

How to get bankable meteo data? DLR solar resource assessment

<u>Robert Pitz-Paal,</u> Norbert Geuder, Carsten Hoyer-Klick, Christoph Schillings

Solar resource assessment for solar power plants

- ✓ Why solar resource assessment ?
- Characteristics of solar irradiation data
- → DLR solar resource assessment:
 - ground measurements
 - ✓ satellite data
 - → How to get bankable meteo data?
- Summary

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Why is exact knowledge of the solar resource so important?

Why solar resource assessment?

in der Helmholtz-Gemeinschaft

Characteristics of solar irradiation data

What kind of irradiation data is needed?

- Type:
 - → DNI (Direct-Normal Irradiation)
 - → GHI (Global-Horizontal Irradiation)
 - → DHI (Diffus-Horizontal Irradiation)
- ✓ Source:
 - → ground measurements
 - → satellite data
- → Properties of irradiation:
 - → spatial variability

 - → long-term drifts

Characteristics of solar irradiation data

Slide 4 > Solar resource assessment at DLR

Ground measurements vs. satellite derived data

Ground measurements

Advantages

- + high accuracy (depending on sensors)
- + high time resolution

Satellite data

Advantages

- + spatial resolution
- + long-term data (more than 20 years)
- + effectively no failures

- + no ground site necessary
- + low costs

Disadvantages

- high costs for installation and O&M
- soiling of the sensors
- sometimes sensor failure
- no possibility to gain data of the past

Disadvantages

- lower time resolution
- low accuracy in particular at high time resolution

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Characteristics of solar irradiation data

Inter annual variability

Strong inter annual and regional variations

Average of the direct normal irradiance from 1999-2003

Characteristics of solar irradiation data

Slide 6 > Solar resource assessment at DLR

States and the second of the second sec

Long-term variability of solar irradiance

→ 7 to 10 years of measurement to get long-term mean within 5%

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Characteristics of solar irradiation data

Slide 7 > Solar resource assessment at DLR

Time series of annual direct normal irradiance

How to get bankable Meteo Data?

 Quality checked ground measurements to gain highly accurate data

- Derivation of irradiation from satellite data to get
 - spatial distribution and
 - long-term time series

Validation of the satellite data with accurate ground data

Result: accurate hourly time series, irradiation maps and long-term annual mean

DLR solar resource assessment

Instrumentation for unattended abroad sites:

Rotating Shadowband Pyranometer (RSP)

Sensor: Si photodiode

Advantages:

- + fairly acquisition costs
- + small maintenance costs
- + low susceptibility for soiling
- + low power supply

Disadvantage:

 special correction for good accuracy necessary (established by DLR)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Precise sensors (also for calibration of RSP):

Thermal sensors:

pyranometer and pyrheliometer, precise 2-axis tracking

Advantage:

- + high accuracy
- + separate GHI, DNI and DHI sensors (cross-check through redundant measurements)

Disadvantages:

- high acquisition and O&M costs
- high susceptibility for soiling
- high power supply

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

STATION CONTRACTOR SALES OF THE STATE

Satellite data: SOLEMI – Solar Energy Mining

- ✓ SOLEMI is a service for high resolution and high quality data
- Coverage: Meteosat Prime up to 22 years, Meteosat East 10 years (in 2008)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Satellite data

Slide 12 > Solar resource assessment at DLR

Radiative Transfer in the Atmosphere

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- The Meteosat satellite is located in a geostationary orbit
- The satellite scans the earth line by line every half hour

- The Meteosat satellite is located in a geostationary orbit
- The satellite scans the earth line by line every half hour
- ✓ The earth is scanned in the visible …

- The Meteosat satellite is located in a geostationary orbit
- The satellite scans the earth line by line every half hour
- The earth is scanned in the visible and infra red spectrum

- The Meteosat satellite is located in a geostationary orbit
- The satellite scans the earth line by line every half hour
- The earth is scanned in the visible and infra red spectrum
- A cloud index is composed from the two channels

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- Atmospheric transmission is calculated from global data sets
 - → elevation

- Atmospheric transmission is calculated from global data sets
 - → elevation
 - ✓ ozone

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Satellite data

Slide 19 > Solar resource assessment at DLR

- Atmospheric transmission is calculated from global data sets
 - → elevation
 - ✓ ozone
 - ✓ water vapor

Satellite data

Slide 20 > Solar resource assessment at DLR

- Atmospheric transmission is calculated from global data sets
 - \checkmark elevation
 - ✓ ozone
 - ✓ water vapor
 - → aerosols

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Satellite data

Slide 21 > Solar resource assessment at DLR

- Atmospheric transmission is calculated from global data sets
 - → elevation
 - ✓ ozone
 - ✓ water vapor
 - → aerosols
- The cloud index is added for cloud transmission

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- Atmospheric transmission is calculated from global data sets
 - → elevation
 - ✓ ozone
 - ✓ water vapor
 - → aerosols
- The cloud index is added for cloud transmission
- All components are cut out to the region of interest

 Finally the irradiance is calculated for every hour

Satellite data

Slide 24 > Solar resource assessment at DLR

Example for hourly time series for Plataforma Solar de Almería (Spain)

Validation of the data

Comparing ground and satellite data: time scales

Hi-res satellite pixel in Europe

 $12{:}45 \ 13{:}00 \ 13{:}15 \ 13{:}30 \ 13{:}45 \ 14{:}00 \ 14{:}15$

Hourly average Meteosat image Measurement

- Ground measurements are typically pin point measurements which are temporally integrated
- Satellite measurements are instantaneous spatial averages
- Hourly values are calculated from temporal and spatial averaging (cloud movement)

Comparing ground and satellite data: "sensor size"

solar ther <u>mal</u> power plant (200MW ≈ 2x2 km²	+	satellite pixe (~ 3x4 km²)	el
	ground measurement instrument (~2x2 cm ²)		

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 27 > Solar resource assessment at DLR

Comparison with ground measurements and accuracy

The fr

general difficulties: point versus area and time integrated versus area integrated

Comparison with ground measurements and accuracy

1-TAN a Ta

general difficulties: point versus area and time integrated versus area integrated

Validation in Tabouk, Saudi Arabia

Validation of the data

Validation results

RMSE (Root Mean Square Error)

Decreasing deviation between ground and satellite derived data with increasing duration of the integration time

Bias

Variing within different sites

Site

Measurement Network Saudi Arabia Several Sites in Spain Morocco Algeria

bias

+4.3% -6.4% to +0.7% -2.0% -4.8%

Validation of the data

Monthly ground and satellite derived irradiation data

Adjusting Ground and Satellite Data

- ✓ Simple Method: Scaling with the Bias
 - \checkmark E.g. with a Bias of -5%, every value is multiplied with 1.05
 - + Very easy to apply
 - Modification of frequency distribution at the extreme end a factor > 1 may produce unrealistic high values a factor < 1 may omit high values
 - ✓ Suitable for average values

Adjusting Ground and Satellite Data

- ✓ Advanced Method: Error analysis and correction functions
 - ➤ Analysis of the Deviations:
 - ✓ At clear sky? (e.g. due to incorrect atmospheric data)
 - During cloud situations? (e.g. incorrect cloud modelling)
 - Development of a correction function dependent e.g. on the cloud index.

Summary

- Ground measurements are accurate but expensive and in suitable regions mostly rare (especially DNI)
- ✓ New ground measurements do **not** deliver time series **for the past**
- Satellite data offers spatial resolution and long-term time series of more than 20 years into the past
- Combination of ground and satellite date yields: irradiation maps,
 long term annual means and time series all with good accuracy
- Realistic long term meteo data helps to avoid risk surcharges of banks due to conservative assumptions and increase the financial viability of your project

Summary

Thank you for your attention !

Acknowledgements

- Richard Meyer, Institute for Physics of the Atmosphere, DLR Oberpfaffenhofen
- Sina Lohmann, Institute for Physics of the atmosphere, DLR Oberpfaffenhofen
- → Antonie Zelenka, MeteoSwiss, Zürich
- ✓ Volker Quaschning, FHTW Berlin

Slide 37 > Solar resource assessment at DLR

Satellite data and nearest neighbour stations

 Satellite derived data fit better to a selected site than ground measurements from a site farther than 25 km away.

Perez et al., ASRC

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Time series of direct normal irradiance

