, J. Moore, M. Retelle, S.
1364	Smith, A. Wolfe, and G. Zielinski, 1997: Arctic environmental change of the last four
1365	centuries. Science, 278 , 1251-1256.
1366	
1367	Peteet, D. 1995a: Global Younger Dryas. Quaternary International, 28, 93-104.
1368	
1369	Peteet, D.M., 1995b: Global Younger Dryas. Vol. 2. Preface. Quaternary Science Reviews, 14,
1370	811.
1371	
1372	Rasmussen, S.O., K.K. Andersen, A.M. Svensson, J.P. Steffensen, B.M. Vinther, H.B. Clausen,
1373	ML. Siggaard-Andersen, S.J. Johnsen, L.B. Larsen, D. Dahl-Jensen, M. Bigler, R.
1374	Röthlisberger, H. Fischer, K. Goto-Azuma, M.E. Hansson, and U. Ruth, 2006: A new
1375	Greenland ice core chronology for the last glacial termination. Journal of Geophysical
1376	Research, 111, D06102, doi:06110.01029/02005JD006079.
1377	

1378	Rasmussen, S.O., I.K. Seierstad, K.K. Andersen, M. Bigler, D. Dahl-Jensen, and S.J. Johnsen,
1379	2007: Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and
1380	palaeoclimatic implications. Quaternary Science Review, 27, 18-28.
1381	
1382	Reeh, N., 1985: Greenland ice-sheet mass balance and sea-level change. In: Glaciers, Ice Sheets
1383	and Sea Level: Effect of a CO ₂ -Induced Climatic Change. DOE/ER/60235-1, Department
1384	of Energy, Washington, DC, pp. 155-171.
1385	
1386	Rempel, A.W. and J.S. Wettlaufer, 2003: Segregation, transport, and interaction of climate
1387	proxies in polycrystalline ice. Canadian Journal of Physics, 81(1-2), 89-97.
1388	
1389	Renssen, H., H. Goosse, and R. Muscheler, 2006: Coupled climate model simulation of
1390	Holocene cooling events—Oceanic feedback amplifies solar forcing. Climate of the Past,
1391	2, 79-90.
1392	
1393	Royer, D.L., R.A. Berner, and J. Park, 2007: Climate sensitivity constrained by CO ₂
1394	concentrations over the past 420 million years. Nature, 446, 530-532.
1395	
1396	Ruddiman, W.F. and L.K. Glover, 1975: Subpolar North Atlantic circulation at 9300 yr BP-
1397	Faunal evidence. Quaternary Research, 5, 361-389.
1398	
1399	Ruddiman, W.F. and A. McIntyre, 1981: The North Atlantic Ocean during the last deglaciation.
1400	Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 145-214.
1401	
1402	Saarinen, T., 1999: Paleomagnetic dating of late Holocene sediments in Fennoscandia.
1403	Quaternary Science Reviews, 18, 889-897.
1404	
1405	Sauer, P.E., T.I. Eglinton, J.M. Hayes, A. Schimmelmann, and A.L. Sessions, 2001: Compound-
1406	specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and
1407	climatic conditions. Geochimica Cosmochimica Acta, 65, 213-222.
1408	

1409	Serreze, M.C., M.M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic's shrinking sea-
1410	ice cover. Science, 315(5818), 1533, doi:10.1126/science.1139426.
1411	
1412	Severinghaus, J.P., T. Sowers, E.J. Brook, R.B. Alley, and M.L. Bender, 1998: Timing of abrupt
1413	climate change at the end of the Young Dryas interval from thermally fractionated gases
1414	in polar ice. <i>Nature</i> , 391 , 141-146.
1415	
1416	Snowball, I. F., L. Zillén, and MJ. Gaillard, 2002. Rapid early Holocene environmental
1417	changes in northern Sweden based on studies of two varved lake sediment sequences. The
1418	<i>Holocene</i> 12 , 7-16.
1419	
1420	Snowball, I. and P. Sandgren, 2004: Geomagnetic field intensity changes in Sweden between
1421	9000 and 450 cal B.P.—Extending the record of archaeomagnetic jerks by means of lake
1422	sediments and the pseudo-Thellier technique. Earth and Planetary Science Letters, 277,
1423	361-376.
1424	
1425	Snowball, I., L. Zillén, A. Ojala, T. Saarinen, and P. Sandgren, 2007: FENNOSTACK and
1426	FENNORPIS—Varve-dated Holocene palaeomagnetic secular variation and relative
1427	palaeointensity stacks for Fennoscandia. Earth and Planetary Science Letters, 255, 106-
1428	115.
1429	
1430	Steffensen, J.P., H.B. Clausen, C.U. Hammer, M. Legrand, and M. De Angelis, 1997: The
1431	chemical composition of cold events within the Eemian section of the Greenland Ice
1432	Core Project ice core from Summit, Greenland. Journal of Geophysical Research,
1433	102 (C12), 26,747-26,754.
1434	
1435	Steffensen, J.P. and D. Dahl-Jensen, 1997: Modelling of alterations of the stratigraphy of ionic
1436	impurities in very old ice core strata. Eos, Transactions, American Geophysical Meeting
1437	Fall Meeting, San Francisco, USA, 78, F7 Poster U21A-22.
1438	
1439	Steig, E.J. and R.B. Alley, 2003: Phase relationships between Antarctic and Greenland climate

1440	records. Annals of Glaciology, 35, 451-456.
1441	
1442	Stocker, T.F. and S.J. Johnsen, 2003: A minimum thermodynamic model for the bipolar seesaw.
1443	Paleoceanography, 18, 1087.
1444	
1445	Stoner, J.S., A. Jennings, G.B. Kristjansdottir, G. Dunhill, J.T. Andrews, and J. Hardardottir,
1446	2007: A paleomagnetic approach toward refining Holocene radiocarbon-based
1447	chronologies—Paleoceanographic records from the North Iceland (MD99-2269) and East
1448	Greenland (MD99-2322) margins. Paleoceanography, 22, PA1209,
1449	doi:10.1029/2006PA001285.
1450	
1451	Stuiver, M., T.F. Braziunas, P.M. Grootes, and G.A. Zielinski, 1997: Is there evidence for solar
1452	forcing of climate in the GISP2 oxygen isotope record? Quaternary Research, 48, 259-
1453	266.
1454	
1455	Stuiver, M., P.J. Reimer, E. Bard, J.W. Beck, K.A. Hughen, B. Kromer, F.G. McCormack, J.
1456	van der Plicht, and M. Spurk, 1998: INTCAL98 Radiocarbon age calibration 24,000 cal
1457	BP. Radiocarbon, 40 , 1041-1083.
1458	
1459	Svendson, J.I. and J. Mangerud, 1992: Paleoclimatic inferences from glacial fluctuations on
1460	Svalbard during the last 20 000 years. Climate Dynamics, 6, 213-220.
1461	
1462	Svensson, A., K.K. Andersen, M. Bigler, H.B. Clausen, D. Dahl-Jensen, S.M. Davies, S.J.
1463	Johnsen, R. Muscheler, S.O. Rasmussen, R. Röthlisberger, J.P. Steffensen, and B.M.
1464	Vinther, 2006: The Greenland Ice Core chronology 2005, 15–42 ka. Part 2—Comparison
1465	to other records. Quaternary Science Reviews, 25(23-24), 3258-3267.
1466	
1467	Svensson, A., S.W. Nielsen, S. Kipfstuhl, S.J. Johnsen, J.P. Steffensen, M. Bigler, U. Ruth, and
1468	R. Röthlisberger, 2005: Visual stratigraphy of the North Greenland Ice Core Project
1469	(NorthGRIP) ice core during the last glacial period. Journal of Geophysical Research,
1470	110 , D02108, doi:02110.01029/02004JD005134.

1471	
1472	Tarduno, J.A., D.B. Brinkman, P.R. Renne, R.D. Cottrell, H. Scher and P. Castillo, 1998:
1473	Evidence for Extreme Climatic Warmth from Late Cretaceous Arctic Vertebrates.
1474	Science, 282 , 22412244.
1475	
1476	Tilling, R.I., L. Topinka, and D.A. Swanson, 1990: Eruptions of Mount St. Helens: Past,
1477	Present, and Future. U.S. Geological Survey Special Interest Publication, 56 pp.
1478	
1479	Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker,
1480	F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden, and P. Zhai, 2007: Observations:
1481	Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical
1482	Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the
1483	Intergovernmental Panel on Climate Change, [Solomon, S., D. Qin, M. Manning, Z.
1484	Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.)]. Cambridge
1485	University Press, Cambridge, United Kingdom and New York, pp. 236-336.
1486	
1487	Trenberth, K.E., J.M. Caron, D.P. Stepaniak, and S. Worley, 2002: Evolution of El Nino-
1488	Southern Oscillation and global atmospheric surface temperatures. Journal of
1489	Geophysical Research–Atmospheres, 107(D7-8), 4065.
1490	
1491	Vandermark, D., J.A. Tarduno, and D.B. Brinkman, 2007: A fossil champsosaur population
1492	from the High Arctic: Implications for Late Cretaceous paleotemperatures,
1493	Palaeogeography, Palaeoclimatology, Palaeoecology, 248, 49-59.
1494	
1495	Vinther, B.M., H.B. Clausen, S.J. Johnsen, S.O. Rasmussen, K.K. Andersen, S.L. Buchardt, D.
1496	Dahl-Jensen, I.K. Seierstad, ML. Siggaard-Andersen, J.P. Steffensen, A.M. Svensson, J.
1497	Olsen, and J. Heinemeier, 2006: A synchronized dating of three Greenland ice cores
1498	throughout the Holocene. Journal of Geophysical Research, 111, D13102,
1499	doi:13110.11029/12005JD006921.
1500	
1501	Walker, I.R., A.J. Levesque, L.C. Cwynar, and A.F. Lotter, 1997: An expanded surface-water

1502	palaeotemperature inference model for use with fossil midges from eastern Canada.
1503	Journal of Paleolimnology, 18 , 165-178.
1504	
1505	Whillans, I.M. and P.M. Grootes, 1985: Isotopic diffusion in cold snow and firn. Journal of
1506	Geophysical Research, 90 (D2), 3910-3918.
1507	
1508	White, J.W.C., J.R. Lawrence, and W.S. Broecker, 1994: Modeling and Interpreting D/H Ratios
1509	in Tree-Rings - A test-case of white-pine in the northeastern United States. Geochimica et
1510	<i>Cosmochimica Acta</i> , 58(2) , 851-862.
1511	
1512	Willemse, N.W. and T.E. Törnqvist, 1999: Holocene century-scale temperature variability from
1513	West Greenland lake records. Geology, 27, 580-584.
1514	
1515	Woillard, G.M., 1979: Abrupt end of the last interglacial ss in north-east France. Nature,
1516	281(5732) , 558-562.
1517	
1518	Woillard, G.M., 1978: Grande Pile peat bog—A continuous pollen record for the last 140.000
1519	years. Quaternary Research, 9, 1-21.
1520	
1521	Wolfe, A.P., G.H. Miller, C. Olsen, S.L. Forman, P.T. Doran, and S.U. Holmgren, 2005:
1522	Geochronology of high-latitude lake sediments. In: Long-term Environmental Change in
1523	Arctic and Antarctic Lakes—Developments in Paleoenvironmental Research, [Pienitz,
1524	R., M.S.V. Douglas, and J.P. Smol (eds.)]. Springer, New York, pp. 19-52.
1525	
1526	Yang, F.L., M.E. Schlesinger, 2002: On the surface and atmospheric temperature changes
1527	following the 1991 Pinatubo volcanic eruption: A GCM study. Journal of Geophysical
1528	Research-Atmospheres, 107(D8), 4073, doi:10.1029/2001JD000373.
1529	